(eds. I. Dolinka, A. TepavČević)

A NOTE ABOUT SHELLABLE PLANAR POSETS

Duško Jojici ${ }^{1}$

Abstract

We will show that shellability, Cohen-Macaulayness and vertexde composability of a graded, planar poset P are all equivalent with the fact that P has the maximal possible number of edges. Also, for a such poset we will find an R-labelling with $\{1,2\}$ as the set of labels. Using this, we will obtain all essential linear inequalities for the flag h-vectors of shellable planar posets from [1].

AMS Mathematics Subject Classification (2000):
Key words and phrases:

1. Introduction

A graded poset P is a finite partially ordered set with a unique minimum element $\widehat{0}$, a unique maximum element $\widehat{1}$, and a rank function $r: P \rightarrow \mathbb{N}$ where $r(\widehat{0})=0$, and whenever $x<y,\{z \in P: x<z<y\}=\emptyset$ (we say then that y covers x and denote $x \prec y$) then $r(y)=r(x)+1$. We call $r(\widehat{1})$ the rank of the poset P. In a graded poset P of rank $n+1$ all maximal (unrefinable) chains have the same length $n+1$.

For a graded poset P of rank $n+1$ and $S \subseteq[n]=\{1,2, \ldots, n\}$ we define $f_{S}(P)$ as the number of chains $x_{1}<x_{2}<\cdots<x_{|S|}$ in P such that $\left\{r\left(x_{1}\right), r\left(x_{2}\right), \ldots, r\left(x_{|S|}\right)\right\}=S$. The sequence $\left(f_{S}(P)\right)_{S \subseteq[n]}$ is called the flag f-vector of P. The first step in the characterization of flag f - vectors of a class of posets is to determine the linear equations that they must satisfy. As the second step, we are looking for the essential linear inequalities that hold for all flag f-vectors of all posets in this class. This is equivalent with the description of the closure of the convex cone that those vectors generate.

The flag h-vector of P, i.e. the sequence $\left(h_{S}\right)_{S \subseteq[n]}$, is obtained as the following linear transformation of $\left(f_{S}\right)_{S \subseteq[n]}$:

$$
h_{S}(P)=\sum_{T \subseteq S}(-1)^{|S \backslash T|} f_{T}(P)
$$

An (abstract) simplicial complex is a collection Δ of finite nonempty subsets such that $\sigma \subseteq \tau \in \Delta \Rightarrow \sigma \in \Delta$. The element σ of Δ is called face (or simplex)

[^0]of Δ and its dimension is $|\sigma|-1$. A good source of general references for the simplicial complexes and their combinatorial properties is [3].

A simplicial complex Δ is vertex decomposable (see [2], [11]) if it is pure d-dimensional (all maximal faces of Δ have the same cardinality $d+1$) and either Δ is a simplex, or there exists a vertex x such that $\Delta \backslash\{x\}$ is d-dimensional and vertex decomposable, and $l k_{\Delta}(x)=\{\sigma \in \Delta: x \notin \sigma,\{x\} \cup \sigma \in \Delta\}$ is $(d-1)$-dimensional and vertex decomposable. If we use the previous definition inductively, we get that for a vertex-decomposable complex Δ there exists a linear (shedding) order of vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that both $\Delta \backslash\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$ and $l k_{\Delta \backslash\left\{v_{i+1}, \ldots, v_{n}\right\}}\left(v_{i}\right)$ are vertex-decomposable, for all $i=1,2, \ldots, n$.

A finite dimensional simplicial complex Δ is said to be Cohen-Macaulay (see [3]) if for all $\sigma \in \Delta$, the reduced simplicial homology of $l k_{\Delta}(\sigma)=\{\tau \in \Delta$: $\tau \cap \sigma=\emptyset, \tau \cup \sigma \in \Delta\}$ is trivial $\left(\widetilde{H}_{i}\left(l k_{\Delta}(\sigma)\right)=0\right)$ for $i<\operatorname{dim} l k_{\Delta}(\sigma)$. For a definition of reduced simplicial homology see Chapter 1 in [8].

