(eds. I. Dolinka, A. TepavČević)

HYPERSUBSTITUTIONS AND GROUPS

Jörg Koppitz ${ }^{1}$

Abstract

We consider groups as algebras of type (2, 1, 0). A hypersubstitution of type $(2,1,0)$ is a mapping σ from the set of the operation symbols $\left\{\cdot,^{-1}, e\right\}$ into the set of terms of type ($2,1,0$) preserving the arity. For a monoid M of hypersubstitutions of type ($2,1,0$) a variety V is called M-solid if for each group $\left(G ; \cdot{ }^{-1}, e\right) \in V$ the derived group $\left(G ; \sigma(\cdot), \sigma\left({ }^{-1}\right), \sigma(e)\right)$ also belongs to V for all $\sigma \in M$. The class $S_{M}^{G r}$ of all M-solid varieties of groups forms a complete sublattice of the lattice $\mathcal{L}(G r)$ of all varieties of groups. In this way we get a tool for a better description of the whole lattice $\mathcal{L}(G r)$ by characterization of complete sublattices $S_{M}^{G r}$.

AMS Mathematics Subject Classification (2000): 20M07, 08B15
Key words and phrases: hypersubstitution, M-solid variety, groups

1. Introduction

It is of some interest to know what the lattice of all varieties of some type τ looks like, but it has become clear that it is very complicated, even for such special case as the lattice of all varieties of semigroups. In [3] a new method to study these lattices was proposed, using complete sublattices consisting of M solid varieties, where M is a monoid of hypersubstitutions. M-solid varieties of semigroups are considered in a range of papers (see for example [1], [2], and [7]). Although groups can be considered as semigroups not every variety of groups correponds to a variety of semigroups. Considering groups as algebras of type $(2,1,0)$ we can use the method of M-solid varieties for the description of the lattice of all varieties of groups.
In the next section we introduce the concept of a M-solid variety and collect some basic properties. In the third section we determine the set $\mathcal{H}_{n t}$ of all monoids M of hypersubstitutions of type $(2,1,0)$ such that there is a nontrivial M-solid variety of groups. It turns out that $\mathcal{H}_{n t}$ has infinitely many maximal and one minimal element, and $\mathcal{H}_{n t}$ consists of the submonoids of its maximal elements. The last section is devoted to the main result: For all maximal elements H_{p} of $\mathcal{H}_{n t}$ we characterize the complete lattice of all H_{p}-solid varieties

[^0]of groups. An open problem is the characterization of the lattice of all M solid varieties of groups for arbitrary monoids M. In the commutative case this problem is already solved (see [4]). The present paper will give the answer for another class of varieties of groups, namely for varieties of groups satisfying the identity $x^{2} y \approx y x^{2}$.

2. M-solid varieties of groups

Let $W(X)$ be the set of all terms of type $(2,1,0)$ over some fixed alphabet $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ where $\{f, g, e\}$ denotes the set of operation symbols (f is binary, g is unary and e is 0 -ary). Instead of $x_{1}, x_{2}, x_{3}, \ldots$ we write also x, y, z, \ldots. Further, $W\left(X_{2}\right)\left(W\left(X_{1}\right), W(\emptyset)\right)$ denotes the set of all terms of type $(2,1,0)$ over $X_{2}:=\left\{x_{1}, x_{2}\right\}\left(X_{1}:=\left\{x_{1}\right\}, \emptyset\right)$.
We recall that the identities $g(f(y, x)) \approx f(g(x), g(y)), g(g(x)) \approx x$, and $g(e) \approx$ e hold in every variety of groups and usually one writes x^{-1} instead of $g(x)([5])$. This allows us to write a term $t \in W(X)$ as a semigroup word over the alphabet $X^{*}:=X \cup\left\{w^{-1} \mid w \in X\right\} \cup\{e\}$. For example, for $t=f(f(g(x), x), g(f(x, e)))$ one can write $t=x^{-1} x e x^{-1}$. (But if necessary we will write terms by using the operation symbols f and g.)
For a variable $w \in X^{*}$ and a term $t \in W(X)$ we put:
$w^{0}:=e, w^{1}:=w$, and $w^{m+1}:=w^{m} w$ for $m \geq 1$;
$w^{-m}:=\left(w^{-1}\right)^{m}$ for any $m \geq 2$;
$c_{w}(t)$ - the number of occurrences of w in the term t regarded as a semigroup word. For example, for $t=f(f(g(x), x), g(f(x, e)))$ we have $c_{x}(t)=1$ and $c_{x^{-1}}(t)=2$ since the semigroup word $x^{-1} x e x^{-1}$ corresponds to this term.

A mapping $\sigma:\{f, g, e\} \longrightarrow W\left(X_{2}\right)$ with $\sigma(g) \in W\left(X_{1}\right)$ and $\sigma(e) \in W(\emptyset)$ is called a hypersubstitution of type $(2,1,0)$ (for short hypersubstitution). Any hypersubstitution σ can be uniquely extended to a map $\widehat{\sigma}: W(X) \longrightarrow W(X)$, this is defined inductively by
(i) $\widehat{\sigma}[w]:=w$ for any $w \in X \cup\{e\}$,
(ii) $\widehat{\sigma}\left[f\left(t_{1}, t_{2}\right)\right]:=\sigma(f)\left(\widehat{\sigma}\left[t_{1}\right], \widehat{\sigma}\left[t_{2}\right]\right)$, and $\widehat{\sigma}[g(t)]:=\sigma(g)(\widehat{\sigma}[t])$.

Here $\sigma(f)$ and $\sigma(g)$ on the right-hand side of (ii) have to be interpreted as operations induced by the term $\sigma(f)$ and $\sigma(g)$, respectively, on the term algebra induced on $W(X)$.
We denote by Hyp the set of all hypersubstitutions. If we define a product o_{h} of hypersubstitutions by $\sigma_{1} \circ_{h} \sigma_{2}:=\widehat{\sigma}_{1} \circ \sigma_{2}$, where \circ is the usual composition of functions, then $H y p=\left(H y p ; \circ_{h}, \sigma_{i d}\right)$ is a monoid. Note that $\sigma_{i d}$ is the identity hypersubstitution, defined by $\sigma_{i d}(f)=x_{1} x_{2}, \sigma_{i d}(g)=x_{1}^{-1}$, and $\sigma_{i d}(e)=e$.
Let M be a submonoid of Hyp. Further let V be a variety of type (2, 1, 0). Then an identity $s \approx t$ of V is called an M-hyperidentity of V if for every $\sigma \in M$ the equation $\widehat{\sigma}[s] \approx \widehat{\sigma}[t]$ is an identity in V. If every identity in V is an M-hyperidentity then V is called M-solid. In the special case that M is all of $H y p$, we speak of a hyperidentity and a solid variety. In order to show that any
identity is an M-hyperidentity in V we have not to check all $\sigma \in M$, we need only one representative of each equivalence class with respect to the following equivalence relation on $H y p$, established by J. Płonka ([6]):
$\sigma_{1} \sim_{V} \sigma_{2}$ iff $\sigma_{1}(\mu) \approx \sigma_{2}(\mu)$ is an identity in V for all operation symbols $\mu \in\{f, g, e\}$.
If $\sigma_{1} \sim_{V} \sigma_{2}$ we say that σ_{1} and σ_{2} are V-equivalent. In [6] was shown that if σ_{1} and σ_{2} are V-equivalent and $\widehat{\sigma}_{1}[s] \approx \widehat{\sigma}_{1}[t]$ holds in V then also $\widehat{\sigma}_{2}[s] \approx \widehat{\sigma}_{2}[t]$ holds in V.
By definition, to tell if a variety is M-solid, one has to test that application of any hypersubstitution σ to any identity of V results in an identity of V. Denecke and Reichel have developed a reduction in [3]. It suffices to show that every identity of the generating system of V is an M-hyperidentity.
We denote by $I d V$ the set of all identities in V and by $\mathcal{L}(V)$ we mean the subvariety lattice of V. The set $P(V)$ of all hypersubstitutions σ with $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in I d V$ for all $s \approx t \in I d V$ forms a submonoid of Hyp [8]. An element of $P(V)$ is called proper hypersubstitution ([6]). The variety $G r:=\operatorname{Mod}\{f(f(x, y), z) \approx$ $f(x, f(y, z)), f(g(x), x) \approx f(x, g(x)) \approx e, f(x, e) \approx f(e, x) \approx x\}$ is the variety of all groups (considered as algebras of type (2,1,0)). For a set Σ of equations let $\operatorname{Gr}(\Sigma)$ be the variety of groups satisfying Σ. By $S_{M}^{G r}$ we denote the class of all M-solid varieties of groups. $S_{M}^{G r}$ forms a complete sublattice of $\mathcal{L}(G r)$. Moreover, if $M_{1} \subseteq M_{2}$ then $S_{M_{2}}^{G r} \subseteq S_{M_{1}}^{G r}$ (see [3]).

