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CLONE AUTOMORPHISMS AND
HYPERSUBSTITUTIONS1

K. Denecke2, K. GÃlazek2, St. Niwczyk3

Abstract. A hypersubstitution maps the operation symbols of a type τ
to terms of the same arity and can be uniquely extended to a mapping
defined on the set of all terms of this type. In this paper we prove that
the group of all clone automorphisms of an algebra A is isomorphic to a
certain group of hypersubstitutions supposed the variety V (A) generated
by A is solid.
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1. Introduction

Let (fi)i∈I be a sequence of operation symbols, where fi is ni-ary and ni ≥ 1.
We denote by Xn = {x1, . . . , xn} a finite and by X = {x1, . . .} an infinite alpha-
bet. The sequence τ = (ni)i∈I is called the type of the language and Wτ (Xn)
denotes the set of all n-ary terms of type τ . Let Wτ (X) :=

⋃

n≥1

Wτ (Xn) be the set

of all terms of type τ . There are different possibilities to define operations on the
set of all terms of type τ (see, e.g., [6]-[8], [10], [12], [13]). Using for every i ∈ I
the operations f i : Wτ (Xn)ni → Wτ (Xn) with f i(t1, . . . , tni) := fi(t1, . . . , tni),
we obtain the absolutely free n-generated algebra Fτ (Xn) = (Wτ (Xn); (f i)i∈I)
of type τ . Let Fτ (X) = (Wτ (X); (f i)i∈I) be the absolutely free algebra gener-
ated by X.
Another possibility is the operation of composition or superposition of terms
which plays an important role in Universal Algebra, Clone Theory and Com-
puter Science. For each m,n ∈ N \ {0} the superposition operation

Sn
m : Wτ (Xn)×Wτ (Xm)n → Wτ (Xm)
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is a mapping which maps an n-ary term and n m-ary terms into an m-ary term
and fulfils the following rules:

(i) Sn
m(xj , t1, . . . , tn) := tj if xj , 1 ≤ j ≤ n, is a variable from Xn,

(ii) Sn
m(fi(r1, . . . , rni), t1, . . . , tn) :=

= fi(Sn
m(r1, t1, . . . , tn), . . . , Sn

m(rni
, t1, . . . , tn)) for i ∈ I.

We obtain a multi-based (heterogeneous) algebra

Cl(τ) := ((Wτ (Xn))n∈N\{0}; (Sn
m)m,n∈N\{0}, (xi)i≤n∈N\{0})

which is called unitary Menger system (or clone of all terms of type τ) since it
satisfies the following identities:

(C1) S̃p
m(X0, S̃

n
m(Y1, X1, . . . , Xn), . . . , S̃n

m(Yp, X1, . . . , Xn)) ≈
S̃n

m(S̃p
m(X0, Y1, . . . , Yp), X1, . . . , Xn),

(C2) S̃n
m(λi, X1, . . . , Xn) ≈ Xi, 1 ≤ i ≤ n,

(C3) S̃n
m(X1, λ1, . . . , λn) ≈ X1.

Here S̃n is an (n+1)-ary operation symbol, λ1, . . . , λn are nullary operation
symbols and X0, X1, . . . , Xn, Y1, . . . , Yn are variables.
The algebra Cl(τ) is free with respect to the heterogeneous variety of all unitary
Menger systems.

By restriction to an n-ary type τn, where all operation symbols have the same
arity n ≥ 1 and to the set Wτ (Xn) we obtain a one-based algebra n-Cl(τn) :=
(Wτ (Xn); Sn, x1, . . . , xn) of type (n+1, 0, . . . , 0) with the (n+1)-ary operation
Sn := Sn

n . This algebra is an example for a unitary Menger algebra of rank n.
It satisfies axioms which can be derived from (C1), (C2), (C3) if we identify all
operation symbols Sn

m with Sn. These identities define the variety of all unitary
Menger algebras of rank n. The algebra n-Cl(τn) is free in the variety of all
unitary Menger algebras of rank n and is freely generated by {fi(x1, . . . , xn) | i ∈
I} (see, e.g., [3], Theorem 1.2, and [2]).

