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HYPERSUBSTITUTIONS AND GROUPS

Jörg Koppitz1

Abstract. We consider groups as algebras of type (2, 1, 0). A hypersub-
stitution of type (2, 1, 0) is a mapping σ from the set of the operation
symbols {·,−1 , e} into the set of terms of type (2, 1, 0) preserving the
arity. For a monoid M of hypersubstitutions of type (2, 1, 0) a variety
V is called M -solid if for each group (G; ·,−1 , e) ∈ V the derived group
(G; σ(·), σ(−1), σ(e)) also belongs to V for all σ ∈ M . The class SGr

M of
all M -solid varieties of groups forms a complete sublattice of the lattice
L(Gr) of all varieties of groups. In this way we get a tool for a better
description of the whole lattice L(Gr) by characterization of complete
sublattices SGr

M .
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1. Introduction

It is of some interest to know what the lattice of all varieties of some type
τ looks like, but it has become clear that it is very complicated, even for such
special case as the lattice of all varieties of semigroups. In [3] a new method to
study these lattices was proposed, using complete sublattices consisting of M -
solid varieties, where M is a monoid of hypersubstitutions. M -solid varieties of
semigroups are considered in a range of papers (see for example [1], [2], and [7]).
Although groups can be considered as semigroups not every variety of groups
correponds to a variety of semigroups. Considering groups as algebras of type
(2, 1, 0) we can use the method of M -solid varieties for the description of the
lattice of all varieties of groups.
In the next section we introduce the concept of a M -solid variety and collect
some basic properties. In the third section we determine the set Hnt of all
monoids M of hypersubstitutions of type (2, 1, 0) such that there is a nontrivial
M -solid variety of groups. It turns out that Hnt has infinitely many maximal
and one minimal element, and Hnt consists of the submonoids of its maximal
elements. The last section is devoted to the main result: For all maximal
elements Hp of Hnt we characterize the complete lattice of all Hp-solid varieties
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of groups. An open problem is the characterization of the lattice of all M -
solid varieties of groups for arbitrary monoids M . In the commutative case this
problem is already solved (see [4]). The present paper will give the answer for
another class of varieties of groups, namely for varieties of groups satisfying the
identity x2y ≈ yx2.

2. M-solid varieties of groups

Let W (X) be the set of all terms of type (2, 1, 0) over some fixed alpha-
bet X := {x1, x2, x3, ...} where {f, g, e} denotes the set of operation symbols
(f is binary, g is unary and e is 0-ary). Instead of x1, x2, x3, ... we write also
x, y, z, .... Further, W (X2) (W (X1), W (∅)) denotes the set of all terms of type
(2, 1, 0) over X2 := {x1, x2} (X1 := {x1}, ∅).
We recall that the identities g(f(y, x)) ≈ f(g(x), g(y)), g(g(x)) ≈ x, and g(e) ≈
e hold in every variety of groups and usually one writes x−1 instead of g(x) ([5]).
This allows us to write a term t ∈ W (X) as a semigroup word over the alphabet
X∗ := X ∪ {w−1 | w ∈ X} ∪ {e}. For example, for t = f(f(g(x), x), g(f(x, e)))
one can write t = x−1xex−1. (But if necessary we will write terms by using the
operation symbols f and g.)
For a variable w ∈ X∗ and a term t ∈ W (X) we put:
w0 := e, w1 := w, and wm+1 := wmw for m ≥ 1;
w−m := (w−1)m for any m ≥ 2;
cw(t) - the number of occurrences of w in the term t regarded as a semigroup
word. For example, for t = f(f(g(x), x), g(f(x, e))) we have cx(t) = 1 and
cx−1(t) = 2 since the semigroup word x−1xex−1 corresponds to this term.