3. Characterization of $\mathcal{H}_{n t}$

For each monoid M of hypersubstitutions the trivial variety $T R:=\operatorname{Mod}\{x \approx$ $y\}$ belongs to $S_{M}^{G r}$. This is clear, since the application of any $\sigma \in H y p$ to $x \approx y$ provides again $x \approx y$, i.e. gives an identity of $T R$. But there are monoids M such that $S_{M}^{G r}$ consists only of $T R$, for example in the case $M=H y p$. To make this clear we consider a hypersubstitution $\sigma \in H y p$ with $\sigma(f)$ and $\sigma(e)=e$. If we apply this σ to the group identity $f(e, x) \approx x$ we get $e \approx x$ which holds only in the trivial variety. This shows that $T R$ is the only solid variety of groups. Moreover, this example shows that $S_{M}^{G r}=\{T R\}$ for all monoids M containing the previously defined σ. It raises the question: For which monoids M there are nontrivial M-solid varieties of groups. In this section we determine the set $\mathcal{H}_{n t}$ of all such submonoids M of $H y p$ for which $S_{M}^{G r}$ contains not only $T R$:

$$
\mathcal{H}_{n t}:=\left\{M \mid M \subseteq H y p, S_{M}^{G r} \neq\{T R\}\right\}
$$

For $a \geq 1$ let V_{a}^{c} be the variety of all commutative groups of order a :
$V_{a}^{c}:=\operatorname{Gr}\left(\left\{f(x, y) \approx f(y, x), x^{a} \approx e\right\}\right)$.
Note that $V_{1}^{c}=T R$. Clearly, $V_{i}^{c} \neq V_{j}^{c}$ for $i \neq j$.
Definition 1. Let $a \geq 2$ be a natural number. Let H_{a} be the set of all hyper-
substitutions σ satisfying the following properties:
a) $c_{x}(\sigma(f))-c_{x-1}(\sigma(f)) \equiv 1(a) ;$
b) $c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f)) \equiv 1(a)$;
c) $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g)) \equiv-1(a)$.

Proposition 2. For all natural numbers $a \geq 2$ we have $H_{a}=P\left(V_{a}^{c}\right)$.
Proof. Let $\sigma \in P\left(V_{a}^{c}\right)$. We will show that σ satisfies the properties a), b), and c).

Assume that a) does not hold. Then $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f)) \equiv m(a)$ for some natural number m with $1<m \leq a$. We apply σ to $f(x, e) \approx x \in I d V_{a}^{c}$ and get $x^{c_{x}(\sigma(f))-c_{x-1}(\sigma(f))} \approx x \in I d V_{a}^{c}$ since σ is a proper hypersubstitution for V_{a}^{c}. But $x^{c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f))} \approx x, x^{a} \approx e$, and $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f)) \equiv m(a)$ imply $x^{m} \approx x$, i.e. $x^{m-1} \approx e$ with $1 \leq m-1<a$ is an identity in V_{a}^{c}, a contradiction. Dually we get that b) is satisfied.
Assume that c) does not hold. Then $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g)) \equiv m(a)$ for some natural number m with $0 \leq m<a-1$. Then $\sigma(g)(x) \approx$ $x^{c_{x}(\sigma(g))-c_{x-1}(\sigma(g))} \approx x^{m} \in I d V_{a}^{c}$ because of $x^{a} \approx e \in I d V_{a}^{c}$. By a) and b) we have $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f)) \equiv 1(a)$ and $c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f)) \equiv 1(a)$, respectively. Thus $x^{m\left(c_{x}(\sigma(f))-c_{x}-1(\sigma(f))\right)+c_{y}(\sigma(f))-c_{y-1}(\sigma(f))} \approx x^{m+1}$ because of $x^{a} \approx e \in I d V_{a}^{c}$.
Further, there holds $\widehat{\sigma}[f(g(x), x)]=\sigma(f)(\widehat{\sigma}[g(x)], \widehat{\sigma}[x])=\sigma(f)$ $(\sigma(g)(x), x) \approx \sigma(f)\left(x^{m}, x\right) \approx x^{m\left(c_{x}(\sigma(f))-c_{x-1}(\sigma(f))\right)+c_{y}(\sigma(f))-c_{y-1}(\sigma(f))} \approx x^{m+1}$. Since σ is a proper hypersubstitution for V_{a}^{c} from $f(g(x), x) \approx e \in I d V_{a}^{c}$ follows $\widehat{\sigma}[f(g(x), x)] \approx \widehat{\sigma}[e] \in I d V_{a}^{c}$, i.e. $x^{m+1} \approx e$ with $1 \leq m+1<a$ is an identity in V_{a}^{c}, a contradiction.
Conversely, let $\sigma \in H_{a}$. We will show that σ is a proper hypersubstitution for H_{a}. For this we show that σ is V_{a}^{c}-equivalent to the identity hypersubstitution $\sigma_{i d}$. There are natural numbers k, l, m, n such that $c_{x}(\sigma(f))=k, c_{x^{-1}}(\sigma(f))=l$, $c_{y}(\sigma(f))=m$, and $c_{y^{-1}}(\sigma(f))=n$. Then $\sigma(f) \approx x^{k-l} y^{m-n}$ because of the commutative law. Because of a) and b) we have $k-l \equiv 1(a)$ and $m-n \equiv 1(a)$, respectively. Thus $\sigma(f) \approx x y$ (because of $x^{a} \approx e$).
Further, there are natural numbers i, j such that $c_{x}(\sigma(g))=i, c_{x^{-1}}(\sigma(g))$ $=j$. Then $\sigma(g) \approx x^{i-j}$ because of the commutative law. Because of c$)$ we have $i-j \equiv-1(a)$. Thus $\sigma(g) \approx x^{-1}$ (because of $x^{a} \approx e$).
Obviously, we have $\widehat{\sigma}[e] \approx e$.
Notation 3 For a monoid M of hypersubstitutions of type $(2,1,0)$ we define $\operatorname{gcd}(M)$ as be the greatest common divisor of the following integers:
$c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f))-1, c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))-1$, and $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g))+1$ for all $\sigma \in M$.