For every algebra A = (A; (fi
A)i∈I) each n-ary term from Wτ (Xn) induces

an n-ary term operation tA in the usual way.
We denote by (Wτ (Xn))A := {tA | t ∈ Wτ (Xn)} the set of all term opera-

tions induced by n-ary terms of type τ . On the set (Wτ (Xn))A one may define an
(n + 1)-ary superposition operation Sn,A by Sn,A(tA, t1

A, . . . , tn
A)(a1, . . . , an) :=

tA(t1A, . . . , tn
A)(a1, . . . , an) := tA(t1A(a1, . . . , an), . . . , tnA(a1, . . . , an)).

Sets of operations defined on A containing all projections and being closed
under the application of the superposition operation are called clones of oper-
ations. We denote by T (n)(A) the clone of all n-ary operations generated by
the fundamental operations {fi

A | i ∈ I} of the algebra A (also called n-clone
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of A in [6]). It is easy to check that T (n)(A) = Wτ (Xn)A. Further we have
T (A) :=

⋃
n≥1 T (n)(A) = Wτ (X)A. The algebra

T (n)(A) := (T (n)(A); Sn,A, en,A
1 , . . . , en,A

n )

is of type (n + 1, 0, . . . , 0). It turns out that T (n)(A) satisfies the defining
identities of the variety of unitary Menger algebras of rank n. T (n)(A) is also
called the clone of n-ary term operations of the algebra A. In a similar way
as we did for terms we can define superposition operations Sn,A

m and obtain a
multi-based algebra

T (A) := ((T (n)(A))n∈N\{0}; (Sn,A
m )m,n∈N, (e

n,A
i )i≤n∈N)

which is called the clone of term operations of A.
For an algebra A of type τ we denote by V (A) the variety generated by A

and by IdA the set of all equations of type τ which are satisfied as identities in
A, i.e.

IdA := {s ≈ t | s, t ∈ Wτ (X) and sA = tA}.
For the variety V (A) we denote by IdV (A) the set of all identities which are
satisfied in every algebra of V (A), i.e.

IdV (A) := {s ≈ t | s, t ∈ Wτ (X) and ∀ B ∈ V (A) (sB = tB)}.

It is well-known that IdA = IdV (A).

2. Hypersubstitutions

An arbitrary mapping σ : {fi | i ∈ I} → Wτ (X) which preserves the arity,
that is, which maps every ni-ary operation symbol of type τ to an ni-ary term
of the same type, is called a hypersubstitution of type τ . Any hypersubstitution
σ induces a mapping

σ̂ : Wτ (X) → Wτ (X)

in the following inductive way:

(i) σ̂[xi] := xi ∈ X,

(ii) σ̂[fi(t1, . . . , tni)] = Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]).

This extension is uniquely determined and allows us to define a multiplication,
denoted by ◦h, on the set Hyp(τ) of all hypersubstitutions of type τ by

σ1 ◦h σ2 = σ̂1 ◦ σ2,
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where ◦ is the usual composition of functions. This multiplication is associative,
and if we denote by σid the identity hypersubstitution which maps each ni-ary
operation symbol fi to the term fi(x1, . . . , xni

), we obtain a monoid

Hyp(τ) := (Hyp(τ); ◦h, σid).

Hypersubstitutions can be used to define the concept of a hyperidentity in a
variety V of algebras of type τ. An equation s ≈ t consisting of terms of type
τ forms a hyperidentity in V if for all σ ∈ Hyp(τ) the equations σ̂[s] ≈ σ̂[t]
are satisfied as identities in V . A variety V is called solid if every identity in V
is a hyperidentity in this variety. For more information on hyperidentities and
solidity, we refer to [5].

Not all hypersubstitutions are important if we want to check the hyperiden-
tity property in a variety V . To reduce the complexity of this checking J. PÃlonka
introduced the following relation ([11]):

Definition 2.1 Let σ1, σ2 ∈ Hyp(τ) and let V be a variety of type τ . Then

σ1 ∼V σ2 : ⇐⇒ (∀i ∈ I) (σ1(fi) ≈ σ2(fi) ∈ IdV ).