A mapping σ : {f, g, e} −→ W (X2) with σ(g) ∈ W (X1) and σ(e) ∈ W (∅)
is called a hypersubstitution of type (2, 1, 0) (for short hypersubstitution). Any
hypersubstitution σ can be uniquely extended to a map σ̂ : W (X) −→ W (X),
this is defined inductively by
(i) σ̂[w] := w for any w ∈ X ∪ {e},
(ii) σ̂[f(t1, t2)] := σ(f)(σ̂[t1], σ̂[t2]), and σ̂[g(t)] := σ(g)(σ̂[t]).
Here σ(f) and σ(g) on the right-hand side of (ii) have to be interpreted as op-
erations induced by the term σ(f) and σ(g), respectively, on the term algebra
induced on W (X).
We denote by Hyp the set of all hypersubstitutions. If we define a product ◦h

of hypersubstitutions by σ1 ◦h σ2 := σ̂1 ◦σ2, where ◦ is the usual composition of
functions, then Hyp = (Hyp; ◦h, σid) is a monoid. Note that σid is the identity
hypersubstitution, defined by σid(f) = x1x2, σid(g) = x−1

1 , and σid(e) = e.
Let M be a submonoid of Hyp. Further let V be a variety of type (2, 1, 0).
Then an identity s ≈ t of V is called an M -hyperidentity of V if for every
σ ∈ M the equation σ̂[s] ≈ σ̂[t] is an identity in V . If every identity in V is an
M -hyperidentity then V is called M -solid. In the special case that M is all of
Hyp, we speak of a hyperidentity and a solid variety. In order to show that any
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identity is an M -hyperidentity in V we have not to check all σ ∈ M , we need
only one representative of each equivalence class with respect to the following
equivalence relation on Hyp, established by J. PÃlonka ([6]):
σ1 ∼V σ2 iff σ1(µ) ≈ σ2(µ) is an identity in V for all operation symbols
µ ∈ {f, g, e}.
If σ1 ∼V σ2 we say that σ1 and σ2 are V -equivalent. In [6] was shown that if
σ1 and σ2 are V -equivalent and σ̂1[s] ≈ σ̂1[t] holds in V then also σ̂2[s] ≈ σ̂2[t]
holds in V .
By definition, to tell if a variety is M -solid, one has to test that application of
any hypersubstitution σ to any identity of V results in an identity of V . De-
necke and Reichel have developed a reduction in [3]. It suffices to show that
every identity of the generating system of V is an M -hyperidentity.
We denote by IdV the set of all identities in V and by L(V ) we mean the subvari-
ety lattice of V. The set P (V ) of all hypersubstitutions σ with σ̂[s] ≈ σ̂[t] ∈ IdV
for all s ≈ t ∈ IdV forms a submonoid of Hyp [8]. An element of P (V ) is
called proper hypersubstitution ([6]). The variety Gr := Mod{f(f(x, y), z) ≈
f(x, f(y, z)), f(g(x), x) ≈ f(x, g(x)) ≈ e, f(x, e) ≈ f(e, x) ≈ x} is the variety
of all groups (considered as algebras of type (2, 1, 0)). For a set Σ of equations
let Gr(Σ) be the variety of groups satisfying Σ. By SGr

M we denote the class
of all M -solid varieties of groups. SGr

M forms a complete sublattice of L(Gr).
Moreover, if M1 ⊆ M2 then SGr

M2
⊆ SGr

M1
(see [3]).

3. Characterization of Hnt

For each monoid M of hypersubstitutions the trivial variety TR := Mod{x ≈
y} belongs to SGr

M . This is clear, since the application of any σ ∈ Hyp to x ≈ y
provides again x ≈ y, i.e. gives an identity of TR. But there are monoids M
such that SGr

M consists only of TR, for example in the case M = Hyp. To make
this clear we consider a hypersubstitution σ ∈ Hyp with σ(f) and σ(e) = e. If
we apply this σ to the group identity f(e, x) ≈ x we get e ≈ x which holds only
in the trivial variety. This shows that TR is the only solid variety of groups.
Moreover, this example shows that SGr

M = {TR} for all monoids M containing
the previously defined σ. It raises the question: For which monoids M there
are nontrivial M -solid varieties of groups. In this section we determine the set
Hnt of all such submonoids M of Hyp for which SGr

M contains not only TR:

Hnt := {M | M ⊆ Hyp, SGr
M 6= {TR}}.