The order-complex $\Delta(P)$ of a graded poset P is the simplicial complex on vertex set P whose faces are the chains in P. The definition of $\Delta(P)$ (goes back to Aleksandrov, 1937) is a passage between combinatorics and topology. We say that a graded poset P is vertex decomposable (Cohen-Macaulay) if its order complex $\Delta(P)$ is vertex decomposable (Cohen-Macaulay).

Shelling of simplicial and cell complexes (see [5],[6]) is a very basic and useful technique with many geometric and combinatorial applications. The concept of shellability gives us a combinatorial description of the h-vector of shellable simplicial complexes, a simple proof and notation of Dehn Sommerville equations for the f-vector of simplicial polytopes, the upper bound theorem for simplicial polytopes ... (see [10]). For our purposes, we use the definition of shellability for graded posets from [6].

Definition 1. A finite graded poset P is said to be shellable if all maximal chains can be ordered $C_{1}, C_{2}, \ldots, C_{t}$ in such a way that if $1 \leq i<j \leq t$ then there exist $1 \leq k<j$ and x in chain C_{j} such that $C_{i} \cap C_{j} \subseteq C_{k} \cap C_{j}=C_{j} \backslash\{x\}$. Such an ordering of the maximal chains is called shelling order.

Many examples of shellable posets can be found in [4] and [5]. Given a shelling order define the restriction of the maximal chain C_{i} by $\mathcal{R}\left(C_{i}\right)=\left\{x \in C_{i}\right.$: $C_{i} \backslash\{x\} \subset C_{j}$ for some $\left.j<i\right\}$. If we draw the Hasse diagram of the poset P chain by chain (according to given shelling order), then the restriction $\mathcal{R}(C)$ is the unique minimal new chain that appears when we draw the maximal chain C.

For a graded poset P, the following implications are strict (see [3]):
P is vertex decomposable $\Rightarrow P$ is shellable $\Rightarrow P$ is Cohen-Macaulay

2. Shellable planar posets

For any graded poset P, embedding of its Hasse diagram in the plane defines the linear ordering $<_{i}$ at every level $P_{i}=\{x \in P: r(x)=i\}$
$x<_{i} y$ iff the vertex x is left from y
For $x \in P$, we define $U(x)=\{y \in P: x \prec y\}$, i.e. the set of all elements of P that covers x. A poset P is planar if its Hasse diagram can be drawn in the plane with straight, non-crossing edges, such that whenever $x \prec y$ in P, the vertex representing y appears above the vertex representing x. Then, if P is a planar graded poset, we have that for all $x<_{i} x^{\prime}$ holds $\max _{<_{i+1}} U(x) \leq_{i+1}$ $\min _{<_{i+1}} U\left(x^{\prime}\right)$.

Remark 2. A graded planar poset is always a lattice, see [7].
We say that a planar graded poset is saturated if its Hasse diagram has the highest possible number of edges. More precisely, a graded planar poset P of rank $n+1$ is saturated iff

$$
\begin{equation*}
\forall i \in[n], \text { and for all } x \prec_{i} x^{\prime}, \quad \max <_{<_{i+1}} U(x)=\min _{<_{i+1}} U\left(x^{\prime}\right) \tag{1}
\end{equation*}
$$

Remark 3. A simple counting of the edges between P_{i} and P_{i+1} gives us that the Hasse diagram of a saturated planar poset P of rank $n+1$ has $2|P|-n-3$ edges.