The relation ∼V is an equivalence relation and has the following properties
([11]):

Proposition 2.2 (i) If σ1 ∼V σ2, then for any term t ∈ Wτ (X) the equation
σ̂1[t] ≈ σ̂2[t] is an identity in V .

(ii) If σ1 ∼V σ2 and σ̂1[s] ≈ σ̂1[t] ∈ IdV , then σ̂2[s] ≈ σ̂2[t] ∈ IdV .

(iii) If V is solid, then ∼V is a congruence relation on Hyp(τ).

Endomorphisms of the unitary Menger algebra n-Cl(τn) of rank n and hy-
persubstitutions are closely related to each other. Indeed, we have

Proposition 2.3 The endomorphism monoid End(n-Cl(τn)) is isomorphic to
the monoid (Hyp(τn); ◦h, σid).

The set {fAi | i ∈ I} can be regarded as a sequence ({fn,A
i | i ∈ In})n∈N\{0}

where I =
⋃

n∈N\{0}
In and where fn,A

i is n-ary. We use the following result:

Proposition 2.4 ([1]) Let A be an algebra of type τ . Then V (A) is solid iff
the clone of all term operations of A, i.e. the heterogeneous algebra T (A) is free
with respect to itself, freely generated by ({fn,A

i | i ∈ In})n∈N\{0} that means,
every heterogeneous mapping

(ηn)n∈N\{0} : ({fn,A
i | i ∈ In})n∈N\{0} → (T (n)(A))n∈N\{0}

can be uniquely extended to an endomorphism

η : T (A) → T (A)

.
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3. The Kernel Monoid of Hypersubstitutions

A restricted version of the concept of a hyperidentity is that of an M -
hyperidentity, where M = (M ; ◦h, σid), M ⊆ Hyp(τ) is a submonoid of the
monoid Hyp(τ) of all hypersubstitutions of type τ . Using M -hyperidentities
one can define M -solid varieties. All M -solid varieties of type τ form a com-
plete lattice SM (τ) which is a complete sublattice of the lattice L(τ) of all
varieties of type τ with SM1(τ) ⊇ SM2(τ) whenever M1 ⊆ M2. In fact, there
is a Galois connection between submonoids of Hyp(τ) and complete sublattices
of L(τ).

In this section, we will introduce a new monoid of hypersubstitutions which
is defined by using the kernel of a hypersubstitution. If σ is a hypersubstitution
of type τ , it is very natural to ask for its kernel,

ker(σ) := {(s, t) | s, t ∈ Wτ (X) and σ̂[s] = σ̂[t]}.

The kernel of a hypersubstitution is a fully invariant congruence on the
absolutely free algebra Fτ (X). Clearly, σ is injective iff ker(σ) = ∆Wτ (X). The
diagonal ∆Wτ (X) is the set of all identities satisfied in the variety Alg(τ) of all
algebras of type τ . Therefore, it is quite natural to generalize the concept of a
kernel of a hypersubstitution in the following way:

Definition 3.1 ([4]) The set

kerV (σ) := {(s, t) | s, t ∈ Wτ (X) and σ̂[s] ≈ σ̂[t] ∈ IdV }

will be called the kernel of σ with respect to V or the semantical kernel of σ.
The kernel ker(σ) of a hypersubstitution will be called the syntactical kernel.

In [4] was proved

Proposition 3.2 Let σ be a hypersubstitution of type τ = (ni)i∈I with ni ≥ 1
for all i ∈ I. Then kerV (σ) is a fully invariant congruence relation on the
absolutely free algebra Fτ (X).

If A = (A; (fi
A)i∈I) is an algebra of type τ , then we consider the following

set MA
ker of hypersubstitutions:

MA
ker := {σ | σ ∈ Hyp(τ) and kerV (A)(σ) = IdV (A) and σ̂[Wτ (X)]A = T (A)}.

Then we have:

Lemma 3.3 For every algebra A of type τ the set MA
ker forms a submonoid of

the monoid Hyp(τ) of all hypersubstitutions of type τ.

