Novi Sad J. Math. Vol. 34, No. 2, 2004, 127-139 Proc. Novi Sad Algebraic Conf. 2003 (eds. I. Dolinka, A. Tepavčević)

HYPERSUBSTITUTIONS AND GROUPS

Jörg Koppitz¹

Abstract. We consider groups as algebras of type (2, 1, 0). A hypersubstitution of type (2, 1, 0) is a mapping σ from the set of the operation symbols $\{\cdot, ^{-1}, e\}$ into the set of terms of type (2, 1, 0) preserving the arity. For a monoid M of hypersubstitutions of type (2, 1, 0) a variety V is called M-solid if for each group $(G; \cdot, ^{-1}, e) \in V$ the derived group $(G; \sigma(\cdot), \sigma(^{-1}), \sigma(e))$ also belongs to V for all $\sigma \in M$. The class S_M^{Gr} of all M-solid varieties of groups forms a complete sublattice of the lattice $\mathcal{L}(Gr)$ of all varieties of groups. In this way we get a tool for a better description of the whole lattice $\mathcal{L}(Gr)$ by characterization of complete sublattices S_M^{Gr} .

AMS Mathematics Subject Classification (2000): 20M07, 08B15 Key words and phrases: hypersubstitution, M-solid variety, groups

1. Introduction

It is of some interest to know what the lattice of all varieties of some type τ looks like, but it has become clear that it is very complicated, even for such special case as the lattice of all varieties of semigroups. In [3] a new method to study these lattices was proposed, using complete sublattices consisting of M-solid varieties, where M is a monoid of hypersubstitutions. M-solid varieties of semigroups are considered in a range of papers (see for example [1], [2], and [7]). Although groups can be considered as semigroups not every variety of groups correponds to a variety of semigroups. Considering groups as algebras of type (2, 1, 0) we can use the method of M-solid varieties for the description of the lattice of all varieties of groups.

In the next section we introduce the concept of a M-solid variety and collect some basic properties. In the third section we determine the set \mathcal{H}_{nt} of all monoids M of hypersubstitutions of type (2, 1, 0) such that there is a nontrivial M-solid variety of groups. It turns out that \mathcal{H}_{nt} has infinitely many maximal and one minimal element, and \mathcal{H}_{nt} consists of the submonoids of its maximal elements. The last section is devoted to the main result: For all maximal elements H_p of \mathcal{H}_{nt} we characterize the complete lattice of all H_p -solid varieties

¹University of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany, e-mail: koppitz@rz.uni-potsdam.de

of groups. An open problem is the characterization of the lattice of all M-solid varieties of groups for arbitrary monoids M. In the commutative case this problem is already solved (see [4]). The present paper will give the answer for another class of varieties of groups, namely for varieties of groups satisfying the identity $x^2y \approx yx^2$.

2. *M*-solid varieties of groups

Let W(X) be the set of all terms of type (2, 1, 0) over some fixed alphabet $X := \{x_1, x_2, x_3, ...\}$ where $\{f, g, e\}$ denotes the set of operation symbols (f is binary, g is unary and e is 0-ary). Instead of $x_1, x_2, x_3, ...$ we write also x, y, z, ... Further, $W(X_2)$ $(W(X_1), W(\emptyset))$ denotes the set of all terms of type (2, 1, 0) over $X_2 := \{x_1, x_2\}$ $(X_1 := \{x_1\}, \emptyset)$.

We recall that the identities $g(f(y, x)) \approx f(g(x), g(y)), g(g(x)) \approx x$, and $g(e) \approx e$ hold in every variety of groups and usually one writes x^{-1} instead of g(x) ([5]). This allows us to write a term $t \in W(X)$ as a semigroup word over the alphabet $X^* := X \cup \{w^{-1} \mid w \in X\} \cup \{e\}$. For example, for t = f(f(g(x), x), g(f(x, e))) one can write $t = x^{-1}xex^{-1}$. (But if necessary we will write terms by using the operation symbols f and g.)

For a variable $w \in X^*$ and a term $t \in W(X)$ we put: $w^0 := e, w^1 := w$, and $w^{m+1} := w^m w$ for $m \ge 1$; $w^{-m} := (w^{-1})^m$ for any $m \ge 2$;

 $c_w(t)$ - the number of occurrences of w in the term t regarded as a semigroup word. For example, for t = f(f(g(x), x), g(f(x, e))) we have $c_x(t) = 1$ and $c_{x^{-1}}(t) = 2$ since the semigroup word $x^{-1}xex^{-1}$ corresponds to this term.

A mapping $\sigma : \{f, g, e\} \longrightarrow W(X_2)$ with $\sigma(g) \in W(X_1)$ and $\sigma(e) \in W(\emptyset)$ is called a hypersubstitution of type (2, 1, 0) (for short hypersubstitution). Any hypersubstitution σ can be uniquely extended to a map $\hat{\sigma} : W(X) \longrightarrow W(X)$, this is defined inductively by

(i) $\hat{\sigma}[w] := w$ for any $w \in X \cup \{e\}$,

(ii) $\widehat{\sigma}[f(t_1, t_2)] := \sigma(f)(\widehat{\sigma}[t_1], \widehat{\sigma}[t_2])$, and $\widehat{\sigma}[g(t)] := \sigma(g)(\widehat{\sigma}[t])$.

Here $\sigma(f)$ and $\sigma(g)$ on the right-hand side of (ii) have to be interpreted as operations induced by the term $\sigma(f)$ and $\sigma(g)$, respectively, on the term algebra induced on W(X).

We denote by Hyp the set of all hypersubstitutions. If we define a product \circ_h of hypersubstitutions by $\sigma_1 \circ_h \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$, where \circ is the usual composition of functions, then $Hyp = (Hyp; \circ_h, \sigma_{id})$ is a monoid. Note that σ_{id} is the identity hypersubstitution, defined by $\sigma_{id}(f) = x_1 x_2$, $\sigma_{id}(g) = x_1^{-1}$, and $\sigma_{id}(e) = e$.