Theorem 4. Let M be a monoid of hypersubstitutions of type (2,1,0). Then $S_{M}^{G r} \neq\{T R\}$ iff there is a prime number p with $M \subseteq H_{p}$.

Proof. Let $S_{M}^{G r} \neq\{T R\}$. Then there is an M-solid variety V of groups with $V \neq T R$.
Assume that $M \nsubseteq H_{p}$ for all prime numbers p. Then for each prime number p there is a $\sigma \in M$ with $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f)) \not \equiv 1(p)$ or $c_{y}(\sigma(f))-$ $c_{y^{-1}}(\sigma(f)) \not \equiv 1(p)$ or $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g)) \not \equiv-1(p)$. This means $\operatorname{gcd}(M)=1$.
On the other hand we have
$\{\widehat{\sigma}[f(x, e)] \approx \widehat{\sigma}[x] \mid \sigma \in M\} \cup\{\widehat{\sigma}[f(e, x)] \approx \widehat{\sigma}[x] \mid \sigma \in M\} \cup$ $\{\widehat{\sigma}[f(g(x), x)] \approx \widehat{\sigma}[e] \mid \sigma \in M\} \subseteq I d V$. This provides $\left\{x^{c_{x}(\sigma(f))-c_{x}-1}(\sigma(f))\right.$ $\approx x \mid \sigma \in M\} \cup\left\{x^{c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))} \quad \approx \quad x \mid \sigma \in M\right\} \cup$ $\left\{x^{\left[c_{x}(\sigma(f))-c_{x-1}(\sigma(f))\right]\left[c_{x}(\sigma(g))-c_{x-1}(\sigma(g))\right]+c_{y}(\sigma(f))-c_{y-1}(\sigma(f))} \approx e \mid \sigma \in M\right\} \subseteq$ $I d V$. For $\sigma \in M$, using $x^{c_{x}(\sigma(f))-c_{x-1}(\sigma(f))} \approx x$ and $x^{c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))} \approx x$ from $x^{\left.\left[c_{x}(\sigma(f))-c_{x-1}(\sigma(f))\right]\right]\left[c_{x}(\sigma(g))-c_{x-1}(\sigma(g))\right]+c_{y}(\sigma(f))-c_{y-1}(\sigma(f))} \approx e$ it follows $x^{c_{x}(\sigma(g))-c_{x-1}(\sigma(g))+1} \approx e$ and thus $x^{c_{x}(\sigma(g))-c_{x}-1(\sigma(g))+2} \approx x$. This shows that $\left\{x^{c_{x}(\sigma(f))-c_{x-1}(\sigma(f))} \approx x \mid \sigma \in M\right\} \cup\left\{x^{c_{y}(\sigma(f))-c_{y-1}(\sigma(f))} \approx x \mid \sigma \in\right.$ $M\} \cup\left\{x^{c_{x}(\sigma(g))-c_{x-1}(\sigma(g))+2} \approx x \mid \sigma \in M\right\} \subseteq I d V$. From these identities we can derive $x^{g c d(M)+1} \approx x \in I d V$. Since $\operatorname{gcd}(M)=1$, we have $x^{2} \approx x \in I d V$, i.e. $x \approx e \in I d V$ and $x \approx y \in I d V$. Thus $V=T R$, a contradiction.
Conversely, let $M \subseteq H_{p}$ for some prime number p. Then $S_{H_{p}}^{G r} \subseteq S_{M}^{G r}$. Since $P\left(V_{p}^{c}\right)=H_{p}$ (Proposition 2) we have $V_{p}^{c} \in S_{H_{p}}^{G r} \subseteq S_{M}^{G r}$ and thus $S_{M}^{G r} \neq\{T R\}$.

Remark 5. The previous theorem shows that the monoids H_{p} are maximal elements in $\mathcal{H}_{n t}$, where for two different prime numbers p_{1} and p_{2} the monoids $H_{p_{1}}$ and $H_{p_{2}}$ are different.
Moreover, it is easy to check that

$$
M_{1}:=\left\{\sigma_{i d}\right\}
$$

forms a monoid. M_{1} is the least element in $\mathcal{H}_{n t}$.
The following set D of hypersubstitutions of type $(2,1,0)$ is the set of all proper hypersubstitutions of the variety of all commutative groups ([4]).

Definition 6. Let D be the set of all hypersubstitutions σ satisfying the following properties:

$$
\begin{aligned}
& \text { a) } c_{x}(\sigma(f))-c_{x-1}(\sigma(f))=1 ; \\
& \text { b) } c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))=1 \\
& \text { c) } c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g))=-1
\end{aligned}
$$

Obviously, we have $D \subseteq H_{n}$ for all natural numbers $n \geq 2$. We will determine such monoids M with $M \subseteq H_{n}$ for all natural numbers $n \geq 2$.

Definition 7. For any submonoid $M \subseteq$ Hyp we denote by $\mathcal{L}(M)$ the submonoid lattice of M.

Proposition 8. There holds $\bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}\left(H_{i}\right)=\mathcal{L}(D)$.
Proof. " \supseteq ": Clearly, for $2 \leq i \in \mathbb{N}$ we have $D \subseteq H_{i}$, i.e. $D \in \mathcal{L}\left(H_{i}\right)$. Thus $\mathcal{L}(D) \subseteq \mathcal{L}\left(H_{i}\right)$ for $2 \leq i \in \mathbb{N}$, i.e. $\mathcal{L}(D) \subseteq \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}\left(H_{i}\right)$.
$" \subseteq ":$ Let $M \in \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}\left(H_{i}\right)$ and let $\sigma \in M$. Then there is a natural number $n \geq 1$ with $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f))=n$. Assume that $n \neq 1$. Then $n \not \equiv 1(n)$, i.e. $\sigma \notin H_{n}$ and $M \notin \mathcal{L}\left(H_{n}\right)$, contradicts $M \in \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}\left(H_{i}\right)$. Thus $c_{x}(\sigma(f))-$ $c_{x^{-1}}(\sigma(f))=1$. Similarly, one can show that $c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))=1$ and $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g))=-1$.
Consequently, $\sigma \in D$ and thus $M \subseteq D$, i.e. $M \in \mathcal{L}(D)$.

4. All H_{p}-solid varieties of groups

The monoids H_{p}, for prime numbers p, are the maximal elements in $\mathcal{H}_{n t}$. In particular, for any $M \in \mathcal{H}_{n t}$ there is a prime number p with $M \subseteq H_{p}$, i.e. $S_{H_{p}}^{G r} \subseteq$ $S_{M}^{G r}$. If we have a characterization of the lattice $S_{H_{p}}^{G r}$ for all prime numbers p then we have some knowledge about a complete sublattice of $S_{M}^{G r}$ for any monoid $M \in \mathcal{H}_{n t}$. The main theorem of the present paper, the characterization of $S_{H_{p}}^{G r}$ for all prime numbers p, is the topic of this section. We start with some properties of H_{p}-solid varieties of groups.

Lemma 9. Let $n \geq 2$ be a natural number. Then in each H_{n}-solid variety V of groups there holds $x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}$.