The next lemma will be useful for the characterization of shellable planar posets.
Lemma 4. Let P be a saturated poset, and let $[x, y]$ be an interval in P such that $r(x)=i, r(y)=j, j-i \geq 2$. Let $x=x_{i} \prec x_{i+1} \prec \cdots \prec x_{j-1} \prec x_{j}=y$ be a maximal chain in $[x, y]$ such that for all $k, i<k<j$ there exist $y_{k} \in[x, y]$, $y_{k} \prec_{k} x_{k}$ (x_{k} is not contained in the most left maximal chain in $[x, y]$). Then, there exists $k_{0}, i<k_{0}<j$ such that $x_{k_{0}-1} \prec y_{k_{0}} \prec x_{k_{0}+1}$.

Proof. We will use the induction on $j-i$. If $j-i=2$, then we get $y_{i+1}=y_{j-1}$ and $k_{0}=i+1=j-1$. For $j-i>2$, we consider y_{i+1}. If $y_{i+1} \prec x_{i+2}$, then we get $k_{0}=i+1$. Otherwise, if $y_{i+1} \nprec x_{i+2}$ then, from (1) we have that $x_{i+1} \prec y_{i+2}$. Now, from the inductive assumption for $\left[x_{i+1}, y\right]$, follows that there exists $k_{0}, i+1<k_{0}<j$ such that $x_{k_{0}-1} \prec y_{k_{0}} \prec x_{k_{0}+1}$.

Theorem 5. For a graded, planar poset the following statements are equivalent:

1. P is saturated
2. P is shellable
3. P is Cohen-Macaulay

Proof. First, we will show that $1 \Rightarrow 2$. Let P be a saturated poset of rank $n+1$.
For $C: \widehat{0}=x_{0} \prec x_{1} \prec \cdots \prec x_{n} \prec x_{n+1}=\widehat{1}$ and $C^{\prime}: \widehat{0}=x_{0}^{\prime} \prec x_{1}^{\prime} \prec \cdots \prec x_{n}^{\prime} \prec$ $x_{n+1}^{\prime}=\widehat{1}$, two maximal chains in P, let $j_{0}=\max \left\{i: x_{i} \neq x_{i}^{\prime}\right\}$. We define a linear order $<_{E}$ for maximal chains of P :

$$
\begin{equation*}
C<_{E} C^{\prime} \Leftrightarrow x_{j_{0}}<_{j_{0}} x_{j_{0}}^{\prime} \tag{2}
\end{equation*}
$$

i.e. C is before C^{\prime} in $<_{E}$ iff at the level j_{0} (the highest level where C and C^{\prime} are different) the chain C is left from C^{\prime}. If we let $i_{0}=\max \left\{i<j_{0}: x_{i}=x_{i}^{\prime}\right\}$ (i_{0} is the highest level below j_{0} where C and C^{\prime} are equal), then the maximal chain $x_{i_{0}}=x_{i_{0}}^{\prime} \prec x_{i_{0}+1}^{\prime} \prec \cdots \prec x_{j_{0}}^{\prime} \prec x_{j_{0}+1}^{\prime}=x_{j_{0}+1}$ in $\left[x_{i_{0}}, x_{j_{0}+1}\right]$ satisfies the conditions of Lemma 4. So, there exist $k, i_{0}<k<j_{0}+1$ and $z \in\left[x_{i_{0}}, x_{j_{0}+1}\right]$
such that $x_{k-1}^{\prime} \prec z \prec x_{k+1}^{\prime}$. If we let $C^{\prime \prime}: \widehat{0}=x_{0}^{\prime} \prec x_{1}^{\prime} \prec \cdots \prec x_{k-1}^{\prime} \prec z \prec$ $x_{k+1}^{\prime} \prec \cdots \prec x_{n}^{\prime} \prec x_{n+1}^{\prime}=\widehat{1}$, then $C^{\prime \prime}$ is before C^{\prime} in $<_{E}$. Also

$$
C \cap C^{\prime} \subseteq C^{\prime \prime} \cap C^{\prime}=C^{\prime} \backslash\left\{x_{k}^{\prime}\right\}
$$