Proof. Consider two hypersubstitutions σ1, σ2 ∈ MA
ker. Then we have

(s, t) ∈ kerV (A)(σ1 ◦h σ2)
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⇐⇒ (σ̂1 ◦ σ̂2)[s] ≈ (σ̂1 ◦ σ̂2)[t] ∈ IdV (A)
⇐⇒ σ̂1[σ̂2[s]] ≈ σ̂1[σ̂2[t]] ∈ IdV (A)
⇐⇒ (σ̂2[s], σ̂2[t]) ∈ kerV (A)(σ1)

by definition of the semantical kernel. Since kerV (A)(σ1) = IdV (A), we ob-
tain σ̂2[s] ≈ σ̂2[t] ∈ IdV (A) and again, by definition of the kernel, we have
(s, t) ∈ kerV (A)(σ2). Since kerV (A)(σ2) = IdV (A), we obtain s ≈ t ∈ IdV (A)
and then kerV (A)(σ1 ◦h σ2) = IdV (A).

Further, if (σ̂i[Wτ (X)])A = T (A), i = 1, 2, then from (σ̂1[Wτ (X)])A = T (A)
we obtain that for every tA ∈ T (A) there is a term s ∈ Wτ (X) such that
(σ̂1[s])A = tA and then σ̂1[s] ≈ t ∈ IdV (A). For sA ∈ T (A) there is a term
s′ ∈ Wτ (X) such that (σ̂2[s′])A = sA and σ̂2[s′] ≈ s ∈ IdV (A). Applying
σ̂1 on both sides and using that IdV (A) = kerV (A)(σ1), we have σ̂1[σ̂2[s′]] ≈
σ̂1[s] ≈ t ∈ IdV (A), thus (σ̂1[σ̂2[s′]])A = tA and this means that for tA ∈
T (A) there is a term s′ ∈ Wτ (X) such that ((σ̂1 ◦ σ̂2)[s′])A = tA and thus
((σ1 ◦h σ2) ∧ [Wτ (X)])A = T (A).

This proves that MA
ker is closed under the multiplication of hypersubstitu-

tions. The set MA
ker contains the identity hypersubstitution since

(s, t) ∈ kerV (A)(σid) ⇐⇒ σ̂id[s] ≈ σ̂id[t] ∈ IdV (A)
⇐⇒ s ≈ t ∈ IdV (A) and (σ̂id[Wτ (X)])A = Wτ (X)A = T (A).

2

We call MA
ker the kernel monoid of hypersubstitutions with respect to A.

An interesting property of the kernel monoid MA
ker is that it consists of full

blocks of the equivalence relation ∼V (A), i.e. this relation sautrates the kernel
monoid MA

ker.

Proposition 3.4 The kernel monoid with respect to an algebra A of type τ is
a union of equivalence classes of the relation ∼V (A).

Proof. We show that for σ1 ∼V (A) σ2 we have kerV (A)(σ1) = kerV (A)(σ2).
By Proposition 2.2 (ii) for σ1 ∼V (A) σ2, we get σ̂1[s] ≈ σ̂1[t] ∈ IdV (A) iff
σ̂2[s] ≈ σ̂2[t] ∈ IdV (A) and therefore the two kernels are equal.

Further, if (σ̂1[Wτ (X)])A = T (A), then for every tA ∈ T (A) there is a term
s ∈ Wτ (X) such that (σ̂1[s])A = tA. If σ1 ∼V (A) σ2 then by Proposition 2.2 (i),
σ̂2[s] ≈ σ̂1[s] ∈ IdV (A) and thus (σ̂2[s])A = (σ̂1[s])A = tA and then for every
tA ∈ T (A) there is a term s ∈ Wτ (X) such that (σ̂2[s])A = tA and this means
(σ̂2[Wτ (X)])A = T (A).

If now σ1 ∈ MA
ker and σ2 ∼V (A) σ1, then kerV (A)(σ1) = IdV (A) = kerV (A)(σ2)

and (σ̂2[Wτ (X)])A = T (A) and thus σ2 ∈ MA
ker 2

Another consequence of Proposition 2.2 is the following corollary:

Corollary 3.5 If V (A) is a solid variety, then MA
ker/ ∼V (A) is a monoid.

