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A NOTE ABOUT SHELLABLE PLANAR POSETS

Duško Jojić1

Abstract. We will show that shellability, Cohen-Macaulayness and vertex-
de composability of a graded, planar poset P are all equivalent with the
fact that P has the maximal possible number of edges. Also, for a such
poset we will find an R−labelling with {1, 2} as the set of labels. Using
this, we will obtain all essential linear inequalities for the flag h−vectors
of shellable planar posets from [1].
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1. Introduction

A graded poset P is a finite partially ordered set with a unique minimum
element 0̂, a unique maximum element 1̂, and a rank function r : P → N where
r(0̂) = 0, and whenever x < y, {z ∈ P : x < z < y} = ∅ (we say then that y
covers x and denote x ≺ y ) then r(y) = r(x) + 1. We call r(1̂) the rank of the
poset P . In a graded poset P of rank n + 1 all maximal (unrefinable) chains
have the same length n + 1.

For a graded poset P of rank n + 1 and S ⊆ [n] = {1, 2, ..., n} we de-
fine fS(P ) as the number of chains x1 < x2 < · · · < x|S| in P such that
{r(x1), r(x2), . . . , r(x|S|)} = S. The sequence (fS(P ))S⊆[n] is called the flag
f−vector of P . The first step in the characterization of flag f− vectors of a
class of posets is to determine the linear equations that they must satisfy. As
the second step, we are looking for the essential linear inequalities that hold
for all flag f−vectors of all posets in this class. This is equivalent with the
description of the closure of the convex cone that those vectors generate.

The flag h−vector of P , i.e. the sequence (hS)S⊆[n], is obtained as the
following linear transformation of (fS)S⊆[n]:

hS(P ) =
∑

T⊆S

(−1)|S\T |fT (P )

An (abstract) simplicial complex is a collection ∆ of finite nonempty subsets
such that σ ⊆ τ ∈ ∆ ⇒ σ ∈ ∆. The element σ of ∆ is called face (or simplex )
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of ∆ and its dimension is |σ| − 1. A good source of general references for the
simplicial complexes and their combinatorial properties is [3].

A simplicial complex ∆ is vertex decomposable (see [2], [11] ) if it is pure
d−dimensional (all maximal faces of ∆ have the same cardinality d + 1) and ei-
ther ∆ is a simplex, or there exists a vertex x such that ∆\{x} is d−dimensional
and vertex decomposable, and lk∆(x) = {σ ∈ ∆ : x /∈ σ, {x} ∪ σ ∈ ∆} is
(d−1)−dimensional and vertex decomposable. If we use the previous definition
inductively, we get that for a vertex-decomposable complex ∆ there exists a lin-
ear (shedding) order of vertices v1, v2, . . . , vn such that both ∆\{vi, vi+1, . . . , vn}
and lk∆\{vi+1,...,vn}(vi) are vertex-decomposable, for all i = 1, 2, . . . , n.

A finite dimensional simplicial complex ∆ is said to be Cohen-Macaulay
(see [3]) if for all σ ∈ ∆, the reduced simplicial homology of lk∆(σ) = {τ ∈ ∆ :
τ ∩ σ = ∅, τ ∪ σ ∈ ∆} is trivial (H̃i(lk∆(σ)) = 0) for i < dim lk∆(σ). For a
definition of reduced simplicial homology see Chapter 1 in [8].

The order-complex ∆(P ) of a graded poset P is the simplicial complex on
vertex set P whose faces are the chains in P . The definition of ∆(P ) (goes
back to Aleksandrov, 1937) is a passage between combinatorics and topology.
We say that a graded poset P is vertex decomposable (Cohen-Macaulay) if its
order complex ∆(P ) is vertex decomposable (Cohen-Macaulay).

Shelling of simplicial and cell complexes (see [5],[6]) is a very basic and
useful technique with many geometric and combinatorial applications. The
concept of shellability gives us a combinatorial description of the h−vector of
shellable simplicial complexes, a simple proof and notation of Dehn Sommerville
equations for the f−vector of simplicial polytopes, the upper bound theorem
for simplicial polytopes . . . (see [10]). For our purposes, we use the definition of
shellability for graded posets from [6].