Proof. We consider the following hypersubstitution σ :

$$
\begin{aligned}
& \sigma(f):=x^{2} y x^{-1} \\
& \sigma(g):=x^{-1} \\
& \sigma(e):=e
\end{aligned}
$$

We have $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f))=2-1=1 \equiv 1(n), c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))=$ $1-0=1 \equiv 1(n)$, and $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g))=0-1=-1 \equiv-1(n)$, i.e. $\sigma \in H_{n}$. Since V is H_{n}-solid, the application of σ to the associative law provides the identities $x^{2} y x^{-1} x^{2} y x^{-1} z\left(x^{2} y x^{-1}\right)^{-1} \approx x^{2} y^{2} z y^{-1} x^{-1}, \quad x^{2} y x y x^{-1} z x y^{-1} x^{-2} \approx$ $x^{2} y^{2} z y^{-1} x^{-1}, x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}$ in V.

For a group $\mathcal{A}=\left(A ; \cdot,^{-1}, e\right)$, by $\mathcal{C}(\mathcal{A}):=\{a \in A \mid x a=a x$ for all $x \in A\}$ we denote the centre of \mathcal{A}. In particular, $\mathcal{C}(\mathcal{A})$ forms a subgroup of \mathcal{A} (see [5]). For $a, b \in \mathcal{A}$ let $[a, b]:=a b a^{-1} b^{-1}$ be the commutator of a and b. The commutator group of \mathcal{A}, i.e. the group generated by the set $\{[a, b] \mid a, b \in \mathcal{A}\}$, is denoted by $[\mathcal{A}, \mathcal{A}]$.

Proposition 10. Let $n \geq 2$ be a natural number, V be an H_{n}-solid variety of groups and $\mathcal{A} \in V$. Then

$$
[\mathcal{A}, \mathcal{A}] \subseteq \mathcal{C}(\mathcal{A})
$$

i.e. the commutator group is a subgroup of the centre.

Proof. We will show that for any $a, b \in A$ the commutator $[a, b]$ belongs to the centre of \mathcal{A}, i.e. $\{[a, b] \mid a, b \in \mathcal{A}\} \subseteq \mathcal{C}(\mathcal{A})$.
Let $a, b \in A$. Then for any $x \in A$ holds $b a^{-1} b^{-1} x b a b^{-1} \approx a^{-1} x a$ by Lemma 9. This implies $\underline{a} b a^{-1} b^{-1} x b a b^{-1} \underline{b a^{-1} b^{-1}} \approx \underline{a} a^{-1} x a b a^{-1} b^{-1}$, i.e. $a b a^{-1} b^{-1} x \approx$ $x a b a^{-1} b^{-1}$ and thus the commutator $[a, b]=a b a^{-1} b^{-1}$ belongs to the centre of \mathcal{A}. Since $\{[a, b] \mid a, b \in \mathcal{A}\} \subseteq \mathcal{C}(\mathcal{A})$ and $\mathcal{C}(\mathcal{A})$ is a subgroup of \mathcal{A} the group generated by the set $\{[a, b] \mid a, b \in \mathcal{A}\}$, i.e. the commutator group $[\mathcal{A}, \mathcal{A}]$, is a subgroup of $\mathcal{C}(\mathcal{A})$.

Lemma 11. Let $n \geq 2$ be a natural number. Then in each H_{n}-solid variety V of groups there holds $x^{n} \approx e$.

Proof. We consider the following hypersubstitution σ :

$$
\begin{aligned}
& \sigma(f):=x^{n+1} y \\
& \sigma(g):=x^{-1} \\
& \sigma(e):=e .
\end{aligned}
$$

We have $c_{x}(\sigma(f))-c_{x^{-1}}(\sigma(f))=n+1-0=n+1 \equiv 1(n), c_{y}(\sigma(f))-c_{y^{-1}}(\sigma(f))=$ $1-0=1 \equiv 1(n)$, and $c_{x}(\sigma(g))-c_{x^{-1}}(\sigma(g))=0-1=-1 \equiv-1(n)$, i.e. $\sigma \in H_{n}$. Since V is H_{n}-solid, the application of σ to the group identity $f(x, e) \approx x$ provides an identity in V, namely $x^{n+1} \approx x$, i.e. $x^{n} \approx e$.

By Proposition 10 and Lemma 11, respectively, it becomes clear that an H_{n}-solid variety of groups consists of solvable groups.

Definition 12. We define a hypersubstitution σ_{d} by

$$
\begin{aligned}
\sigma_{d}(f) & :=y x \\
\sigma_{d}(g) & :=x^{-1} \\
\sigma_{d}(e) & :=e
\end{aligned}
$$

A variety V of groups is called self-dual if the application of σ_{d} to any identity of V gives again an identity in V :

$$
\left.\left\{\widehat{\sigma}_{d} u\right] \approx \widehat{\sigma}_{d}[v] \mid u \approx v \in I d V\right\} \subseteq I d V
$$

Lemma 13. Let $n \geq 2$ be a natural number. Any H_{n}-solid variety V of groups is self-dual.

Proof. We have $c_{x}\left(\sigma_{d}(f)\right)-c_{x^{-1}}\left(\sigma_{d}(f)\right)=c_{y}\left(\sigma_{d}(f)\right)-c_{y^{-1}}\left(\sigma_{d}(f)\right)=1-0=$ $1 \equiv 1(n)$, and $c_{x}\left(\sigma_{d}(g)\right)-c_{x^{-1}}\left(\sigma_{d}(g)\right)=0-1=-1 \equiv-1(n)$, i.e. $\sigma_{d} \in H_{n}$. Since V is H_{n}-solid, the application of σ_{d} to an identity of V gives again an identity of V.

Lemma 14. Let V be a variety of groups satisfying $x y x^{-1} z x y^{-1} x^{-1} \approx$ $y z y^{-1}$. Then for any integer a there holds

$$
x y x^{-1} y^{a} \approx y^{a} x y x^{-1} \in I d V .
$$

Proof. All is clear for $a=0$. Let $a \neq 0$ be an integer. Then we have $x y x^{-1} y^{a} \approx$ $y^{a} x y^{-a} y y^{a} x^{-1} y^{-a} y^{a} \approx y^{a} x y x^{-1}$ (using $x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}$).

Lemma 15. Let V be a variety of groups satisfying $x y x^{-1} z x y^{-1} x^{-1} \approx$ $y z y^{-1}$. Then for integers $r, s, t, u \neq 0$ the following identities (i)-(iv) are satisfied in V :
(i) $x^{r} y^{s} x^{-r} y^{t} x^{u} \approx y^{t} x^{r} y^{s} x^{u-r}$
(ii) $\quad x^{r} y^{s} x^{-t} y^{u} x^{t} \approx x^{r-t} y^{u} x^{t} y^{s}$
(iii) $\quad x^{r} y^{s} x^{r} y^{t} x^{u} \approx y^{-t} x^{r} y^{s+2 t} x^{r+u}$
(iv) $\quad x^{r} y^{s} x^{t} y^{u} x^{t} \approx x^{r+t} y^{u+2 s} x^{t} y^{-s}$.