This is clear, since for solid varieties the relation ∼V is a congruence.
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4. Clone Automorphisms

We mentioned already that extended hypersubstitutions correspond to en-
domorphisms of n-Cl(τn). Since n-Cl(τn) is free in the variety of all unitary
Menger algebras of rank n, the Menger algebra (T (n)(A); Sn,A, en,A

1 , . . . , en,A
n )

is a homomorphic image of n-Cl(τn).
Here we ask whether the group of all automorphisms of the multi-based

algebra T (A) can be described by hypersubstitutions. Indeed, we make the
following observations:

(*) To every clone autmomorphism ϕ ∈ Aut(T (A)) there corresponds a class
of MA

ker/ ∼V (A).

In fact, if ϕ maps the fundamental operation fAi to a term operation tAi , then
we assign to ϕ the class Aϕ := {σ | σ ∈ Hyp(τ) and σ(fi)A = tAi }. Therefore
Aϕ is an equivalence class with respect to ∼V (A). Indeed, if σ, σ′ ∈ Aϕ, then
σ(fi)A = tAi = σ′(fi)A, and then σ(fi) ≈ σ′(fi) ∈ IdV (A), which means
σ ∼V (A) σ′. Aϕ is a full equivalence class, since from σ ∈ Aϕ and σ′ ∼V (A) σ
there follows σ′(fi)A = σ(fi)A = tAi and thus σ′ ∈ Aϕ.

Therefore, ϕ maps fAi to [σ]∼V (A) with σ(fi)A = ϕ(fAi ).
If we can show that σ ∈ MA

ker/ ∼V (A), then, by Proposition 3.4, [σ]∼V (A) ⊆
MA

ker/ ∼V (A). First, we show that from ϕ(fAi ) = σ(fi)A for every term t there
follows ϕ(tA) = σ̂[t]A. If t = xi is a variable, then ϕ(xAi ) = ϕ(en,A

i ) = en,A
i =

xAi = σ̂[xi]A. If t = f(t1, . . . , tni) is a composite term and assume that ϕ(tAi ) =
σ̂[ti]A for i = 1, . . . , ni, then from ϕ(fAi ) = σ(fi)A we get by superposition
ϕ(fAi )(ϕ(tA1 ), . . . , ϕ(tAni

)) = σ(fi)A(σ̂[t1]A, . . . , σ̂[tni ]
A) = (σ̂[f(t1, . . . , tni)])

A.
Now, using the property of ϕ ∈ Aut(T (A)) as an automorphism of T (A),

we have
s ≈ t ∈ IdV (A) ⇐⇒ sA = tA

⇐⇒ ϕ(sA) = ϕ(tA)
⇐⇒ (σ̂[s])A = (σ̂[t])A

⇐⇒ σ̂[s] ≈ σ̂[t] ∈ IdV (A)
⇐⇒ (s, t) ∈ kerV (A)(σ).

This implies IdV (A) = kerV (A)(σ).
Since ϕ is surjective, for every tA ∈ T (n)(A) there is a term operation sA ∈

T (n)(A) such that ϕ(sA) = tA. But this means that for every tA ∈ T (n)(A) there
is a term s ∈ Wτ (Xn) such that σ̂[t]A = tA and then σ̂[Wτ (Xn)]A = T (n)(A).
Since this can be done for every n ≥ 1, we have σ̂[Wτ (X)]A = T (A).
Altogether, this means, σ ∈ MA

ker.
But we also have a mapping in the opposite direction:

(**) If V (A) is solid, then a clone automorphism corresponds to every class of
MA

ker/ ∼V (A)
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Let [σ]∼V (A) be a class from MA
ker/ ∼V (A). For this class we define a map-

ping ϕ by ϕ(fAi ) := (σ̂[fi(x1, . . . , xn)])A. Clearly, if σ ∼V (A) σ′, we have
(σ̂[fi(x1, . . . , xn)])A = (σ̂′[fi(x1, . . . , xn)])A. So, the whole class is mapped to
the same ϕ. Indeed, ϕ is well-defined since

fAi = fAj ⇒ i = j ⇒ fi = fj ⇒ σ(fi) = σ(fj) ⇒ (σ(fi))A = (σ(fj))A.