and ${<_{E}}_{E}$ is a shelling order in the sense of the definition 1.
As any shellable poset is also Cohen-Macaulay (see [3], [4]), then $2 \Rightarrow 3$ is obvious.
Now, we will prove that $3 \Rightarrow 1$. Suppose that a planar, graded poset P is a Cohen-Macaulay, but not saturated. Then, there exist x and x^{\prime} at the same level P_{i} such that $x \prec_{i} x^{\prime}$, and $\max {<_{i+1}} U(x)<\min _{<_{i+1}} U(x)$. Then (by remark 2) there exist $y=x \wedge x^{\prime}$ and $z=x \vee x^{\prime}$. If we choose two arbitrary maximal chains C_{1} in $[\widehat{0}, y]$, and C_{2} in $[z, \widehat{1}]$, link of the face $\sigma=C_{1} \cup C_{2}$ in $\Delta(P)$ is exactly the order complex for the interval (y, z) in P. Since $l k_{\Delta(P)}(\sigma)$ is not connected, we have that $\widetilde{H}_{0}\left(l k_{\Delta(P)}(\sigma)\right) \neq 0$. This is in contradiction with the assumption that P is a Cohen-Macaulay poset.

Remark 6. Let P be a saturated poset of rank $n+1$. For a maximal chain $C: \widehat{0}=x_{0} \prec x_{1} \prec \cdots \prec x_{n} \prec x_{n+1}=\widehat{1}$, the restriction of C in the shelling order $<_{E}$ is $\mathcal{R}(C)=\left\{x_{i}: \exists x_{i}^{\prime} \prec_{i} x_{i}, x_{i-1} \prec x_{i}^{\prime} \prec x_{i+1}\right\}$. Then, for any $x \in P$ that is not contained in the most left maximal chain in $P\left(x\right.$ is not minimal in $\left.<_{r(x)}\right)$, there exists the unique maximal chain C_{x} whose restriction in the shelling order $<_{E}$ is $\{x\}$. We obtain the chain C_{x} as the concatenation of the most left chains in $[\widehat{0}, x]$ and $[x, \widehat{1}]$. In this way, from the shelling order defined in (2), we get the following linear order of the vertices of P :

The most left chain $\widehat{0}=v_{1} \prec v_{2} \prec \cdots \prec v_{n+2}=\widehat{1}$ in P contains the first $n+2$ vertices in this order. Shelling order $<_{E}$ induces the linear ordering $C_{1}, C_{2}, \cdots, C_{|P|-n-2}$ of the set of maximal chains in P whose restrictions are singletons. If $\mathcal{R}\left(C_{i}\right)=\{x\}$, then we label x as v_{i+n+2}.

Corollary 7. All saturated posets are vertex-decomposable.

Proof. We will use the induction by the cardinality and the rank. The case in which $r(P)=1$ is trivial. Let P be a saturated poset of rank $n+1$. Suppose that the statement is true for all saturated posets whose rank is less than $n+1$, and for all saturated posets of rank $n+1$ with fewer elements than $|P|$. If $|P|=n+2(P$ is a chain $)$, then $\Delta(P)$ is a simplex. If $|P|>n+2$, we consider $v_{|P|}$, the last vertex in the order of vertices defined in remark 6. $P \backslash\left\{v_{|P|}\right\}$ is a saturated poset with fewer vertices than P, and vertex decomposable by the assumption. From remark 6 , we see that $v_{|P|}$ covers and is covered by exactly one element, and so $\left[\widehat{0}, v_{|P|}\right) \cup\left(v_{|P|}, \widehat{1}\right]$ is a saturated poset, whose rank is n. Since $l k_{\Delta(P)}\left(v_{|P|}\right)$ is the order complex for $\left[\widehat{0}, v_{|P|}\right) \cup\left(v_{|P|}, \widehat{1}\right]$, then P is vertexdecomposable. Note that the reverse order of vertices from the order defined in remark 6 is a shedding-order for $\Delta(P)$.