Proof. The identities (i) and (ii) are immediate consequences of Lemma 14.
We show (iii). The identity (iv) can be checked dually. Using Lemma 14 we have $x^{r} y^{s} x^{r} y^{t} x^{u} \approx x^{r} y^{s} \underline{x^{r} y^{t} x^{-r}} x^{u+r}$
$\approx x^{r} x^{r} y^{t} x^{-r} y^{s} x^{u+r}$
$\approx x^{2 r} \underline{y}^{t} x^{-r} y^{-t} y^{s+t} x^{u+r}$
$\approx y^{t} x^{-r} y^{-t} x^{2 r} y^{s+t} x^{u+r}$
$\approx y^{t} x^{-r} y^{-t} x^{2 r} y^{s+t} x^{-2 r} x^{u+3 r}$
$\approx y^{t} x^{-r} x^{2 r} \overline{y^{s+t} x^{-2 r} y^{-t}} x^{u+3 r}$
$\approx y^{t} x^{r} y^{s+t} x^{-r} x^{-r} y^{-t} x^{u+3 r}$
$\approx x^{\bar{r} y^{s+t} x^{-r} y^{t}} x^{-r} y^{-t} x^{u+3 r}$
$\approx x^{r} y^{s+t} y^{t} x^{-r} y^{-t} x^{-r} x^{u+3 r}$
$\approx x^{r} y^{s+2 t} x^{-r} y^{-t} x^{u+2 r}$
$\approx \overline{y^{-t} x^{r} y^{s+2 t}} y^{t} x^{-r} x^{u+2 r}$
$\approx y^{-t} x^{r} y^{s+2 t} y^{t} x^{u+r}$.
Theorem 16. Let $r \geq 2$ be a natural number and let V be a variety of groups. V is H_{r}-solid iff V is self-dual and satisfies both identities $x^{r} \approx e$ and $x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}$.

Proof. \quad Suppose that V is H_{r}-solid. Then V is self-dual by Lemma 13, satisfies $x^{r} \approx e$ (i.e. it is a variety of r-group) by Lemma 11 and satisfies $x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}$ by Lemma 9 .
Suppose now that V is a self-dual variety of r-groups satisfying

$$
x y x^{-1} z x y^{-1} x^{-1} \approx y z y^{-1}(\mathrm{i})
$$

Let $\sigma \in H_{r}$. We will show that $\sigma(f) \approx x^{a} y^{b} x^{c} y^{d}$ or $\sigma(f) \approx y^{d} x^{c} y^{b} x^{a}$ for some natural numbers a, b, c, d with $a+c \equiv b+d \equiv 1(r)$.
For this we check that for natural numbers $a, n_{2}, n_{3}, n_{4}, n_{5}$ we have

$$
x^{a n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}} \approx y^{(-a+1) n_{2}-a n_{4}} x^{n_{3}} y^{a n_{2}+(a+1) n_{4}} x^{n_{5}+a n_{3}} \in I d V \text { (ii). }
$$

We show by induction on k that $x^{k n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}} \approx$ $y^{(-k+1) n_{2}-k n_{4}} x^{n_{3}} y^{k n_{2}+(k+1) n_{4}} x^{n_{5}+k n_{3}} \in I d V$.
For $k=1$ we have $x^{1 n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}} \approx y^{(-1+1) n_{2}-1 n_{4}} x^{n_{3}} y^{1 n_{2}+(1+1) n_{4}} x^{n_{5}+1 n_{3}}$ $\in I d V$ by Lemma 15 (iii).
Suppose now that the statement is true for $k=m$, i.e. $x^{m n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}}$ $\approx y^{(-m+1) n_{2}-m n_{4}} x^{n_{3}} y^{m n_{2}+(m+1) n_{4}} x^{n_{5}+m n_{3}} \in I d V$ (hypothesis).
Then for $k=m+1$ holds $x^{(m+1) n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}}$
$\approx x^{n_{3}} x^{m n_{3}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}}$
$\approx x^{n_{3}} y^{(-m+1) n_{2}-m n_{4}} x^{n_{3}} y^{m n_{2}+(m+1) n_{4}} x^{n_{5}+m n_{3}}$ (by hypothesis)
$\approx y^{-m n_{2}-(m+1) n_{4}} x^{n_{3}} y^{(-m+1) n_{2}-m n_{4}+2 m n_{2}+2(m+1) n_{4}} x^{n_{5}+m n_{3}+n_{3}}$ (by Lemma 15(iii))
$\approx y^{(-(m+1)+1) n_{2}-(m+1) n_{4}} x^{n_{3}} y^{(m+1) n_{2}+((m+1)+1) n_{4}} x^{n_{5}+(m+1) n_{3}}$.
This shows that (ii) holds.
We show now that the following statement (iii) holds:
For any natural numbers $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ there are natural numbers a, b, c, d such that $x^{n_{1}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}} \approx y^{a} x^{b} y^{c} x^{d}, n_{1}+n_{3}+n_{5} \equiv b+d(r)$, and $n_{2}+n_{4} \equiv$ $a+c(r)$.

Let $a_{1}, b_{1}, c_{1}, d_{1}, e_{1}$ be natural numbers. Then there are natural numbers k_{1} and r_{1} with $r_{1}<c_{1}$ such that $a_{1}=k_{1} c_{1}+r_{1}$. Then we have $x^{a_{1}} y^{b_{1}} x^{c_{1}} y^{d_{1}} x^{e_{1}}$ $\approx x^{r_{1}} x^{k_{1} c_{1}} y^{b_{1}} x^{c_{1}} y^{d_{1}} x^{e_{1}}$
$\approx x^{r_{1}} y^{\left(-k_{1}+1\right) b_{1}-k_{1} d_{1}} x^{c_{1}} y^{k_{1} b_{1}+\left(k_{1}+1\right) d_{1}} x^{e_{1}+k_{1} c_{1}}$ (by (ii))
$\approx x^{r_{1}} y^{\left(-k_{1}+1\right) b_{1}-k_{1} d_{1}} x^{c_{1}} y^{\left(k_{1}-1\right) b_{1}+k_{1} d_{1}} y^{b_{1}+d_{1}} x^{e_{1}+k_{1} c_{1}}$
$\approx y^{\left(-k_{1}+1\right) b_{1}-k_{1} d_{1}} x^{c_{1}} y^{\left(k_{1}-1\right) b_{1}+k_{1} d_{1}} x^{r_{1}} y^{b_{1}+d_{1}} x^{e_{1}+k_{1} c_{1}} \quad$ (by Lemma 14)
$\approx y^{f_{2}} x^{a_{2}} y^{b_{2}} x^{c_{2}} y^{d_{2}} x^{e_{2}}$ with $a_{2}:=c_{1}, b_{2}:=\left(k_{1}-1\right) b_{1}+k_{1} d_{1}, c_{2}:=r_{1}, d_{2}:=$ $b_{1}+d_{1}, e_{2}:=e_{1}+k_{1} c_{1}$ and $f_{2}:=\left(-k_{1}+1\right) b_{1}-k_{1} d_{1}$ where $b_{2}+d_{2}+f_{2}=b_{1}+d_{1}$ and $a_{2}+c_{2}+e_{2}=a_{1}+c_{1}+e_{1}$. In $n \geq 1$ such steps we can derive from $x^{a_{1}} y^{b_{1}} x^{c_{1}} y^{d_{1}} x^{e_{1}}$ a term
$y^{f_{2}} \ldots y^{f_{n+1}} x^{a_{n+1}} y^{b_{n+1}} x^{c_{n+1}} y^{d_{n+1}} x^{e_{n+1}}$ with integers $a_{n+1}, b_{n+1}, c_{n+1}, d_{n+1}, e_{n+1}$, f_{2}, \ldots, f_{n+1} such that $c_{n+1}=0$ and $b_{n+1}+d_{n+1}+\sum_{i=1}^{n} f_{i+1}=b_{1}+d_{1}$ and $a_{n+1}+c_{n+1}+e_{n+1}=a_{1}+c_{1}+e_{1}$. Because of $x^{r} \approx e$ there are natural numbers a, b, c, d such that $\sum_{i=1}^{n} f_{i+1} \equiv a(r), a_{n+1} \equiv b(r), b_{n+1}+d_{n+1} \equiv c(r)$ and $e_{n+1} \equiv d(r)$, i.e., $y^{f_{2}} \ldots y^{f_{n+1}} x^{a_{n+1}} y^{b_{n+1}} x^{c_{n+1}} y^{d_{n+1}} x^{e_{n+1}} \approx y^{a} x^{b} y^{c} x^{d} \in I d V$ and altogether we have $x^{n_{1}} y^{n_{2}} x^{n_{3}} y^{n_{4}} x^{n_{5}} \approx y^{a} x^{b} y^{c} x^{d} \in I d V$. This shows the
statement (iii).
On the other hand there are natural numbers $n \geq 1$ and $a_{1}, \ldots, a_{2 n}$ such that $\sigma(f) \approx x^{a_{1}} y^{a_{2}} \ldots x^{a_{2 n-1}} y^{a_{2 n}} \in I d V$ with $\sum_{i=0}^{n-1} a_{2 i+1} \equiv \sum_{i=1}^{n} a_{2 i} \equiv 1(r)$. Using (iii) we get $\sigma(f) \approx x^{a} y^{b} x^{c} y^{d} \in I d V$ or $\sigma(f) \approx y^{d} x^{c} y^{b} x^{a} \in I d V$ for some natural numbers a, b, c, d with $a+c \equiv \sum_{i=0}^{n-1} a_{2 i+1}$ and $\sum_{i=1}^{n} a_{2 i} \equiv b+d$, i.e. $a+c \equiv b+d \equiv 1(r)$.