For a ≥ 1 let V c
a be the variety of all commutative groups of order a:

V c
a := Gr({f(x, y) ≈ f(y, x), xa ≈ e}).

Note that V c
1 = TR. Clearly, V c

i 6= V c
j for i 6= j.

Definition 1. Let a ≥ 2 be a natural number. Let Ha be the set of all hyper-
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substitutions σ satisfying the following properties:

a) cx(σ(f)) − cx−1(σ(f)) ≡ 1(a);
b) cy(σ(f)) − cy−1(σ(f)) ≡ 1(a);
c) cx(σ(g)) − cx−1(σ(g)) ≡ − 1(a).

Proposition 2. For all natural numbers a ≥ 2 we have Ha = P (V c
a ).

Proof. Let σ ∈ P (V c
a ). We will show that σ satisfies the properties a), b), and

c).
Assume that a) does not hold. Then cx(σ(f))− cx−1(σ(f)) ≡ m(a) for some
natural number m with 1 < m ≤ a. We apply σ to f(x, e) ≈ x ∈ IdV c

a and get
xcx(σ(f))− cx−1 (σ(f)) ≈ x ∈ IdV c

a since σ is a proper hypersubstitution for V c
a .

But xcx(σ(f))− cx−1 (σ(f)) ≈ x, xa ≈ e, and cx(σ(f))− cx−1(σ(f)) ≡ m(a) imply
xm ≈ x, i.e. xm−1 ≈ e with 1 ≤ m− 1 < a is an identity in V c

a , a contradiction.
Dually we get that b) is satisfied.
Assume that c) does not hold. Then cx(σ(g))− cx−1(σ(g)) ≡ m(a) for some nat-
ural number m with 0 ≤ m < a − 1. Then σ(g)(x) ≈
xcx(σ(g))−cx−1 (σ(g)) ≈ xm ∈ IdV c

a because of xa ≈ e ∈ IdV c
a . By a) and b)

we have cx(σ(f))− cx−1(σ(f)) ≡ 1(a) and cy(σ(f))− cy−1(σ(f)) ≡ 1(a), re-
spectively. Thus xm(cx(σ(f))− cx−1 (σ(f)))+cy(σ(f))− cy−1 (σ(f)) ≈ xm+1 because of
xa ≈ e ∈ IdV c

a .
Further, there holds σ̂[f(g(x), x)] = σ(f)(σ̂[g(x)], σ̂[x]) = σ(f)
(σ(g)(x), x) ≈ σ(f)(xm, x) ≈ xm(cx(σ(f))− cx−1 (σ(f)))+cy(σ(f))− cy−1 (σ(f)) ≈ xm+1.
Since σ is a proper hypersubstitution for V c

a from f(g(x), x) ≈ e ∈ IdV c
a follows

σ̂[f(g(x), x)] ≈ σ̂[e] ∈ IdV c
a , i.e. xm+1 ≈ e with 1 ≤ m + 1 < a is an identity in

V c
a , a contradiction.

Conversely, let σ ∈ Ha. We will show that σ is a proper hypersubstitution for
Ha. For this we show that σ is V c

a -equivalent to the identity hypersubstitution
σid. There are natural numbers k, l, m, n such that cx(σ(f)) = k, cx−1(σ(f)) = l,
cy(σ(f)) = m, and cy−1(σ(f)) = n. Then σ(f) ≈ xk−lym−n because of the com-
mutative law. Because of a) and b) we have k − l ≡ 1(a) and m − n ≡ 1(a),
respectively. Thus σ(f) ≈ xy (because of xa ≈ e).
Further, there are natural numbers i, j such that cx(σ(g)) = i, cx−1(σ(g))
= j. Then σ(g) ≈ xi−j because of the commutative law. Because of c) we
have i− j ≡ −1(a). Thus σ(g) ≈ x−1 (because of xa ≈ e).
Obviously, we have σ̂[e] ≈ e. 2

Notation 3 For a monoid M of hypersubstitutions of type (2, 1, 0) we define
gcd(M) as be the greatest common divisor of the following integers:
cx(σ(f))−cx−1(σ(f))−1, cy(σ(f))−cy−1(σ(f))−1, and cx(σ(g))−cx−1(σ(g))+1
for all σ ∈ M.