3. Flag h-vectors of shellable planar posets

For any finite graded poset P we let $\mathcal{E}(P)$ denote its covering relation, $\mathcal{E}(P)=$ $\{(x, y) \in P \times P: x \prec y\}$. An edge-labelling of P is a map $\lambda: \mathcal{E}(P) \rightarrow \Lambda$, where Λ is a poset (usually $\Lambda=(\mathbb{Z}, \leq)$). This corresponds to the assignment of elements of Λ to the edges of the Hasse diagram of P. Given an edge labelling λ, each unrefinable chain C : $x=x_{0} \prec x_{1} \prec \cdots \prec x_{k-1} \prec x_{k}=y$ of length k can be associated with a k-tuple $\lambda(C)=\left(\lambda\left(x_{0} \prec x_{1}\right), \lambda\left(x_{1} \prec x_{2}\right), \ldots, \lambda\left(x_{k-1} \prec x_{k}\right)\right)$. We say that C is a rising chain if $\lambda\left(x_{0} \prec x_{1}\right) \leq \lambda\left(x_{1} \prec x_{2}\right) \leq \ldots \leq \lambda\left(x_{k-1} \prec\right.$ x_{k}). The edge labelling λ of P is said to be an R-labelling if in every interval $[x, y]$ of P there is a unique rising maximal chain C in $[x, y]$. For a maximal chain $C: \widehat{0}=x_{0} \prec x_{1} \prec \cdots \prec x_{n} \prec x_{n+1}=\widehat{1}$ we define its descent set $D(C)=$ $\left\{i \in[n]: \lambda\left(x_{i-1} \prec x_{i}\right)>\lambda\left(x_{i} \prec x_{i+1}\right)\right\}$. If a poset P admits an R-labelling then the following result from [9] gives us the combinatorial interpretation of the flag h-vectors.

Theorem 8. Let P be a finite bounded graded poset of rank $n+1$ with an R-labeling λ. Then, for all $S \subseteq[n], h_{S}(P)$ is equal to the number of maximal chains of P with the descent set S.

As a consequence of this theorem, it follows that for any graded poset P that admits an R-labelling it holds that $h_{S}(P) \geq 0$.

Theorem 9. Let P be a saturated poset. Then P admits an R-labeling with $\{1,2\}$ as the set of labels.

Proof. Let P be a saturated poset of rank $n+1$ with the shelling order $<_{E}$ as in theorem 5. If we draw the most left chain $\widehat{0}=v_{1} \prec v_{2} \prec \cdots \prec v_{n+2}=\widehat{1}$ and all maximal chains $C_{i_{1}}, C_{i_{2}}, \cdots, C_{i_{|P|-n-2}}$ whose restrictions are singletons (in the order defined in Remark 6), then by Remark 3, we reconstruct Hasse-diagram
of poset P. Using this, we define $\lambda: \mathcal{E}(P) \rightarrow\{1,2\}$ as follows. We label all the edges contained in the most left chain of P with 1 . When we draw the chain C_{i}, then we add a new vertex v_{i+n+2} and two edges $a \prec v_{i+n+2}, v_{i+n+2} \prec b$. If we let $\lambda\left(a \prec v_{i+n+2}\right)=2$ and $\lambda\left(v_{i+n+2} \prec b\right)=1$, then from Remark 3, all the edges of the Hasse diagram of P are labelled. Note that

$$
\lambda(x \prec y)=\left\{\begin{array}{lc}
1 ; & \text { for } y=\min _{<_{r(x)+1}} U(x) \\
2 ; & \text { otherwise }
\end{array}\right.
$$

Now, in any interval $[x, y]$, the unique chain without descents is the most left chain $C: x=x_{0} \prec x_{1} \prec \cdots \prec x_{k-1} \prec x_{k}=y$. If 2 appears as the label of the edge $x_{i-1} \prec x_{i}$, then there exists x_{i}^{\prime} such that $x_{i-1} \prec x_{i}^{\prime}$, and $x_{i}^{\prime} \prec_{r\left(x_{i}\right)} x_{i}$ in $P_{r\left(x_{i}\right)}$. As C is the most left chain in $[x, y]$, we have that $x_{i}^{\prime} \nprec x_{i+1}$. Then, from (1) it follows that there exists $w<_{r\left(x_{i+1}\right)} x_{i+1}$ such that $x_{i} \prec w$. So, the label of the edge $x_{i} \prec x_{i+1}$ is 2 , and chain C is without descent.