Now we check that the application of σ to the group identities gives again identities in V. We note that $\sigma(e) \approx e$ and $\sigma(g) \approx x^{-1}$ since $c_{x}(\sigma(g))-$ $c_{x^{-1}}(\sigma(g)) \equiv-1(r)$ and $x^{r} \approx e \in I d V$. Thus we have $\widehat{\sigma}[f(x, e)] \approx x^{a+c} \approx x=\widehat{\sigma}[x]$ and $\widehat{\sigma}[f(x, g(x))] \approx x^{a+c}\left(x^{-1}\right)^{b+d} \approx x x^{-1}=e=\widehat{\sigma}[e]$ since $a+c \equiv b+d \equiv 1(r)$ and $x^{r} \approx e \in I d V$. Dually we get $\widehat{\sigma}[f(e, x)] \approx \widehat{\sigma}[x] \in I d V$ and $\widehat{\sigma}[f(g(x), x)] \approx \widehat{\sigma}[e] \in$ $I d V$.
Now we show that the application of σ to the associative law gives an identity in V. For this we check by induction on k that

$$
\left(x^{a} y^{b} x^{c} y^{d}\right)^{k} z\left(y^{-d} x^{-c} y^{-b} x^{-a}\right)^{k} \approx x^{k} y^{k} z y^{-k} x^{-k} \in I d V \text { (iv) }
$$

For $k=1$ we have $x^{a} y^{b} x^{c} y^{d} z y^{-d} x^{-c} y^{-b} x^{-a}$
$\approx x^{a} x^{c} y^{b} x^{-c} x^{c} y^{d} z y^{-d} x^{-c} x^{c} y^{-b} x^{-c} x^{-a}$ (by (i))
$\approx x^{a+c} y^{b+d} z y^{-(b+d)} x^{-(a+c)}$
$\approx x y z y^{-1} x^{-1}$ since $a+c \equiv b+d \equiv 1(r)$ and $x^{r} \approx e \in I d V$.
Suppose now that (iv) is true for $k=m$, i.e. it holds $\left(x^{a} y^{b} x^{c} y^{d}\right)^{m} z$ $\left(y^{-d} x^{-c} y^{-b} x^{-a}\right)^{m} \approx x^{m} y^{m} z y^{-m} x^{-m} \in I d V$ (hypothesis).
Then for $k=m+1$ we have $\left(x^{a} y^{b} x^{c} y^{d}\right)^{m+1} z\left(y^{-d} x^{-c} y^{-b} x^{-a}\right)^{m+1}$
$\approx\left(x^{a} y^{b} x^{c} y^{d}\right) x^{m} y^{m} z y^{-m} x^{-m}\left(y^{-d} x^{-c} y^{-b} x^{-a}\right)$ (by hypothesis)
$\approx x^{a} x^{c} y^{b} x^{-c} x^{c} y^{d} x^{m} y^{m} z y^{-m} x^{-m} y^{-d} x^{-c} x^{c} y^{-b} x^{-c} x^{-a}$ (by (i))
$\approx x^{a+c} y^{b+d} x^{m} y^{m} z y^{-m} x^{-m} y^{-(b+d)} x^{-(a+c)}$
$\approx x^{a+c} x^{m} y^{b+d} x^{-m} x^{m} y^{m} z y^{-m} x^{-m} x^{m} y^{-(b+d)} x^{-m} x^{-(a+c)}$ (by (i))
$\approx x^{a+c+m} y^{b+d+m} z y^{-(b+d+m)} x^{-(a+c+m)}$
$\approx x^{1+m} y^{1+m} z y^{-(1+m)} x^{-(1+m)}$ since $a+c \equiv b+d \equiv 1(r)$ and $x^{r} \approx e \in I d V$.
Now we have $\widehat{\sigma}[f(f(x, y), z)] \approx\left(x^{a} y^{b} x^{c} y^{d}\right)^{a} z^{b}\left(x^{a} y^{b} x^{c} y^{d}\right)^{c} z^{d}$
$\approx\left(x^{a} y^{b} x^{c} y^{d}\right)^{a} z^{b}\left(x^{a} y^{b} x^{c} y^{d}\right)^{-a}\left(x^{a} y^{b} x^{c} y^{d}\right) z^{d} \quad\left(\right.$ since $a+c \equiv 1(r)$ and $x^{r} \approx e \in$ $I d V$)
$\approx\left(x^{a} y^{b} x^{c} y^{d}\right)^{a} z^{b}\left(y^{-d} x^{-c} y^{-b} x^{-a}\right)^{a}\left(x^{a} y^{b} x^{c} y^{d}\right) z^{d}$
$\approx x^{a} y^{a} z^{b} y^{-a} x^{-a}\left(x^{a} y^{b} x^{c} y^{d}\right) z^{d}$ (by (iv))
$\approx x^{a} y^{a} z^{b} y^{-a+b} x^{c} y^{d} z^{d}$
$\approx x^{a} y^{a} z^{b} y^{-a+b} x^{c} y^{a+c-b} z^{d}$ (since $a+c \equiv b+d \equiv 1(r)$ and $\left.x^{r} \approx e \in I d V\right)$
$\approx x^{a} y^{b} y^{a-b} z^{b} y^{-a+b} x^{c} y^{a-b} z^{-b} y^{b-a} y^{-b} y^{a} z^{b} y^{c} z^{d}$
$\approx x^{a} y^{b} z^{b} x^{c} z^{-b} y^{-b} y^{a} z^{b} y^{c} z^{d}$ (by (i))
$\approx x^{a}\left(y^{a} z^{b} y^{c} z^{d}\right)^{b} x^{c}\left(z^{-d} y^{-c} z^{-b} y^{-a}\right)^{b}\left(y^{a} z^{b} y^{c} z^{d}\right)$ (by (iv))

$$
\begin{aligned}
& \approx x^{a}\left(y^{a} z^{b} y^{c} z^{d}\right)^{b} x^{c}\left(y^{a} z^{b} y^{c} z^{d}\right)^{-b+1} \\
& \approx x^{a}\left(y^{a} z^{b} y^{c} z^{d}\right)^{b} x^{c}\left(y^{a} z^{b} y^{c} z^{d}\right)^{d}\left(\text { since } b+d \equiv 1(r) \text { and } x^{r} \approx e \in I d V\right) \\
& =\widehat{\sigma}[f(x, f(y, z))]
\end{aligned}
$$