Definition 1. A finite graded poset P is said to be shellable if all maximal
chains can be ordered C1, C2, . . . , Ct in such a way that if 1 ≤ i < j ≤ t then
there exist 1 ≤ k < j and x in chain Cj such that Ci∩Cj ⊆ Ck ∩Cj = Cj \{x}.
Such an ordering of the maximal chains is called shelling order.

Many examples of shellable posets can be found in [4] and [5]. Given a shelling
order define the restriction of the maximal chain Ci by R(Ci) = {x ∈ Ci :
Ci \ {x} ⊂ Cj for some j < i}. If we draw the Hasse diagram of the poset P
chain by chain (according to given shelling order), then the restriction R(C) is
the unique minimal new chain that appears when we draw the maximal chain
C.

For a graded poset P , the following implications are strict (see [3]):

P is vertex decomposable ⇒ P is shellable ⇒ P is Cohen-Macaulay
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2. Shellable planar posets

For any graded poset P , embedding of its Hasse diagram in the plane defines
the linear ordering <i at every level Pi = {x ∈ P : r(x) = i}

x <i y iff the vertex x is left from y

For x ∈ P , we define U(x) = {y ∈ P : x ≺ y}, i.e. the set of all elements of
P that covers x. A poset P is planar if its Hasse diagram can be drawn in the
plane with straight, non-crossing edges, such that whenever x ≺ y in P , the
vertex representing y appears above the vertex representing x. Then, if P is
a planar graded poset, we have that for all x <i x′ holds max<i+1U(x) ≤i+1

min<i+1U(x′).

Remark 2. A graded planar poset is always a lattice, see [7].

We say that a planar graded poset is saturated if its Hasse diagram has the
highest possible number of edges. More precisely, a graded planar poset P of
rank n + 1 is saturated iff

∀i ∈ [n], and for all x ≺i x′, max <i+1U(x) = min <i+1U(x′)(1)

Remark 3. A simple counting of the edges between Pi and Pi+1 gives us that
the Hasse diagram of a saturated planar poset P of rank n + 1 has 2|P | − n− 3
edges.

The next lemma will be useful for the characterization of shellable planar posets.

Lemma 4. Let P be a saturated poset, and let [x, y] be an interval in P such
that r(x) = i, r(y) = j, j − i ≥ 2. Let x = xi ≺ xi+1 ≺ · · · ≺ xj−1 ≺ xj = y be
a maximal chain in [x, y] such that for all k, i < k < j there exist yk ∈ [x, y],
yk ≺k xk (xk is not contained in the most left maximal chain in [x, y]). Then,
there exists k0, i < k0 < j such that xk0−1 ≺ yk0 ≺ xk0+1.

Proof. We will use the induction on j − i. If j − i = 2, then we get yi+1 = yj−1

and k0 = i + 1 = j − 1. For j − i > 2, we consider yi+1. If yi+1 ≺ xi+2,
then we get k0 = i + 1. Otherwise, if yi+1 ⊀ xi+2 then, from (1) we have that
xi+1 ≺ yi+2. Now, from the inductive assumption for [xi+1, y], follows that
there exists k0, i + 1 < k0 < j such that xk0−1 ≺ yk0 ≺ xk0+1. 2

Theorem 5. For a graded, planar poset the following statements are equivalent:

1. P is saturated

2. P is shellable

3. P is Cohen-Macaulay
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Proof. First, we will show that 1 ⇒ 2. Let P be a saturated poset of rank n+1.

For C
...0̂ = x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1 = 1̂ and C ′

...0̂ = x′0 ≺ x′1 ≺ · · · ≺ x′n ≺
x′n+1 = 1̂, two maximal chains in P , let j0 = max{i : xi 6= x′i}. We define a
linear order <E for maximal chains of P :