Let M be a submonoid of Hyp. Further let V be a variety of type (2, 1, 0). Then an identity $s \approx t$ of V is called an M-hyperidentity of V if for every $\sigma \in M$ the equation $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ is an identity in V. If every identity in V is an M-hyperidentity then V is called M-solid. In the special case that M is all of Hyp, we speak of a hyperidentity and a solid variety. In order to show that any identity is an *M*-hyperidentity in *V* we have not to check all $\sigma \in M$, we need only one representative of each equivalence class with respect to the following equivalence relation on Hyp, established by J. Płonka ([6]):

 $\sigma_1 \sim_V \sigma_2$ iff $\sigma_1(\mu) \approx \sigma_2(\mu)$ is an identity in V for all operation symbols $\mu \in \{f, g, e\}.$

If $\sigma_1 \sim_V \sigma_2$ we say that σ_1 and σ_2 are V-equivalent. In [6] was shown that if σ_1 and σ_2 are V-equivalent and $\hat{\sigma}_1[s] \approx \hat{\sigma}_1[t]$ holds in V then also $\hat{\sigma}_2[s] \approx \hat{\sigma}_2[t]$ holds in V.

By definition, to tell if a variety is M-solid, one has to test that application of any hypersubstitution σ to any identity of V results in an identity of V. Denecke and Reichel have developed a reduction in [3]. It suffices to show that every identity of the generating system of V is an M-hyperidentity.

We denote by IdV the set of all identities in V and by $\mathcal{L}(V)$ we mean the subvariety lattice of V. The set P(V) of all hypersubstitutions σ with $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in IdV$ for all $s \approx t \in IdV$ forms a submonoid of Hyp [8]. An element of P(V) is called proper hypersubstitution ([6]). The variety $Gr := Mod\{f(f(x, y), z) \approx f(x, f(y, z)), f(g(x), x) \approx f(x, g(x)) \approx e, f(x, e) \approx f(e, x) \approx x\}$ is the variety of all groups (considered as algebras of type (2, 1, 0)). For a set Σ of equations let $Gr(\Sigma)$ be the variety of groups satisfying Σ . By S_M^{Gr} we denote the class of all M-solid varieties of groups. S_M^{Gr} forms a complete sublattice of $\mathcal{L}(Gr)$. Moreover, if $M_1 \subseteq M_2$ then $S_{M_2}^{Gr} \subseteq S_{M_1}^{Gr}$ (see [3]).

3. Characterization of \mathcal{H}_{nt}

For each monoid M of hypersubstitutions the trivial variety $TR := Mod\{x \approx y\}$ belongs to S_M^{Gr} . This is clear, since the application of any $\sigma \in Hyp$ to $x \approx y$ provides again $x \approx y$, i.e. gives an identity of TR. But there are monoids M such that S_M^{Gr} consists only of TR, for example in the case M = Hyp. To make this clear we consider a hypersubstitution $\sigma \in Hyp$ with $\sigma(f)$ and $\sigma(e) = e$. If we apply this σ to the group identity $f(e, x) \approx x$ we get $e \approx x$ which holds only in the trivial variety. This shows that TR is the only solid variety of groups. Moreover, this example shows that $S_M^{Gr} = \{TR\}$ for all monoids M containing the previously defined σ . It raises the question: For which monoids M there are nontrivial M-solid varieties of groups. In this section we determine the set \mathcal{H}_{nt} of all such submonoids M of Hyp for which S_M^{Gr} contains not only TR:

$$\mathcal{H}_{nt} := \{ M \mid M \subseteq Hyp, \ S_M^{Gr} \neq \{TR\} \}.$$

For $a \ge 1$ let V_a^c be the variety of all commutative groups of order a: $V_a^c := Gr(\{f(x, y) \approx f(y, x), x^a \approx e\}).$

Note that $V_1^c = TR$. Clearly, $V_i^c \neq V_j^c$ for $i \neq j$.

Definition 1. Let $a \ge 2$ be a natural number. Let H_a be the set of all hyper-

substitutions σ satisfying the following properties:

a) $c_x(\sigma(f)) - c_{x-1}(\sigma(f)) \equiv 1(a);$ b) $c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) \equiv 1(a);$ c) $c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) \equiv -1(a).$

Proposition 2. For all natural numbers $a \ge 2$ we have $H_a = P(V_a^c)$.

Proof. Let $\sigma \in P(V_a^c)$. We will show that σ satisfies the properties a), b), and c).

Assume that a) does not hold. Then $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) \equiv m(a)$ for some natural number m with $1 < m \leq a$. We apply σ to $f(x, e) \approx x \in IdV_a^c$ and get $x^{c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))} \approx x \in IdV_a^c$ since σ is a proper hypersubstitution for V_a^c . But $x^{c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))} \approx x$, $x^a \approx e$, and $c_x(\sigma(f))-c_{x^{-1}}(\sigma(f)) \equiv m(a)$ imply $x^m \approx x$, i.e. $x^{m-1} \approx e$ with $1 \leq m-1 < a$ is an identity in V_a^c , a contradiction. Dually we get that b) is satisfied.

Assume that c) does not hold. Then $c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) \equiv m(a)$ for some natural number m with $0 \leq m < a - 1$. Then $\sigma(g)(x) \approx x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(g))} \approx x^m \in IdV_a^c$ because of $x^a \approx e \in IdV_a^c$. By a) and b) we have $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) \equiv 1(a)$ and $c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) \equiv 1(a)$, respectively. Thus $x^{m(c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f))) + c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f))} \approx x^{m+1}$ because of $x^a \approx e \in IdV_a^c$.

Further, there holds $\widehat{\sigma}[f(g(x), x)] = \sigma(f)(\widehat{\sigma}[g(x)], \widehat{\sigma}[x]) = \sigma(f)$ $(\sigma(g)(x), x) \approx \sigma(f)(x^m, x) \approx x^{m(c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f))) + c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f))} \approx x^{m+1}$. Since σ is a proper hypersubstitution for V_a^c from $f(g(x), x) \approx e \in IdV_a^c$ follows $\widehat{\sigma}[f(g(x), x)] \approx \widehat{\sigma}[e] \in IdV_a^c$, i.e. $x^{m+1} \approx e$ with $1 \leq m+1 < a$ is an identity in V_a^c , a contradiction.

Conversely, let $\sigma \in H_a$. We will show that σ is a proper hypersubstitution for H_a . For this we show that σ is V_a^c -equivalent to the identity hypersubstitution σ_{id} . There are natural numbers k, l, m, n such that $c_x(\sigma(f)) = k, c_{x^{-1}}(\sigma(f)) = l, c_y(\sigma(f)) = m$, and $c_{y^{-1}}(\sigma(f)) = n$. Then $\sigma(f) \approx x^{k-l}y^{m-n}$ because of the commutative law. Because of a) and b) we have $k - l \equiv 1(a)$ and $m - n \equiv 1(a)$, respectively. Thus $\sigma(f) \approx xy$ (because of $x^a \approx e$).