We will show that the application of σ to any identity in V gives again an identity in V. Let $s \approx t \in I d V$. Since we have already checked that the application of σ to the group identities gives again identities in V we can consider the terms s and t as semigroup words over the alphabet X^{*}. So there are natural numbers $j, m \geq 1$ and $s_{1}, \ldots, s_{j}, t_{1}, \ldots, t_{m} \in X^{*}$ such that $s=s_{1} \ldots s_{j}$ and $t=t_{1} \ldots t_{m}$.
We will show by induction on j that

$$
\widehat{\sigma}\left[s_{1} \ldots s_{j}\right] \approx s_{1}^{a} \ldots s_{j}^{a} s_{j}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{j}^{d} \in I d V
$$

First, we remark that from (i) it follows $x^{n_{1}} y^{m} x^{n_{2}} z x^{-n_{2}} y^{-m} x^{-n_{1}} \approx x^{n_{1}} x^{n_{2}}$ $y^{m} x^{-n_{2}} x^{n_{2}} z x^{-n_{2}} x^{n_{2}} y^{m} x^{-n_{2}} x^{-n_{1}}$, i.e.

$$
x^{n_{1}} y^{m} x^{n_{2}} z x^{-n_{2}} y^{-m} x^{-n_{1}} \approx x^{n_{1}+n_{2}} y^{m} z y^{-m} x^{-\left(n_{2}+n_{2}\right)} \text { (v) }
$$

for any integers n_{1}, n_{2}, m.
If $j=1$ then we have $\widehat{\sigma}\left[s_{1}\right]=s_{1} \approx s_{1}^{b+d}$ (since $b+d \equiv 1(r)$ and $\left.x^{r} \approx e \in I d V\right)$ $\approx s_{1}^{b} s_{1}^{d}$
$\approx s_{1}^{a} s_{1}^{b-a} s_{1}^{d}$.
Suppose that the statement is true for $j=k$, i.e. $\widehat{\sigma}\left[s_{1} \ldots s_{k}\right] \approx s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots$ $s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d} \in I d V$ (hypothesis). We put $r:=s_{1} \ldots s_{k}$.
Then for $j=k+1$ holds $\widehat{\sigma}\left[f\left(r, s_{k+1}\right)\right] \approx \widehat{\sigma}[r]^{a} s_{k+1}^{b} \widehat{\sigma}[r]^{c} s_{k+1}^{d}$
$\approx \widehat{\sigma}[r]^{a} s_{k+1}^{b} \widehat{\sigma}[r]^{-a+1} s_{k+1}^{d} \quad\left(\right.$ since $a+c \equiv 1(r)$ and $\left.x^{r} \approx e \in I d V\right)$
$\approx \widehat{\sigma}[r]^{a} s_{k+1}^{b} \widehat{\sigma}[r]^{-a} \widehat{\sigma}[r] s_{k+1}^{d}$
$\approx \quad\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d}\right)^{a} s_{k+1}^{b}\left(s_{k}^{-d} \ldots s_{1}^{-d} s_{1}^{-b+a} \ldots s_{k}^{-b+a} s_{k}^{-a} \ldots s_{1}^{-a}\right)^{a}\left(s_{1}^{a} \ldots s_{k}^{a}\right.$
$\left.s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d}\right) s_{k+1}^{d}$ (by hypothesis)
$\approx \quad\left(s_{1}^{a} s_{2}^{a+b-a+d} \ldots s_{k-1}^{a+b-a+d} s_{k}^{a} s_{k}^{b-a} s_{1}^{b-a} s_{1}^{d} s_{k}^{d}\right)^{a} s_{k+1}^{b}\left(s_{k}^{-d} s_{1}^{-d} s_{1}^{-b+a} s_{k}^{-b+a} s_{k}^{-a}\right.$
$\left.s_{k-1}^{-a-b+a-d} \ldots s_{2}^{-a-b+a-d} s_{1}^{-a}\right)^{a}\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d}\right) s_{k+1}^{d}$ (by (v))
$\approx \quad\left(s_{1}^{a} s_{2} \ldots s_{k-1} s_{k}^{b} s_{1}^{c} s_{k}^{d}\right)^{a} s_{k+1}^{b}\left(s_{k}^{-d} s_{1}^{-c} s_{k}^{-b} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-a}\right)^{a}\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d}\right.$
$\left.\ldots s_{k}^{d}\right) s_{k+1}^{d}\left(\right.$ since $a+c \equiv b+d \equiv 1(r)$ and $\left.x^{r} \approx e \in I d V\right)$
$\approx \quad\left(s_{1}^{a+c} s_{2} \ldots s_{k-1} s_{k}^{b+d}\right)^{a} s_{k+1}^{b}\left(s_{k}^{-(b+d)} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-(a+c)}\right)^{a}\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d}\right.$ $\left.\ldots s_{k}^{d}\right) s_{k+1}^{d}($ by $(\mathrm{v}))$
$\approx \quad\left(s_{1} s_{2} \ldots s_{k-1} s_{k}\right)^{a} s_{k+1}^{b}\left(s_{k}^{-1} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-1}\right)^{a}\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d}\right) s_{k+1}^{d}$
(since $a+c \equiv b+d \equiv 1(r)$ and $x^{r} \approx e \in I d V$)
$\approx\left(s_{1}^{a} \ldots s_{k}^{a}\right) s_{k+1}^{b}\left(s_{k}^{-a} \ldots s_{1}^{-a}\right)\left(s_{1}^{a} \ldots s_{k}^{a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d}\right) s_{k+1}^{d}$ (it follows from (iv))
$\approx s_{1}^{a} \ldots s_{k}^{a} s_{k+1}^{a} s_{k+1}^{b-a} s_{k}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{k}^{d} s_{k+1}^{d}$.
Similarly, one can show that $\widehat{\sigma}[t] \approx t_{1}^{a} \ldots t_{m}^{a} t_{m}^{b-a} \ldots t_{1}^{b-a} t_{1}^{d} \ldots t_{m}^{d} \in I d V$. Now we substitute in $s \approx t$ each $w \in X^{*}$ by w^{a}, w^{b-a}, and w^{d}, respectively. So we get
the following identities satisfied in V :

$$
\begin{aligned}
& s_{1}^{a} \ldots s_{j}^{a} \approx t_{1}^{a} \ldots t_{m}^{a} \\
& s_{1}^{b-a} \ldots s_{j}^{b-a} \approx t_{1}^{b-a} \ldots t_{m}^{b-a} \\
& s_{1}^{d} \ldots s_{j}^{d} \approx t_{1}^{d} \ldots t_{m}^{d}
\end{aligned}
$$

Moreover, since V is self-dual we have $s_{j}^{b-a} \ldots s_{1}^{b-a} \approx t_{m}^{b-a} \ldots t_{1}^{b-a} \in I d V$. These three identities provide $s_{1}^{a} \ldots s_{j}^{a} s_{j}^{b-a} \ldots s_{1}^{b-a} s_{1}^{d} \ldots s_{j}^{d} \quad \approx t_{1}^{a} \ldots t_{m}^{a} t_{m}^{b-a} \ldots t_{1}^{b-a}$ $t_{1}^{d} \ldots t_{m}^{d} \in I d V$, i.e. $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in I d V$.
Consequently, the application of any $\sigma \in H_{r}$ to any identity of V gives again an identity in V, i.e. V is H_{r}-solid.