C <E C ′ ⇔ xj0 <j0 x′j0(2)

i.e. C is before C ′ in <E iff at the level j0 (the highest level where C and C ′

are different) the chain C is left from C ′ . If we let i0 = max{i < j0 : xi = x′i}
(i0 is the highest level below j0 where C and C ′ are equal), then the maximal
chain xi0 = x′i0 ≺ x′i0+1 ≺ · · · ≺ x′j0 ≺ x′j0+1 = xj0+1 in [xi0 , xj0+1] satisfies the
conditions of Lemma 4. So, there exist k, i0 < k < j0 + 1 and z ∈ [xi0 , xj0+1]

such that x′k−1 ≺ z ≺ x′k+1. If we let C ′′
...0̂ = x′0 ≺ x′1 ≺ · · · ≺ x′k−1 ≺ z ≺

x′k+1 ≺ · · · ≺ x′n ≺ x′n+1 = 1̂, then C ′′ is before C ′ in <E . Also

C ∩ C ′ ⊆ C ′′ ∩ C ′ = C ′ \ {x′k}

and <E is a shelling order in the sense of the definition 1.
As any shellable poset is also Cohen-Macaulay (see [3], [4]), then 2 ⇒ 3 is

obvious.
Now, we will prove that 3 ⇒ 1. Suppose that a planar, graded poset P is a
Cohen-Macaulay, but not saturated. Then, there exist x and x′ at the same
level Pi such that x ≺i x′, and max <i+1U(x) < min <i+1U(x). Then (by
remark 2) there exist y = x ∧ x′ and z = x ∨ x′. If we choose two arbitrary
maximal chains C1 in [0̂, y], and C2 in [z, 1̂], link of the face σ = C1 ∪ C2 in
∆(P ) is exactly the order complex for the interval (y, z) in P . Since lk∆(P )(σ)
is not connected, we have that H̃0(lk∆(P )(σ)) 6= 0. This is in contradiction with
the assumption that P is a Cohen-Macaulay poset. 2

Remark 6. Let P be a saturated poset of rank n + 1. For a maximal chain

C
...0̂ = x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1 = 1̂, the restriction of C in the shelling order

<E is R(C) = {xi : ∃x′i ≺i xi, xi−1 ≺ x′i ≺ xi+1}. Then, for any x ∈ P that is
not contained in the most left maximal chain in P (x is not minimal in <r(x)),
there exists the unique maximal chain Cx whose restriction in the shelling order
<E is {x}. We obtain the chain Cx as the concatenation of the most left chains
in [0̂, x] and [x, 1̂]. In this way, from the shelling order defined in (2), we get
the following linear order of the vertices of P :

The most left chain 0̂ = v1 ≺ v2 ≺ · · · ≺ vn+2 = 1̂ in P contains the
first n + 2 vertices in this order. Shelling order <E induces the linear ordering
C1, C2, · · · , C|P |−n−2 of the set of maximal chains in P whose restrictions are
singletons. If R(Ci) = {x}, then we label x as vi+n+2.

Corollary 7. All saturated posets are vertex-decomposable.
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Proof. We will use the induction by the cardinality and the rank. The case in
which r(P ) = 1 is trivial. Let P be a saturated poset of rank n + 1. Suppose
that the statement is true for all saturated posets whose rank is less than n+1,
and for all saturated posets of rank n + 1 with fewer elements than |P |. If
|P | = n + 2 (P is a chain), then ∆(P ) is a simplex. If |P | > n + 2, we consider
v|P |, the last vertex in the order of vertices defined in remark 6. P \ {v|P |} is
a saturated poset with fewer vertices than P , and vertex decomposable by the
assumption. From remark 6, we see that v|P | covers and is covered by exactly
one element, and so [0̂, v|P |) ∪ (v|P |, 1̂] is a saturated poset, whose rank is n.
Since lk∆(P )(v|P |) is the order complex for [0̂, v|P |) ∪ (v|P |, 1̂], then P is vertex-
decomposable. Note that the reverse order of vertices from the order defined in
remark 6 is a shedding-order for ∆(P ). 2

3. Flag h−vectors of shellable planar posets

For any finite graded poset P we let E(P ) denote its covering relation, E(P ) =
{(x, y) ∈ P × P : x ≺ y}. An edge-labelling of P is a map λ : E(P ) → Λ,
where Λ is a poset (usually Λ = (Z,≤)). This corresponds to the assignment of
elements of Λ to the edges of the Hasse diagram of P . Given an edge labelling λ,

each unrefinable chain C
...x = x0 ≺ x1 ≺ · · · ≺ xk−1 ≺ xk = y of length k can be

associated with a k−tuple λ(C) = (λ(x0 ≺ x1), λ(x1 ≺ x2), . . . , λ(xk−1 ≺ xk)).
We say that C is a rising chain if λ(x0 ≺ x1) ≤ λ(x1 ≺ x2) ≤ . . . ≤ λ(xk−1 ≺
xk). The edge labelling λ of P is said to be an R−labelling if in every interval
[x, y] of P there is a unique rising maximal chain C in [x, y]. For a maximal

chain C
...0̂ = x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1 = 1̂ we define its descent set D(C) =