Further, there are natural numbers i, j such that $c_x(\sigma(g)) = i, c_{x^{-1}}(\sigma(g)) = j$. Then $\sigma(g) \approx x^{i-j}$ because of the commutative law. Because of c) we have $i - j \equiv -1(a)$. Thus $\sigma(g) \approx x^{-1}$ (because of $x^a \approx e$). Obviously, we have $\hat{\sigma}[e] \approx e$.

Notation 3 For a monoid M of hypersubstitutions of type (2,1,0) we define gcd(M) as be the greatest common divisor of the following integers:

 $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) - 1, c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) - 1, and c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) + 1$ for all $\sigma \in M$.

Theorem 4. Let M be a monoid of hypersubstitutions of type (2,1,0). Then $S_M^{Gr} \neq \{TR\}$ iff there is a prime number p with $M \subseteq H_p$.

Proof. Let $S_M^{Gr} \neq \{TR\}$. Then there is an *M*-solid variety *V* of groups with $V \neq TR$.

Assume that $M \not\subseteq H_p$ for all prime numbers p. Then for each prime number p there is a $\sigma \in M$ with $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) \not\equiv 1(p)$ or $c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) \not\equiv 1(p)$ or $c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) \not\equiv -1(p)$. This means gcd(M) = 1. On the other hand we have $\{\widehat{\sigma}[f(x,e)] \approx \widehat{\sigma}[x] \mid \sigma \in M\} \cup \{\widehat{\sigma}[f(e,x)] \approx \widehat{\sigma}[x] \mid \sigma \in M\} \cup \{\widehat{\sigma}[f(g(x),x)] \approx \widehat{\sigma}[e] \mid \sigma \in M\} \cup [dV.$ This provides $\{x^{c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))} \approx x \mid \sigma \in M\} \cup \{x^{c_y(\sigma(f))-c_{y^{-1}}(\sigma(f))} \approx x \mid \sigma \in M\} \cup \{x^{[c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))] = c_x(\sigma(g)) - c_{x^{-1}}(\sigma(f)) = c_{x^{-1}}(\sigma(f)) \approx x \text{ and } x^{c_y(\sigma(f))-c_{y^{-1}}(\sigma(f))} \approx x \text{ from } x^{[c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))] = c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = x \text{ from } x^{[c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))] = c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = c_{x^{-1}}(\sigma(g)) = x \text{ from } x^{[c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))] = x} \mid \sigma \in M\} \cup \{x^{c_x(\sigma(f))-c_{x^{-1}}(\sigma(f))] = x \mid \sigma \in M\} \cup \{x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(g)) + 1} \approx x \text{ and thus } x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(f))} \approx x \mid \sigma \in M\} \cup \{x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(g)) + 2} \approx x \mid \sigma \in M\} \cup \{x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(g)) + 2} \approx x \mid \sigma \in M\} \cup \{x^{c_x(\sigma(g))-c_{x^{-1}}(\sigma(g)) + 2} \approx x \mid \sigma \in M\} \subseteq IdV.$ From these identities we can derive $x^{gcd(M)+1} \approx x \in IdV.$ Since gcd(M) = 1, we have $x^2 \approx x \in IdV$, i.e. $x \approx e \in IdV$ and $x \approx y \in IdV.$ Thus V = TR, a contradiction.

Conversely, let $M \subseteq H_p$ for some prime number p. Then $S_{H_p}^{Gr} \subseteq S_M^{Gr}$. Since $P(V_p^c) = H_p$ (Proposition 2) we have $V_p^c \in S_{H_p}^{Gr} \subseteq S_M^{Gr}$ and thus $S_M^{Gr} \neq \{TR\}$. \Box

Remark 5. The previous theorem shows that the monoids H_p are maximal elements in \mathcal{H}_{nt} , where for two different prime numbers p_1 and p_2 the monoids H_{p_1} and H_{p_2} are different.

Moreover, it is easy to check that

$$M_1 := \{\sigma_{id}\}$$

forms a monoid. M_1 is the least element in \mathcal{H}_{nt} .

The following set D of hypersubstitutions of type (2, 1, 0) is the set of all proper hypersubstitutions of the variety of all commutative groups ([4]).

Definition 6. Let D be the set of all hypersubstitutions σ satisfying the following properties:

a)	$c_x(\sigma(f))$	—	$c_{x^{-1}}(\sigma(f))$	=		1;
b)	$c_y(\sigma(f))$	—	$c_{y^{-1}}(\sigma(f))$	=		1;
c)	$c_x(\sigma(g))$	_	$c_{x^{-1}}(\sigma(g))$	=	—	1.

Obviously, we have $D \subseteq H_n$ for all natural numbers $n \geq 2$. We will determine such monoids M with $M \subseteq H_n$ for all natural numbers $n \geq 2$.

Definition 7. For any submonoid $M \subseteq Hyp$ we denote by $\mathcal{L}(M)$ the submonoid lattice of M.

J. Koppitz

Proposition 8. There holds $\bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}(H_i) = \mathcal{L}(D).$

Proof. " \supseteq " : Clearly, for $2 \leq i \in \mathbb{N}$ we have $D \subseteq H_i$, i.e. $D \in \mathcal{L}(H_i)$. Thus $\mathcal{L}(D) \subseteq \mathcal{L}(H_i)$ for $2 \leq i \in \mathbb{N}$, i.e. $\mathcal{L}(D) \subseteq \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}(H_i)$.

" \subseteq ": Let $M \in \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}(H_i)$ and let $\sigma \in M$. Then there is a natural number $n \geq 1$ with $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) = n$. Assume that $n \neq 1$. Then $n \not\equiv 1(n)$, i.e. $\sigma \notin H_n$ and $M \notin \mathcal{L}(H_n)$, contradicts $M \in \bigcap_{2 \leq i \in \mathbb{N}} \mathcal{L}(H_i)$. Thus $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) = 1$. Similarly, one can show that $c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) = 1$ and $c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) = -1$. Consequently, $\sigma \in D$ and thus $M \subseteq D$, i.e. $M \in \mathcal{L}(D)$.

