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A NOTE ABOUT SHELLABLE PLANAR POSETS
Dusko Jojié¢!

Abstract. We will show that shellability, Cohen-Macaulayness and vertex-
de composability of a graded, planar poset P are all equivalent with the
fact that P has the maximal possible number of edges. Also, for a such
poset we will find an R—labelling with {1,2} as the set of labels. Using
this, we will obtain all essential linear inequalities for the flag h—vectors
of shellable planar posets from [1].
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1. Introduction

A graded poset P is a finite partially ordered set with a unique minimum
element 67 a unique maximum element T, and a rank function r : P — N where
r(0) = 0, and whenever # < y, {z € P: 2 < z < y} = 0 (we say then that y
covers x and denote z < y ) then r(y) = r(z) + 1. We call r(1) the rank of the
poset P. In a graded poset P of rank n + 1 all maximal (unrefinable) chains
have the same length n + 1.

For a graded poset P of rank n + 1 and S C [n] = {1,2,...,n} we de-
fine fs(P) as the number of chains z; < xy < --- < x5 in P such that
{r(z1),r(x2),...,7(x15)} = S. The sequence (fs(P))scp is called the flag
f—wvector of P. The first step in the characterization of flag f— vectors of a
class of posets is to determine the linear equations that they must satisfy. As
the second step, we are looking for the essential linear inequalities that hold
for all flag f—vectors of all posets in this class. This is equivalent with the
description of the closure of the convex cone that those vectors generate.

The flag h—vector of P, i.e. the sequence (hs)scpn), is obtained as the
following linear transformation of (fs)gcin):

hs(P) = Z(—l)ls\TlfT(P)

TCS

An (abstract) simplicial complex is a collection A of finite nonempty subsets
such that 0 C 7€ A = o € A. The element o of A is called face (or simplex)
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of A and its dimension is |o| — 1. A good source of general references for the
simplicial complexes and their combinatorial properties is [3].

A simplicial complex A is vertex decomposable (see [2], [11] ) if it is pure
d—dimensional (all maximal faces of A have the same cardinality d + 1) and ei-
ther A is a simplex, or there exists a vertex x such that A\{xz} is d—dimensional
and vertex decomposable, and lka(z) = {0 € A : x ¢ o,{z}Uoc € A} is
(d—1)—dimensional and vertex decomposable. If we use the previous definition
inductively, we get that for a vertex-decomposable complex A there exists a lin-
ear (shedding) order of vertices vy, va, . . . , v, such that both A\{v;, vi11,...,0,}
and IkA\ {v,4,...,v,} (Vi) are vertex-decomposable, for all i = 1,2,...,n.

A finite dimensional simplicial complex A is said to be Cohen-Macaulay
(see [3]) if for all o € A, the reduced simplicial homology of lka(c) = {7 € A:
TNo=0,7Uc € A} is trivial (H;(lka(o)) = 0) for i < dim lka (o). For a
definition of reduced simplicial homology see Chapter 1 in [8].

The order-complex A(P) of a graded poset P is the simplicial complex on
vertex set P whose faces are the chains in P. The definition of A(P) (goes
back to Aleksandrov, 1937) is a passage between combinatorics and topology.
We say that a graded poset P is vertex decomposable (Cohen-Macaulay) if its
order complex A(P) is vertex decomposable (Cohen-Macaulay).

Shelling of simplicial and cell complexes (see [5],[6]) is a very basic and
useful technique with many geometric and combinatorial applications. The
concept of shellability gives us a combinatorial description of the h—vector of
shellable simplicial complexes, a simple proof and notation of Dehn Sommerville
equations for the f—vector of simplicial polytopes, the upper bound theorem
for simplicial polytopes ... (see [10]). For our purposes, we use the definition of
shellability for graded posets from [6].

Definition 1. A finite graded poset P is said to be shellable if all mazimal
chains can be ordered Cy,Cs,...,Ct in such a way that if 1 < i < j <t then
there exist 1 < k < j and x in chain C; such that C;NC; € Cp,NC; = C;\ {z}.
Such an ordering of the mazximal chains is called shelling order.

Many examples of shellable posets can be found in [4] and [5]. Given a shelling
order define the restriction of the maximal chain C; by R(C;) = {z € C; :
Ci \ {z} C C; for some j < i}. If we draw the Hasse diagram of the poset P
chain by chain (according to given shelling order), then the restriction R(C) is
the unique minimal new chain that appears when we draw the maximal chain

C.
For a graded poset P, the following implications are strict (see [3]):

P is vertex decomposable = P is shellable = P is Cohen-Macaulay
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2. Shellable planar posets

For any graded poset P, embedding of its Hasse diagram in the plane defines
the linear ordering <; at every level P, = {z € P : r(z) = i}

x <; y iff the vertex x is left from y

For z € P, we define U(z) = {y € P : x < y}, i.e. the set of all elements of
P that covers z. A poset P is planar if its Hasse diagram can be drawn in the
plane with straight, non-crossing edges, such that whenever z < y in P, the
vertex representing y appears above the vertex representing x. Then, if P is
a planar graded poset, we have that for all  <; 2’ holds max.,  U(x) <i41
min,, U(z').