{i ∈ [n] : λ(xi−1 ≺ xi) > λ(xi ≺ xi+1)}. If a poset P admits an R−labelling
then the following result from [9] gives us the combinatorial interpretation of
the flag h−vectors.

Theorem 8. Let P be a finite bounded graded poset of rank n + 1 with an
R−labeling λ. Then, for all S ⊆ [n], hS(P ) is equal to the number of maximal
chains of P with the descent set S.

As a consequence of this theorem, it follows that for any graded poset P
that admits an R−labelling it holds that hS(P ) ≥ 0.

Theorem 9. Let P be a saturated poset. Then P admits an R−labeling with
{1, 2} as the set of labels.

Proof. Let P be a saturated poset of rank n+1 with the shelling order <E as in
theorem 5. If we draw the most left chain 0̂ = v1 ≺ v2 ≺ · · · ≺ vn+2 = 1̂ and all
maximal chains Ci1 , Ci2 , · · · , Ci|P |−n−2 whose restrictions are singletons (in the
order defined in Remark 6), then by Remark 3, we reconstruct Hasse-diagram



124 D. Jojić

of poset P . Using this, we define λ : E(P ) → {1, 2} as follows. We label all the
edges contained in the most left chain of P with 1. When we draw the chain
Ci, then we add a new vertex vi+n+2 and two edges a ≺ vi+n+2, vi+n+2 ≺ b. If
we let λ(a ≺ vi+n+2) = 2 and λ(vi+n+2 ≺ b) = 1, then from Remark 3, all the
edges of the Hasse diagram of P are labelled. Note that

λ(x ≺ y) =
{

1; for y = min<r(x)+1U(x)
2; otherwise

Now, in any interval [x, y], the unique chain without descents is the most left

chain C
...x = x0 ≺ x1 ≺ · · · ≺ xk−1 ≺ xk = y. If 2 appears as the label of the

edge xi−1 ≺ xi, then there exists x′i such that xi−1 ≺ x′i, and x′i ≺r(xi) xi in
Pr(xi). As C is the most left chain in [x, y], we have that x′i ⊀ xi+1. Then, from
(1) it follows that there exists w <r(xi+1) xi+1 such that xi ≺ w. So, the label
of the edge xi ≺ xi+1 is 2, and chain C is without descent.

Let C ′
...x = x′0 ≺ x′1 ≺ · · · ≺ x′k−1 ≺ x′k = y be any other maximal chain

in [x, y]. Let i0 = min{i : xi 6= x′i} and j0 = min{j > i0 : xj = x′j}. Then,
λ(xi0−1 ≺ xi0) = 2, and λ(xj0−1 ≺ xj0) = 1, so chain C ′ has a descent. 2

Obviously, there are no consecutive descents in the sequence λ(x0 ≺ x1), λ(x1 ≺
x2), . . . , λ(xn ≺ xn+1) ∈ {1, 2}n+1 and Theorem 8 gives us the following result
from [1].

Corollary 10. Let P be a planar shellable poset of rank n+1. Then, hS(P ) ≥ 0
for all S ⊆ [n]. If S contains two consecutive integers, then hS(P ) = 0.

From this corollary follows that the dimension of the vector space generated
by the flag f−vectors of shellable planar posets of rank n + 1 is the Fibonacci
number cn (c0 = c1 = 1, cn+1 = cn + cn−1). It is not difficult to prove (see
[1]) that the closure of the cone generated by the flag f−vectors of all saturated
posets of rank n + 1 is a simplicial cone.
Also, we can note that if a graded poset P of rank n + 1 admits an R−labeling
then its Hasse diagram has exactly 2|P | − n− 3 edges.
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