4. All H_p -solid varieties of groups

The monoids H_p , for prime numbers p, are the maximal elements in \mathcal{H}_{nt} . In particular, for any $M \in \mathcal{H}_{nt}$ there is a prime number p with $M \subseteq H_p$, i.e. $S_{H_p}^{Gr} \subseteq S_M^{Gr}$. If we have a characterization of the lattice $S_{H_p}^{Gr}$ for all prime numbers p then we have some knowledge about a complete sublattice of S_M^{Gr} for any monoid $M \in \mathcal{H}_{nt}$. The main theorem of the present paper, the characterization of $S_{H_p}^{Gr}$ for all prime numbers p, is the topic of this section. We start with some properties of H_p -solid varieties of groups.

Lemma 9. Let $n \ge 2$ be a natural number. Then in each H_n -solid variety V of groups there holds $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$.

Proof. We consider the following hypersubstitution σ :

$$\begin{split} \sigma(f) &:= x^2 y x^{-1} \\ \sigma(g) &:= x^{-1} \\ \sigma(e) &:= e. \end{split}$$

We have $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) = 2 - 1 = 1 \equiv 1(n), c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) = 1 - 0 = 1 \equiv 1(n), \text{ and } c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) = 0 - 1 = -1 \equiv -1(n), \text{ i.e. } \sigma \in H_n.$ Since V is H_n -solid, the application of σ to the associative law provides the identities $x^2yx^{-1}x^2yx^{-1}z(x^2yx^{-1})^{-1} \approx x^2y^2zy^{-1}x^{-1}, \ x^2yxyx^{-1}zxy^{-1}x^{-2} \approx x^2y^2zy^{-1}x^{-1}, \ xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1} \text{ in } V.$

For a group $\mathcal{A} = (A; \cdot, ^{-1}, e)$, by $\mathcal{C}(\mathcal{A}) := \{a \in A \mid xa = ax \text{ for all } x \in A\}$ we denote the centre of \mathcal{A} . In particular, $\mathcal{C}(\mathcal{A})$ forms a subgroup of \mathcal{A} (see [5]). For $a, b \in \mathcal{A}$ let $[a, b] := aba^{-1}b^{-1}$ be the commutator of a and b. The commutator group of \mathcal{A} , i.e. the group generated by the set $\{[a, b] \mid a, b \in \mathcal{A}\}$, is denoted by $[\mathcal{A}, \mathcal{A}]$.

Proposition 10. Let $n \ge 2$ be a natural number, V be an H_n -solid variety of groups and $A \in V$. Then

$$[\mathcal{A},\mathcal{A}] \subseteq \mathcal{C}(\mathcal{A}),$$

i.e. the commutator group is a subgroup of the centre.

Proof. We will show that for any $a, b \in A$ the commutator [a, b] belongs to the centre of \mathcal{A} , i.e. $\{[a, b] \mid a, b \in \mathcal{A}\} \subseteq \mathcal{C}(\mathcal{A})$. Let $a, b \in A$. Then for any $x \in A$ holds $ba^{-1}b^{-1}xbab^{-1} \approx a^{-1}xa$ by Lemma 9. This implies $\underline{a}ba^{-1}b^{-1}xbab^{-1}\underline{b}a^{-1}b^{-1} \approx \underline{a}a^{-1}xa\underline{b}a^{-1}b^{-1}$, i.e. $aba^{-1}b^{-1}x \approx xaba^{-1}b^{-1}$ and thus the commutator $[a, b] = aba^{-1}b^{-1}$ belongs to the centre of \mathcal{A} . Since $\{[a, b] \mid a, b \in \mathcal{A}\} \subseteq \mathcal{C}(\mathcal{A})$ and $\mathcal{C}(\mathcal{A})$ is a subgroup of \mathcal{A} the group generated by the set $\{[a, b] \mid a, b \in \mathcal{A}\}$, i.e. the commutator group $[\mathcal{A}, \mathcal{A}]$, is a subgroup of $\mathcal{C}(\mathcal{A})$. □

Lemma 11. Let $n \ge 2$ be a natural number. Then in each H_n -solid variety V of groups there holds $x^n \approx e$.

Proof. We consider the following hypersubstitution σ :

$$\begin{aligned} \sigma(f) &:= x^{n+1}y \\ \sigma(g) &:= x^{-1} \\ \sigma(e) &:= e. \end{aligned}$$

We have $c_x(\sigma(f)) - c_{x^{-1}}(\sigma(f)) = n + 1 - 0 = n + 1 \equiv 1(n), c_y(\sigma(f)) - c_{y^{-1}}(\sigma(f)) = 1 - 0 = 1 \equiv 1(n), \text{ and } c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) = 0 - 1 = -1 \equiv -1(n), \text{ i.e. } \sigma \in H_n.$ Since V is H_n -solid, the application of σ to the group identity $f(x, e) \approx x$ provides an identity in V, namely $x^{n+1} \approx x$, i.e. $x^n \approx e$.

By Proposition 10 and Lemma 11, respectively, it becomes clear that an H_n -solid variety of groups consists of solvable groups.

Definition 12. We define a hypersubstitution σ_d by

$$\sigma_d(f) := yx$$

$$\sigma_d(g) := x^{-1}$$

$$\sigma_d(e) := e.$$

A variety V of groups is called self-dual if the application of σ_d to any identity of V gives again an identity in V:

$$\{\widehat{\sigma}_d u] \approx \widehat{\sigma}_d[v] \mid u \approx v \in IdV\} \subseteq IdV.$$

Lemma 13. Let $n \ge 2$ be a natural number. Any H_n -solid variety V of groups is self-dual.

Proof. We have $c_x(\sigma_d(f)) - c_{x^{-1}}(\sigma_d(f)) = c_y(\sigma_d(f)) - c_{y^{-1}}(\sigma_d(f)) = 1 - 0 = 1 \equiv 1(n)$, and $c_x(\sigma_d(g)) - c_{x^{-1}}(\sigma_d(g)) = 0 - 1 = -1 \equiv -1(n)$, i.e. $\sigma_d \in H_n$. Since V is H_n -solid, the application of σ_d to an identity of V gives again an identity of V.