Let $C^{\prime}: x=x_{0}^{\prime} \prec x_{1}^{\prime} \prec \cdots \prec x_{k-1}^{\prime} \prec x_{k}^{\prime}=y$ be any other maximal chain in $[x, y]$. Let $i_{0}=\min \left\{i: x_{i} \neq x_{i}^{\prime}\right\}$ and $j_{0}=\min \left\{j>i_{0}: x_{j}=x_{j}^{\prime}\right\}$. Then, $\lambda\left(x_{i_{0}-1} \prec x_{i_{0}}\right)=2$, and $\lambda\left(x_{j_{0}-1} \prec x_{j_{0}}\right)=1$, so chain C^{\prime} has a descent.

Obviously, there are no consecutive descents in the sequence $\lambda\left(x_{0} \prec x_{1}\right), \lambda\left(x_{1} \prec\right.$ $\left.x_{2}\right), \ldots, \lambda\left(x_{n} \prec x_{n+1}\right) \in\{1,2\}^{n+1}$ and Theorem 8 gives us the following result from [1].

Corollary 10. Let P be a planar shellable poset of rank $n+1$. Then, $h_{S}(P) \geq 0$ for all $S \subseteq[n]$. If S contains two consecutive integers, then $h_{S}(P)=0$.

From this corollary follows that the dimension of the vector space generated by the flag f-vectors of shellable planar posets of rank $n+1$ is the Fibonacci number $c_{n}\left(c_{0}=c_{1}=1, c_{n+1}=c_{n}+c_{n-1}\right)$. It is not difficult to prove (see [1]) that the closure of the cone generated by the flag f-vectors of all saturated posets of rank $n+1$ is a simplicial cone.
Also, we can note that if a graded poset P of rank $n+1$ admits an R-labeling then its Hasse diagram has exactly $2|P|-n-3$ edges.

References

[1] Billera, L., Hetyei, G., Decompositions of partially ordered sets Order 17, No. 2, 141-166 (2000)
[2] Billera, L., Provan, J.S., Decompositions of simplicial complexes related to diameters of convex polyhedra Math. Oper. Res. 5, 576-594 (1980)
[3] Björner, A., Topological Methods in Combinatorics in: R. Graham, M. Grötschel, and L. Lovász editors, "Handbook of Combinatorics", Elsevier, 1995, pp. 1819-1872
[4] Björner, A., Shellable and Cohen-Macaulay partially ordered sets Trans. Am. Math. Soc. 260(1):159-183, (1980)
[5] Björner, A., Wachs, M., Shellable nonpure complexes and posets I Trans. Am. Math. Soc. 384(4):1299-1327, (1996)
[6] Björner, A., Wachs, M., On lexicographically shellable posets Trans. Am. Math. Soc. 277, 323-341 (1983)
[7] Kelly, D., Rival, I., Planar lattices Can. J. Math. XXVII 636-665, (1975)
[8] Munkres, J.R., Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA 1984.
[9] Stanley, R.P., Enumerative Combinatorics, Vol. I Cambridge University Press, Cambridge/New York, 1997
[10] Ziegler, G., Lectures on Polytopes volume 152 of Graduate Text in Mathematics. Springer-Verlag, New York, 1995
[11] Ziegler, G., Shellability of chessboard complexes Israel J. Mathematics 87, 97-110, (1994)

[^0]: ${ }^{1}$ adresa