Remark 2. A graded planar poset is always a lattice, see [7].

We say that a planar graded poset is saturated if its Hasse diagram has the
highest possible number of edges. More precisely, a graded planar poset P of
rank n + 1 is saturated iff

(1) Vi € [n], and for all x <; ', max ., U(z) = min ., U(z')

Remark 3. A simple counting of the edges between P; and P;+1 gives us that
the Hasse diagram of a saturated planar poset P of rank n+ 1 has 2|P| —n—3
edges.

The next lemma will be useful for the characterization of shellable planar posets.

Lemma 4. Let P be a saturated poset, and let [x,y] be an interval in P such
that r(z) = i,r(y) =4, —1>2. Let o =x; <xip1 < - <xj_1 <x; =y be
a mazimal chain in [z,y] such that for all k, i < k < j there exist y; € [z,y],
Yk <k T (x) 18 not contained in the most left mazimal chain in [x,y]). Then,
there exists ko, © < ko < j such that Try—1 < Yky < Tho+1-

Proof. We will use the induction on j —i. If j —i = 2, then we get y,41 = y;—1
and kg =i+ 1 =j5—1. For j —i > 2, we consider y;11. If y;41 < x40,
then we get kg = ¢ + 1. Otherwise, if y;+1 £ 2,12 then, from (1) we have that
Zit1 < Yit2. Now, from the inductive assumption for [z;41,y], follows that
there exists ko, ¢ + 1 < ko < j such that xr,—1 < Yk, < Tho+1- O

Theorem 5. For a graded, planar poset the following statements are equivalent:
1. P is saturated
2. P is shellable

3. P is Cohen-Macaulay
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Proof. First, we will show that 1 = 2. Let P be a saturated poset of rank n+1.

For C:0 =20 <2y < -+ < @p < Tpy1 =1L and C:0 = a) < @} < --- < !, <
xy, .1 = 1, two maximal chains in P, let jo = max{i : z; # xj}. We define a
linear order < g for maximal chains of P:

(2) C<g C/<:>$j0 <o !E;—O
i.e. C is before C’ in <pg iff at the level jg (the highest level where C' and C’
are different) the chain C is left from C’ . If we let iy = max{i < jo : x; = 2}
(g is the highest level below jo where C' and C” are equal), then the maximal
chain @;, = wj <} . <+ <2 <2 1 = Tj41 in [Ti, 75,41] satisfies the
conditions of Lemma 4. So, there exist k, io < k < jo + 1 and z € [z;,, Tjy41]

such that z)_, < z < x}etl. If we let C7:0 = afy < 2} < -+ < T =z <
Ty <<, <, =1, then C" is before C' in <g. Also

Cne' Cco’ne =0\ {a}}

and <pg is a shelling order in the sense of the definition 1.

As any shellable poset is also Cohen-Macaulay (see [3], [4]), then 2 = 3 is
obvious.
Now, we will prove that 3 = 1. Suppose that a planar, graded poset P is a
Cohen-Macaulay, but not saturated. Then, there exist  and z’ at the same
level P; such that z <; 2/, and max ., U(z) < min .., , U(x). Then (by
remark 2) there exist y = 2 A2’ and z = z vV 2/. If we choose two arbitrary
maximal chains C; in [6, y], and Cy in [Z,A], link of the face 0 = C; U 5 in
A(P) is exactly the order complex for the interval (y,z) in P. Since lkapy(o)

is not connected, we have that ﬁo(lkA(p)(O’)) # 0. This is in contradiction with
the assumption that P is a Cohen-Macaulay poset. |

Remark 6. Let P be a saturated poset of rank n + 1. For a maximal chain

C0= Tog<T) < < Ty < Tyl = T, the restriction of C' in the shelling order
<g s R(C) = {a; : Iz} <; x4, xi—1 <z}, < xi41}. Then, for any x € P that is
not contained in the most left mazximal chain in P (x is not minimal in <,(z)),
there exists the unique mazimal chain C, whose restriction in the shelling order
<g is {x}. We obtain the chain C, as the concatenation of the most left chains
in [0,2] and [x,1]. In this way, from the shelling order defined in (2), we get
the following linear order of the vertices of P:

The most left chain 0= v < Vg < ot < Upyo = 1 in P contains the
first n+ 2 vertices in this order. Shelling order <g induces the linear ordering
C1,Ca, -+, Cp|—n—2 of the set of maximal chains in P whose restrictions are
singletons. If R(C;) = {x}, then we label x as v;ypio.