Lemma 14. Let V be a variety of groups satisfying $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$. Then for any integer a there holds

$$xyx^{-1}y^a \approx y^a xyx^{-1} \in IdV.$$

Proof. All is clear for a = 0. Let $a \neq 0$ be an integer. Then we have $xyx^{-1}y^a \approx y^a xy^{-a}yy^a x^{-1}y^{-a}y^a \approx y^a xyx^{-1}$ (using $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$). \Box

Lemma 15. Let V be a variety of groups satisfying $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$. Then for integers $r, s, t, u \neq 0$ the following identities (i)-(iv) are satisfied in V:

- (i) $x^r y^s x^{-r} y^t x^u \approx y^t x^r y^s x^{u-r}$
- $(ii) \qquad x^r y^s x^{-t} y^u x^t \approx x^{r-t} y^u x^t y^s$
- (iii) $x^r y^s x^r y^t x^u \approx y^{-t} x^r y^{s+2t} x^{r+u}$
- $(iv) \qquad x^r y^s x^t y^u x^t \approx x^{r+t} y^{u+2s} x^t y^{-s}.$

Proof. The identities (i) and (ii) are immediate consequences of Lemma 14. We show (iii). The identity (iv) can be checked dually. Using Lemma 14 we have $x^r y^s x^r y^t x^u \approx x^r y^s x^r y^t x^{-r} x^{u+r}$

 $\begin{array}{l} \approx x^{r}x^{r}y^{t}x^{-r}y^{s}x^{u+r} \\ \approx x^{2r}y^{t}x^{-r}y^{-t}y^{s+t}x^{u+r} \\ \approx y^{t}x^{-r}y^{-t}x^{2r}y^{s+t}x^{u+r} \\ \approx y^{t}x^{-r}y^{-t}x^{2r}y^{s+t}x^{-2r}x^{u+3r} \\ \approx y^{t}x^{-r}x^{2r}y^{s+t}x^{-2r}y^{-t}x^{u+3r} \\ \approx y^{t}x^{r}y^{s+t}x^{-r}x^{-r}y^{-t}x^{u+3r} \\ \approx x^{r}y^{s+t}x^{-r}y^{t}x^{-r}y^{-t}x^{u+3r} \\ \approx x^{r}y^{s+t}y^{t}x^{-r}y^{-t}x^{-r}x^{u+3r} \\ \approx x^{r}y^{s+2t}y^{t}x^{-r}y^{-t}x^{u+2r} \\ \approx y^{-t}x^{r}y^{s+2t}y^{t}x^{-r}x^{u+2r} \\ \approx y^{-t}x^{r}y^{s+2t}y^{t}x^{u+r}. \end{array}$

Theorem 16. Let $r \geq 2$ be a natural number and let V be a variety of groups. V is H_r -solid iff V is self-dual and satisfies both identities $x^r \approx e$ and $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$.

Proof. Suppose that V is H_r -solid. Then V is self-dual by Lemma 13, satisfies $x^r \approx e$ (i.e. it is a variety of r-group) by Lemma 11 and satisfies $xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}$ by Lemma 9.

Suppose now that V is a self-dual variety of r-groups satisfying

$$xyx^{-1}zxy^{-1}x^{-1} \approx yzy^{-1}(i).$$

Let $\sigma \in H_r$. We will show that $\sigma(f) \approx x^a y^b x^c y^d$ or $\sigma(f) \approx y^d x^c y^b x^a$ for some natural numbers a, b, c, d with $a + c \equiv b + d \equiv 1(r)$. For this we check that for natural numbers a, n_2, n_3, n_4, n_5 we have

$$x^{an_3}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx y^{(-a+1)n_2 - an_4}x^{n_3}y^{an_2 + (a+1)n_4}x^{n_5 + an_3} \in IdV \text{ (ii)}.$$

We show by induction on k that $x^{kn_3}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx y^{(-k+1)n_2-kn_4}x^{n_3}y^{kn_2+(k+1)n_4}x^{n_5+kn_3} \in IdV.$ For k = 1 we have $x^{1n_3}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx y^{(-1+1)n_2-1n_4}x^{n_3}y^{1n_2+(1+1)n_4}x^{n_5+1n_3} \in IdV$ by Lemma 15(iii). Suppose now that the statement is true for k = m, i.e. $x^{mn_3}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx y^{(-m+1)n_2-mn_4}x^{n_3}y^{mn_2+(m+1)n_4}x^{n_5+mn_3} \in IdV$ (hypothesis). Then for k = m + 1 holds $x^{(m+1)n_3}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx x^{n_3}x^{(-m+1)n_2-mn_4}x^{n_3}y^{mn_2+(m+1)n_4}x^{n_5+mn_3}$ (by hypothesis) $\approx y^{-mn_2-(m+1)n_4}x^{n_3}y^{(-m+1)n_2-mn_4+2mn_2+2(m+1)n_4}x^{n_5+mn_3+n_3}$ (by Lemma 15(iii)) $\approx y^{(-(m+1)+1)n_2-(m+1)n_4}x^{n_3}y^{(m+1)n_2+((m+1)+1)n_4}x^{n_5+(m+1)n_3}.$ This shows that (ii) holds.

We show now that the following statement (iii) holds:

For any natural numbers n_1, n_2, n_3, n_4, n_5 there are natural numbers a, b, c, dsuch that $x^{n_1}y^{n_2}x^{n_3}y^{n_4}x^{n_5} \approx y^a x^b y^c x^d$, $n_1 + n_3 + n_5 \equiv b + d(r)$, and $n_2 + n_4 \equiv a + c(r)$.