Here we used by Proposition 2.4 that T (A) is free with respect to itself,
and that {fAi | i ∈ I} is an independent set of generators. The mapping ϕ is
one-to-one since

ϕ(fAi ) = ϕ(fAj ) ⇒ σ(fi)A = σ(fj)A ⇒ σ(fi) ≈ σ(fj) ∈ IdV (A) ⇒
⇒ fi(x1, . . . , xni

) ≈ fj(x1, . . . , xnj
) ∈ IdV (A).

For the last step, we used kerV (A)(σ) = IdV (A).
The surjectivity of ϕ follows from (σ̂[Wτ (X)])A = T (A).

We show that ϕ|T (n)(A) is an automorphism of

T (n)(A) = (T (n)(A); Sn,A, en,A
1 , . . . , en,A

n )

for every n.
Indeed,

ϕ(Sn,A(tA, tA1 , . . . , tAn )) = ϕ(Sn(t, t1, . . . , tn)A)
= (σ̂[Sn(t, t1, . . . , tn)])A = (Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]))A

= Sn,A((σ̂[t])A, (σ̂[t1])A, . . . , (σ̂[tn])A) = Sn,A(ϕ(tA), ϕ(tA1 ), . . . , ϕ(tAn )).
This works in the same way if we apply the more general operators Sn,A

m to sets
of term operations of different arities.

Here we used that σ̂ is an endomorphism of n-Cl(τn) (Proposition 2.3).
Finally we have ϕ(en,A

i ) = ϕ(xAi ) = σ̂[xi]A = xAi = en,A
i for all 1 ≤ i ≤ n.

Therefore, ϕ is an automorphism of T (A).
Using (*) and (**) we can prove our main result:

Theorem 4.1 If V (A) is a solid variety, then the group Aut(T (A)) of all clone
automorphisms of T (A) is isomorphic to MA

ker/∼V (A)

Proof. By (*) we may define Ψ : Aut(T (A)) → MA
ker/∼V (A), in the following

way
Ψ(ϕ) = [σ̂]∼V (A) with (σ̂[t])A = ϕ(tA).

We show that Ψ is a bijection. In fact, we have
ϕ1 = ϕ2

⇔ ∀ tA ∈ T (n)(A) (ϕ1(tA) = ϕ2(tA))
⇔ ∃[σ1]∼V (A) , [σ2]∼V (A) ∈ MA

ker/∼V (A) ∀ t ∈ Wτ (Xn) ((σ1[t])A = (σ2[t])A)
⇔ ∀ t ∈ Wτ (Xn) (σ1[t] ≈ σ2[t] ∈ IdV (A))
⇔ σ1 ∼V (A) σ2

⇔ [σ1]∼V (A) = [σ2]∼V (A) .



Clone automorphisms and hypersubstitutions 107

The surjectivity of Φ follows from (**).
We show the compatibility of Φ with the operations.

Let us note that

Φ(ϕ1 ◦ ϕ2) = [σ̂1 ◦ σ̂2]∼V (A) = [σ̂1]∼V (A) ◦ [σ̂2]∼V (A) = Ψ(ϕ1) ◦Ψ(ϕ2),

since

(ϕ1 ◦ ϕ2)(tA) = ϕ1(ϕ2(tA)) = ϕ1((σ̂2[t])A) = (σ̂1[σ̂2[t]])A = ((σ̂1 ◦ σ̂2)[t])A.

For the identical automorphism we have

Ψ(ϕid) = [σid]∼V (A) ,

since
ϕid(tA) = tA = (σid[t])A

This completes the proof. 2

Finally, we formulate two interesting problems for future research in this
area.

Problem 1.] Inner clone automorphisms are induced by weak automorphisms
of the algebra A and form a subgroup of Aut(T (A)). Describe the corre-
sponding subgroup of MA

ker/∼V (A)!

The reader can find some useful hints in [9] (p. 85), and [14].

Problem 2.] For selected semigroups A determine all MA
ker-solid varieties of

semigroups!
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