An open problem is the characterization of the lattice $S_{M}^{G r}$ for any given monoid M. For the commutative case we have given the answer in [4]:

Proposition 17. Let M be a monoid of hypersubstitutions and V be a variety of commutative groups. Then V is M-solid iff $V \subseteq V_{\operatorname{gcd}(M)}^{c}$.

In this paper we give the answer for a generalization of the commutative case.

Remark 18. Let $Q:=\left(\{ \pm e, \pm i, \pm j, \pm k\} ; \cdot,^{-1}, e\right)$ be the quaternion group. The commutative law is not valid in \underline{Q}. On the other hand we have $a^{2}= \pm e$ and $\pm e \cdot b= \pm b=b \cdot \pm e$ for all $a, b \in\{ \pm e, \pm i, \pm j, \pm k\}$. Thus $x^{2} y \approx y x^{2}$ is an identity in \underline{Q}. This motivates us to consider varieties of groups satisfying $x^{2} y \approx y x^{2}$.

The next theorem characterizes the lattice of all M-solid varieties of groups satisfying $x^{2} y \approx y x^{2}$ for any given monoid $M \in \mathcal{H}_{n t}$.

Definition 19. Let $\sigma \in H y p$ with $\sigma(f) \approx x^{a_{1}} y^{a_{2}} \ldots x^{a_{2 n-1}} y^{a_{2 n}}$ where $1 \leq n \in$ $\mathbb{N}, a_{2}, \ldots, a_{2 n-1} \in \mathbb{Z} \backslash\{0\}$ and $a_{1}, a_{2 n} \in \mathbb{Z}$.
σ is said to be y-odd if there is an $i \in\{1, \ldots n\}$ such that $a_{2 i}$ is odd and $a_{1}, \ldots, a_{2 i-1}$ are even.

For example, any $\sigma \in H y p$ with $\sigma(f)=x x^{-1} y y x x y^{-1}$ is y-odd.
Theorem 20. Let p be a prime number and M be a submonoid of Hyp with $M \subseteq H_{p}$. A variety V of groups satisfying $x^{2} y \approx y x^{2}$ is M-solid iff $x^{p} \approx e \in$ $I d V$ and V is self-dual if there exists some y-odd hypersubstitution $\sigma \in M$.

Proof. Suppose that $x^{p} \approx e \in I d V$ and V is self-dual if there exists some y-odd hypersubstitution $\sigma \in M$. We show that for any $\sigma \in M$ holds

$$
\sigma \sim_{V} \sigma_{d} \text { if } \sigma \text { is } y \text {-odd and }
$$ $\sigma \sim_{V} \sigma_{i d}$ otherwise.

Let $\sigma \in M$ with $\sigma(f) \approx x^{a_{1}} y^{a_{2}} \ldots x^{a_{2 r-1}} y^{a_{2 r}}$ where $1 \leq r \in \mathbb{N}, a_{2}, \ldots, a_{2 r-1} \in$ $\mathbb{Z} \backslash\{0\}$ and $a_{1}, a_{2 r} \in \mathbb{Z}$. Using $x^{2} y \approx y x^{2}$ it is easy to calculate that from $\sigma(f) \approx x^{a_{1}} y^{a_{2}} \ldots x^{a_{2 r-1}} y^{a_{2 r}}$ it follows $\sigma(f) \approx y x y^{a} x^{b}$ or $\sigma(f) \approx y^{a+1} x^{b+1}$ if σ is $y-o d d$ and $\sigma(f) \approx x y x^{a} y^{b}$ or $\sigma(f) \approx x^{a+1} y^{b+1}$ otherwise for some integer a, b. Because of $x^{p} \approx e \in I d V$ we can assume that $0 \leq a, b \leq p-1$. Because of $a+1 \equiv 1(p)$ and $b+1 \equiv 1(p)$ (since $M \subseteq H_{p}$) we get $a=b=0$. Thus $\sigma(f) \approx y x$ if σ is y-odd and $\sigma(f) \approx x y$ otherwise. Clearly, $\sigma(g) \approx x^{r p-1}$ for some integer r. Using $x^{p} \approx e$ we get $\sigma(g) \approx x^{-1}$. Thus $\sigma \sim_{V} \sigma_{d}$ if σ is y-odd and $\sigma \sim_{V} \sigma_{i d}$ otherwise. Consequently, any $\sigma \in M$ is V-equivalent to $\sigma_{i d}$ or σ_{d}.
If there is no y-odd hypersubsitution $\sigma \in M$ then all $\sigma \in M$ are V-equivalent to $\sigma_{i d}$ and V is M-solid (see [6]).
If there is some $\sigma \in M$ which is y-odd then V is self-dual and since each $\sigma \in M$ is V-equivalent to $\sigma_{i d}$ or σ_{d}, V is M-solid (see [6]).

Suppose that V is M-solid. Then $x^{p} \approx e \in I d V$ by Lemma 11. We have to consider the case that there is a y-odd hypersubstitution $\sigma \in M$. We have already shown that then $\sigma \sim_{V} \sigma_{d}$. Since V is M-solid, the application of σ to any identity in V gives again an identity in V. Thus the application of σ_{d} to any identity in V is also an identity in V (see [6]), i.e. V is self-dual.

References

[1] Denecke, K., Koppitz, J., M-solid varieties of semigroups, Discussiones Mathematicae 15 (1995), 23-41.
[2] Denecke, K., Koppitz, J., Finite monoids of hypersubstitutions of type $\mathrm{t}=(2)$, Semigroup Forum 56 (1998), 265-275.
[3] Denecke, K., Reichel, M., Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9, Verlag Hölder-Pichler-Tempsky, Wien 1995, 117-126.
[4] Koppitz, J., M-solid varieties of groups, preprint, 2003.
[5] Neumann, H., Varieties of groups, Springer Verlag, New York, 1967.
[6] Płonka, J., Proper and inner hypersubstitutions of varieties, Proceedings of the International Conference Summer School on General Algebra and ordered Sets, Olomouc 1994, 106-116.
[7] Polák, L., All solid varieties of semigroups, J. of Algebra 219 (1999), 421-436.
[8] Szylicka, Z., Proper hypersubstitutions of outerizations of varieties, Discussiones Mathematicea 15 (1995), 69-80.

[^0]: ${ }^{1}$ University of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany, e-mail: koppitz@rz.uni-potsdam.de