Let a_1, b_1, c_1, d_1, e_1 be natural numbers. Then there are natural numbers k_1 and r_1 with $r_1 < c_1$ such that $a_1 = k_1c_1 + r_1$. Then we have $x^{a_1}y^{b_1}x^{c_1}y^{d_1}x^{e_1} \approx x^{r_1}x^{k_1c_1}y^{b_1}x^{c_1}y^{d_1}x^{e_1}$ $\approx x^{r_1}y^{(-k_1+1)b_1-k_1d_1}x^{c_1}y^{k_1b_1+(k_1+1)d_1}x^{e_1+k_1c_1}$ (by (ii)) $\approx x^{r_1}y^{(-k_1+1)b_1-k_1d_1}x^{c_1}y^{(k_1-1)b_1+k_1d_1}y^{b_1+d_1}x^{e_1+k_1c_1}$ (by Lemma 14) $\approx y^{f_2}x^{a_2}y^{b_2}x^{c_2}y^{d_2}x^{e_2}$ with $a_2 := c_1, b_2 := (k_1 - 1)b_1 + k_1d_1, c_2 := r_1, d_2 := b_1 + d_1, e_2 := e_1 + k_1c_1$ and $f_2 := (-k_1 + 1)b_1 - k_1d_1$ where $b_2 + d_2 + f_2 = b_1 + d_1$ and $a_2 + c_2 + e_2 = a_1 + c_1 + e_1$. In $n \ge 1$ such steps we can derive from $x^{a_1}y^{b_1}x^{c_1}y^{d_1}x^{e_1}$ a term $y^{f_2}\dots y^{f_{n+1}}x^{a_{n+1}}y^{b_{n+1}}x^{c_{n+1}}y^{d_{n+1}}x^{e_{n+1}}$ with integers $a_{n+1}, b_{n+1}, c_{n+1}, d_{n+1}, e_{n+1}, f_2, \dots, f_{n+1}$ such that $c_{n+1} = 0$ and $b_{n+1} + d_{n+1} + \sum_{i=1}^n f_{i+1} = b_1 + d_1$ and $a_{n+1} + c_{n+1} + e_{n+1} = a_1 + c_1 + e_1$. Because of $x^r \approx e$ there are natural numbers a, b, c, d such that $\sum_{i=1}^n f_{i+1} \equiv a(r), a_{n+1} \equiv b(r), b_{n+1} + d_{n+1} \equiv c(r)$ and $e_{n+1} \equiv d(r)$, i.e., $y^{f_2}\dots y^{f_{n+1}}x^{a_{n+1}}y^{b_{n+1}}x^{c_{n+1}}y^{d_{n+1}}x^{e_{n+1}}$ statement (iii).

On the other hand there are natural numbers $n \ge 1$ and $a_1, ..., a_{2n}$ such that $\sigma(f) \approx x^{a_1}y^{a_2}...x^{a_{2n-1}}y^{a_{2n}} \in IdV$ with $\sum_{i=0}^{n-1} a_{2i+1} \equiv \sum_{i=1}^{n} a_{2i} \equiv 1(r)$. Using (iii) we get $\sigma(f) \approx x^a y^b x^c y^d \in IdV$ or $\sigma(f) \approx y^d x^c y^b x^a \in IdV$ for some natural numbers a, b, c, d with $a + c \equiv \sum_{i=0}^{n-1} a_{2i+1}$ and $\sum_{i=1}^{n} a_{2i} \equiv b + d$, i.e. $a + c \equiv b + d \equiv 1(r)$.

Now we check that the application of σ to the group identities gives again identities in V. We note that $\sigma(e) \approx e$ and $\sigma(g) \approx x^{-1}$ since $c_x(\sigma(g)) - c_{x^{-1}}(\sigma(g)) \equiv -1(r)$ and $x^r \approx e \in IdV$. Thus we have $\widehat{\sigma}[f(x,e)] \approx x^{a+c} \approx x = \widehat{\sigma}[x]$ and $\widehat{\sigma}[f(x,g(x))] \approx x^{a+c}(x^{-1})^{b+d} \approx xx^{-1} = e = \widehat{\sigma}[e]$ since $a + c \equiv b + d \equiv 1(r)$ and

 $\sigma[f(x, g(x))] \approx x^{a+c} (x^{-1})^{b+a} \approx xx^{-1} = e = \sigma[e] \text{ since } a + c \equiv b + d \equiv 1(r) \text{ and } x^r \approx e \in IdV. \text{ Dually we get } \widehat{\sigma}[f(e, x)] \approx \widehat{\sigma}[x] \in IdV \text{ and } \widehat{\sigma}[f(g(x), x)] \approx \widehat{\sigma}[e] \in IdV.$

Now we show that the application of σ to the associative law gives an identity in V. For this we check by induction on k that

$$(x^{a}y^{b}x^{c}y^{d})^{k}z(y^{-d}x^{-c}y^{-b}x^{-a})^{k} \approx x^{k}y^{k}zy^{-k}x^{-k} \in IdV \text{ (iv)}$$

For k = 1 we have $x^a y^b x^c y^d z y^{-d} x^{-c} y^{-b} x^{-a}$ $\approx x^a x^c y^b x^{-c} x^c y^d z y^{-d} x^{-c} x^c y^{-b} x^{-c} x^{-a}$ (by (i)) $\approx x^{a+c} y^{b+d} z y^{-(b+d)} x^{-(a+c)}$ $\approx xyzy^{-1}x^{-1}$ since $a + c \equiv b + d \equiv 1(r)$ and $x^r \approx e \in IdV$. Suppose now that (iv) is true for k = m, i.e. it holds $(x^a y^b x^c y^d)^m z$ $(y^{-d}x^{-c}y^{-b}x^{-a})^m \approx x^m y^m z y^{-m} x^{-m} \in IdV$ (hypothesis). Then for k = m + 1 we have $(x^a y^b x^c y^d)^{m+1} z (y^{-d} x^{-c} y^{-b} x^{-a})^{m+1}$ $\approx (x^a y^b x^c y^d) x^m y^m z y^{-m} x^{-m} (y^{-d} x^{-c} y^{-b} x^{-a})$ (by hypothesis) $\approx x^a x^c y^b x^{-c} x^c y^d x^m y^m z y^{-m} x^{-m} y^{-d} x^{-c} x^c y^{-b} x^{-c} x^{-a}$ (by (i)) $\approx x^{a+c}y^{b+d}x^my^mzy^{-m}x^{-m}y^{-(b+d)}x^{-(a+c)}$ $\approx x^{a+c} x^m y^{b+d} x^{-m} x^m y^m z y^{-m} x^{-m} x^m y^{-(b+d)} x^{-m} x^{-(a+c)}$ (by (i)) $\approx x^{a+c+m} y^{b+d+m} z y^{-(b+d+m)} x^{-(a+c+m)}$ $\approx x^{1+m}y^{1+m}zy^{-(1+m)}x^{-(1+m)} \text{ since } a+c \equiv b+d \equiv 1(r) \text{ and } x^r \approx e \in IdV.$ Now we have $\widehat{\sigma}[f(f(x,y),z)] \approx (x^a y^b x^c y^d)^a z^b (x^a y^b x^c y^d)^c z^d$ $\approx (x^a y^b x^c y^d)^a z^b (x^a y^b x^c y^d)^{-a} (x^a y^b x^c y^d) z^d$ (since $a + c \equiv 1(r)$ and $x^r \approx e \in$ IdV) $\approx (\stackrel{'a}{x^a} y^b x^c y^d)^a z^b (y^{-d} x^{-c} y^{-b} x^{-a})^a (x^a y^b x^c y^d) z^d$ $\approx x^a y^a z^b y^{-a} x^{-a} (x^a y^b x^c y^d) z^d \text{ (by (iv))}$ $\approx x^a y^a z^b y^{-a+b} x^c y^d z^d$ $\approx x^a y^a z^b y^{-a+b} x^c y^{a+c-b} z^d$ (since $a+c \equiv b+d \equiv 1(r)$ and $x^r \approx e \in IdV$) $\approx x^a y^b y^{a-b} z^b y^{-a+b} x^c y^{a-b} z^{-b} y^{b-a} y^{-b} y^a z^b y^c z^d$ $\approx x^a y^b z^b x^c z^{-b} y^{-b} y^a z^b y^c z^d$ (by (i)) $\approx x^a (y^a z^b y^c z^d)^b x^c (z^{-d} y^{-c} z^{-b} y^{-a})^b (y^a z^b y^c z^d)$ (by (iv))