Corollary 7. All saturated posets are vertex-decomposable.
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Proof. We will use the induction by the cardinality and the rank. The case in
which r(P) = 1 is trivial. Let P be a saturated poset of rank n 4+ 1. Suppose
that the statement is true for all saturated posets whose rank is less than n+1,
and for all saturated posets of rank n + 1 with fewer elements than |P|. If
|P| =mn+2 (P is a chain), then A(P) is a simplex. If |P| > n + 2, we consider
v|p|, the last vertex in the order of vertices defined in remark 6. P\ {v|p} is
a saturated poset with fewer vertices than P, and vertex decomposable by the
assumption. From remark 6, we see that v|p| covers and is covered by exactly

~ -~

one element, and so [0,vp|) U (v|p[,1] is a saturated poset, whose rank is n.

~ PN

Since lka(py(v|p|) is the order complex for [0,v|p|) U (v|p|, 1], then P is vertex-
decomposable. Note that the reverse order of vertices from the order defined in
remark 6 is a shedding-order for A(P). O

3. Flag h—vectors of shellable planar posets

For any finite graded poset P we let £(P) denote its covering relation, £(P) =
{(z,y) € Px P :xz <y} An edge-labelling of P is a map A : E(P) — A,
where A is a poset (usually A = (Z, <)). This corresponds to the assignment of
elements of A to the edges of the Hasse diagram of P. Given an edge labelling A,

each unrefinable chain Cix = 29 < x1 <+ < Tp_1 < T = y of length k& can be
associated with a k—tuple A\(C) = (A(xo < 1), AM(®1 < T2), ..., A(Tp—1 < Tk)).
We say that C' is a rising chain if Mxg < 21) < Az < 22) < ... < A(xp—1 <
xr). The edge labelling A of P is said to be an R—labelling if in every interval
[z,y] of P there is a unique rising maximal chain C' in [z,y]. For a maximal

chain C:0 = g < 71 < -+ < T, < Tpy1 = T we define its descent set D(C) =
{i € [n]: Mziz1 < x;) > Ma; < x41)}. If a poset P admits an R—labelling
then the following result from [9] gives us the combinatorial interpretation of
the flag h—vectors.

Theorem 8. Let P be a finite bounded graded poset of rank n + 1 with an
R—labeling A\. Then, for all S C [n], hs(P) is equal to the number of mazimal
chains of P with the descent set S.

As a consequence of this theorem, it follows that for any graded poset P
that admits an R—labelling it holds that hg(P) > 0.

Theorem 9. Let P be a saturated poset. Then P admits an R—labeling with
{1,2} as the set of labels.

Proof. Let P be a saturated poset of rank n+ 1 with the shelling order <p as in
theorem 5. If we draw the most left chain 0 = V] <Vg < < Uppo = T and all
maximal chains Cj,, Ci,, -+, Cj p _,_, whose restrictions are singletons (in the
order defined in Remark 6), then by Remark 3, we reconstruct Hasse-diagram
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of poset P. Using this, we define A : £(P) — {1,2} as follows. We label all the
edges contained in the most left chain of P with 1. When we draw the chain
C;, then we add a new vertex v;yp42 and two edges @ < Vi4ny2, Vignt2 < b. If
we let AM(a < Vitnt2) = 2 and A(Vignt2 < b) = 1, then from Remark 3, all the
edges of the Hasse diagram of P are labelled. Note that

1; for y = minc U(z)

A(fvﬂ/){ 9

Now, in any interval [z,y], the unique chain without descents is the most left

r(z)+1
; otherwise

chain Cix = 29 < 21 < -+ < Tp_1 < T = y. If 2 appears as the label of the
edge z;_1 < x;, then there exists xj such that x;_y < j, and z} <,(,) z; in
Py (z,)- As C'is the most left chain in [z, 3], we have that 2] A x;y1. Then, from
(1) it follows that there exists w <;(s,,,) Tiy+1 such that x; < w. So, the label
of the edge z; < x;41 is 2, and chain C is without descent.

Let C''x = ay < 2} < --- < a}_, < o} = y be any other maximal chain
in [z,y]. Let io = min{i : z; # z;} and jo = min{j > io : z; = 2%}. Then,
Mxiy—1 < ®i,) =2, and A(zj,—1 < xj,) = 1, so chain C’ has a descent. O

Obviously, there are no consecutive descents in the sequence A(zg < 1), A(z1
T2), .y M@y < Tpy1) € {1,231 and Theorem 8 gives us the following result
from [1].

Corollary 10. Let P be a planar shellable poset of rank n+1. Then, hg(P) >0
for all S C [n]. If S contains two consecutive integers, then hg(P) = 0.

From this corollary follows that the dimension of the vector space generated
by the flag f—vectors of shellable planar posets of rank n + 1 is the Fibonacci
number ¢, (¢g = ¢; = 1, ¢yy1 = ¢ + cp—1). It is not difficult to prove (see
[1]) that the closure of the cone generated by the flag f—vectors of all saturated
posets of rank n + 1 is a simplicial cone.

Also, we can note that if a graded poset P of rank n + 1 admits an R—labeling
then its Hasse diagram has exactly 2|P| —n — 3 edges.
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