 $\begin{array}{l} \approx x^a(y^az^by^cz^d)^bx^c(y^az^by^cz^d)^{-b+1} \\ \approx x^a(y^az^by^cz^d)^bx^c(y^az^by^cz^d)^d \mbox{ (since } b+d\equiv 1(r) \mbox{ and } x^r\approx e\in IdV) \\ = \widehat{\sigma}[f(x,f(y,z))]. \\ \mbox{We will show that the application of } \sigma \mbox{ to any identity in } V \mbox{ gives again an identity in } V. \mbox{ Let } s\approx t\in IdV. \mbox{ Since we have already checked that the application of } \sigma \mbox{ to the group identities gives again identities in } V \mbox{ we can consider the terms } s \mbox{ and } t \mbox{ as semigroup words over the alphabet } X^*. \mbox{ So there are natural numbers } j,m\geq 1 \mbox{ and } s_1,...,s_j,t_1,...,t_m\in X^* \mbox{ such that } s=s_1...s_j \mbox{ and } t=t_1...t_m. \\ \mbox{ We will show by induction on } j \mbox{ that } \end{array}$

$$\widehat{\sigma}[s_1...s_j] \approx s_1^a...s_j^a s_j^{b-a}...s_1^{b-a} s_1^d...s_j^d \in IdV.$$

First, we remark that from (i) it follows $x^{n_1}y^m x^{n_2}zx^{-n_2}y^{-m}x^{-n_1} \approx x^{n_1}x^{n_2}y^m x^{-n_2}x^{n_2}x^{n_2}x^{n_2}x^{-n_2}x^{n_2}x^{-n_1}$, i.e.

$$x^{n_1}y^mx^{n_2}zx^{-n_2}y^{-m}x^{-n_1}\approx x^{n_1+n_2}y^mzy^{-m}x^{-(n_2+n_2)}~(\mathbf{v})$$

for any integers n_1, n_2, m . If j = 1 then we have $\hat{\sigma}[s_1] = s_1 \approx s_1^{b+d}$ (since $b + d \equiv 1(r)$ and $x^r \approx e \in IdV$) $\approx s_1^{a}s_1^{d} = s_1^{d}$. Suppose that the statement is true for j = k, i.e. $\hat{\sigma}[s_1...s_k] \approx s_1^{a}...s_k^{a}s_k^{b-a}...s_1^{b^{1-a}}s_1^{d}...s_k^{d} \in IdV$ (hypothesis). We put $r := s_1...s_k$. Then for j = k + 1 holds $\hat{\sigma}[f(r, s_{k+1})] \approx \hat{\sigma}[r]^a s_{k+1}^b \hat{\sigma}[r]^c s_{k+1}^d$ $\approx \hat{\sigma}[r]^a s_{k+1}^b \hat{\sigma}[r]^{-a+1} s_{k+1}^d$ (since $a + c \equiv 1(r)$ and $x^r \approx e \in IdV$) $\approx \hat{\sigma}[r]^a s_{k+1}^b \hat{\sigma}[r]^{-a+1} s_1^d$. (by hypothesis) $\approx (s_1^a...s_k^a s_k^{b-a}...s_1^{b-a} s_1^d...s_k^d)^a s_{k+1}^b (s_k^{-d}...s_1^{-d} s_1^{-b+a}...s_k^{-b+a} s_k^{-a}...s_1^{-a})^a (s_1^a...s_k^a s_k^{b-a}...s_1^{b-a} s_1^d...s_k^d) s_{k+1}^d$ (by hypothesis) $\approx (s_1^a s_2^{a+b-a+d}...s_{k-1}^{a-b+a+d} s_k^a s_k^{b-a} s_1^{b-a} s_1^d...s_k^d) s_{k+1}^d (by (v))$ $\approx (s_1^a s_2^{...s_{k-1}} s_k^b s_1^c s_1^d)^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{b-a} s_1^d...s_k^d) s_{k+1}^d (by (v))$ $\approx (s_1^a s_2...s_{k-1} s_k^b s_1^c s_1^d)^a s_{k+1}^b (s_k^{-d} s_1^{-c} s_1^{-b-a} s_1^{-a-a})^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{b-a-a} s_1^a)^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{-a-a} s_1^a)^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{b-a-a} s_1^a s_1^a...s_1^a)^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{b-a-a} s_1^a s_1^a...s_1^a)^a (s_1^a...s_k^a s_k^{b-a} ...s_1^{-a-a} s_1^a s_1^$

Similarly, one can show that $\hat{\sigma}[t] \approx t_1^a ... t_m^a t_m^{b-a} ... t_1^{b-a} t_1^d ... t_m^d \in IdV$. Now we substitute in $s \approx t$ each $w \in X^*$ by w^a, w^{b-a} , and w^d , respectively. So we get

the following identities satisfied in V:

$$\begin{split} s_1^a...s_j^a &\approx t_1^a...t_m^a,\\ s_1^{b-a}...s_j^{b-a} &\approx t_1^{b-a}...t_m^{b-a},\\ s_1^d...s_j^d &\approx t_1^d...t_m^d. \end{split}$$

Moreover, since V is self-dual we have $s_j^{b-a}...s_1^{b-a} \approx t_m^{b-a}...t_1^{b-a} \in IdV$. These three identities provide $s_1^a...s_j^a s_j^{b-a}...s_1^{b-a} s_1^d...s_j^d \approx t_1^a...t_m^a t_m^{b-a}...t_1^{b-a} t_1^d...t_m^d \in IdV$, i.e. $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in IdV$.

Consequently, the application of any $\sigma \in H_r$ to any identity of V gives again an identity in V, i.e. V is H_r -solid. \Box

An open problem is the characterization of the lattice S_M^{Gr} for any given monoid M. For the commutative case we have given the answer in [4]:

Proposition 17. Let M be a monoid of hypersubstitutions and V be a variety of commutative groups. Then V is M-solid iff $V \subseteq V_{\text{scd}(M)}^c$.

In this paper we give the answer for a generalization of the commutative case.

Remark 18. Let $\underline{Q} := (\{\pm e, \pm i, \pm j, \pm k\}; \cdot, ^{-1}, e)$ be the quaternion group. The commutative law is not valid in \underline{Q} . On the other hand we have $a^2 = \pm e$ and $\pm e \cdot b = \pm b = b \cdot \pm e$ for all $a, b \in \{\pm e, \pm i, \pm j, \pm k\}$. Thus $x^2y \approx yx^2$ is an identity in \underline{Q} . This motivates us to consider varieties of groups satisfying $x^2y \approx yx^2$.

The next theorem characterizes the lattice of all *M*-solid varieties of groups satisfying $x^2y \approx yx^2$ for any given monoid $M \in \mathcal{H}_{nt}$.

Definition 19. Let $\sigma \in Hyp$ with $\sigma(f) \approx x^{a_1}y^{a_2}...x^{a_{2n-1}}y^{a_{2n}}$ where $1 \leq n \in \mathbb{N}, a_2, ..., a_{2n-1} \in \mathbb{Z} \setminus \{0\}$ and $a_1, a_{2n} \in \mathbb{Z}$.

 σ is said to be y-odd if there is an $i \in \{1, ...n\}$ such that a_{2i} is odd and $a_1, ..., a_{2i-1}$ are even.

For example, any $\sigma \in Hyp$ with $\sigma(f) = xx^{-1}yyxxy^{-1}$ is y-odd.

Theorem 20. Let p be a prime number and M be a submonoid of Hyp with $M \subseteq H_p$. A variety V of groups satisfying $x^2y \approx yx^2$ is M-solid iff $x^p \approx e \in IdV$ and V is self-dual if there exists some y-odd hypersubstitution $\sigma \in M$.

Proof. Suppose that $x^p \approx e \in IdV$ and V is self-dual if there exists some y-odd hypersubstitution $\sigma \in M$. We show that for any $\sigma \in M$ holds

 $\sigma \sim_V \sigma_d$ if σ is *y*-odd and $\sigma \sim_V \sigma_{id}$ otherwise.

Let $\sigma \in M$ with $\sigma(f) \approx x^{a_1}y^{a_2}...x^{a_{2r-1}}y^{a_{2r}}$ where $1 \leq r \in \mathbb{N}, a_2, ..., a_{2r-1} \in \mathbb{Z} \setminus \{0\}$ and $a_1, a_{2r} \in \mathbb{Z}$. Using $x^2y \approx yx^2$ it is easy to calculate that from $\sigma(f) \approx x^{a_1}y^{a_2}...x^{a_{2r-1}}y^{a_{2r}}$ it follows $\sigma(f) \approx yxy^ax^b$ or $\sigma(f) \approx y^{a+1}x^{b+1}$ if σ is y - odd and $\sigma(f) \approx xyx^ay^b$ or $\sigma(f) \approx x^{a+1}y^{b+1}$ otherwise for some integer a, b. Because of $x^p \approx e \in IdV$ we can assume that $0 \leq a, b \leq p - 1$. Because of $a+1 \equiv 1(p)$ and $b+1 \equiv 1(p)$ (since $M \subseteq H_p$) we get a = b = 0. Thus $\sigma(f) \approx yx$ if σ is y-odd and $\sigma(f) \approx xy$ otherwise. Clearly, $\sigma(g) \approx x^{rp-1}$ for some integer r. Using $x^p \approx e$ we get $\sigma(g) \approx x^{-1}$. Thus $\sigma \sim_V \sigma_d$ if σ is y-odd and $\sigma \sim_V \sigma_{id}$ otherwise. Consequently, any $\sigma \in M$ is V-equivalent to σ_{id} or σ_d .

If there is no y-odd hypersubstitution $\sigma \in M$ then all $\sigma \in M$ are V-equivalent to σ_{id} and V is M-solid (see [6]).

If there is some $\sigma \in M$ which is y-odd then V is self-dual and since each $\sigma \in M$ is V-equivalent to σ_{id} or σ_d , V is M-solid (see [6]).

Suppose that V is M-solid. Then $x^p \approx e \in IdV$ by Lemma 11. We have to consider the case that there is a y-odd hypersubstitution $\sigma \in M$. We have already shown that then $\sigma \sim_V \sigma_d$. Since V is M-solid, the application of σ to any identity in V gives again an identity in V. Thus the application of σ_d to any identity in V is also an identity in V (see [6]), i.e. V is self-dual. \Box

References

- Denecke, K., Koppitz, J., M-solid varieties of semigroups, Discussiones Mathematicae 15 (1995), 23-41.
- [2] Denecke, K., Koppitz, J., Finite monoids of hypersubstitutions of type t = (2), Semigroup Forum 56 (1998), 265-275.
- [3] Denecke, K., Reichel, M., Monoids of hypersubstitutions and *M*-solid varieties, Contributions to General Algebra 9, Verlag Hölder-Pichler-Tempsky, Wien 1995, 117-126.
- [4] Koppitz, J., M-solid varieties of groups, preprint, 2003.
- [5] Neumann, H., Varieties of groups, Springer Verlag, New York, 1967.
- [6] Płonka, J., Proper and inner hypersubstitutions of varieties, Proceedings of the International Conference Summer School on General Algebra and ordered Sets, Olomouc 1994, 106-116.
- [7] Polák, L., All solid varieties of semigroups, J. of Algebra 219 (1999), 421-436.
- [8] Szylicka, Z., Proper hypersubstitutions of outerizations of varieties, Discussiones Mathematicea 15 (1995), 69-80.