Theorem 4. Let M be a monoid of hypersubstitutions of type (2, 1, 0). Then
SGr

M 6= {TR} iff there is a prime number p with M ⊆ Hp.
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Proof. Let SGr
M 6= {TR}. Then there is an M -solid variety V of groups with

V 6= TR.
Assume that M * Hp for all prime numbers p. Then for each prime num-
ber p there is a σ ∈ M with cx(σ(f)) − cx−1(σ(f)) 6≡ 1(p) or cy(σ(f))−
cy−1(σ(f)) 6≡ 1(p) or cx(σ(g))− cx−1(σ(g)) 6≡ −1(p). This means gcd(M) = 1.
On the other hand we have
{σ̂[f(x, e)] ≈ σ̂[x] | σ ∈ M} ∪ {σ̂[f(e, x)] ≈ σ̂[x] | σ ∈ M}∪
{σ̂[f(g(x), x)] ≈ σ̂[e] | σ ∈ M} ⊆ IdV . This provides {xcx(σ(f))−cx−1 (σ(f))

≈ x | σ ∈ M} ∪ {xcy(σ(f))−cy−1 (σ(f)) ≈ x | σ ∈ M}∪
{x[cx(σ(f))−cx−1 (σ(f))][cx(σ(g))−cx−1 (σ(g))]+cy(σ(f))−cy−1 (σ(f)) ≈ e | σ ∈ M} ⊆
IdV . For σ ∈ M , using xcx(σ(f))−cx−1 (σ(f)) ≈ x and xcy(σ(f))−cy−1 (σ(f)) ≈ x
from x[cx(σ(f))−cx−1 (σ(f))][cx(σ(g))−cx−1 (σ(g))]+cy(σ(f))−cy−1 (σ(f)) ≈ e it follows
xcx(σ(g))−cx−1 (σ(g))+1 ≈ e and thus xcx(σ(g))−cx−1 (σ(g))+2 ≈ x. This shows
that {xcx(σ(f))−cx−1 (σ(f)) ≈ x | σ ∈ M} ∪ {xcy(σ(f))−cy−1 (σ(f)) ≈ x | σ ∈
M}∪{xcx(σ(g))−cx−1 (σ(g))+2 ≈ x | σ ∈ M} ⊆ IdV . From these identities we can
derive xgcd(M)+1 ≈ x ∈ IdV . Since gcd(M) = 1, we have x2 ≈ x ∈ IdV , i.e.
x ≈ e ∈ IdV and x ≈ y ∈ IdV . Thus V = TR, a contradiction.

Conversely, let M ⊆ Hp for some prime number p. Then SGr
Hp

⊆ SGr
M . Since

P (V c
p ) = Hp (Proposition 2) we have V c

p ∈ SGr
Hp

⊆ SGr
M and thus SGr

M 6= {TR}.
2

Remark 5. The previous theorem shows that the monoids Hp are maximal el-
ements in Hnt, where for two different prime numbers p1 and p2 the monoids
Hp1 and Hp2 are different.
Moreover, it is easy to check that

M1 := {σid}
forms a monoid. M1 is the least element in Hnt.

The following set D of hypersubstitutions of type (2, 1, 0) is the set of all
proper hypersubstitutions of the variety of all commutative groups ([4]).

Definition 6. Let D be the set of all hypersubstitutions σ satisfying the follow-
ing properties:

a) cx(σ(f)) − cx−1(σ(f)) =
b) cy(σ(f)) − cy−1(σ(f)) =
c) cx(σ(g)) − cx−1(σ(g)) = −

1;
1;
1.

Obviously, we have D ⊆ Hn for all natural numbers n ≥ 2. We will deter-
mine such monoids M with M ⊆ Hn for all natural numbers n ≥ 2.

Definition 7. For any submonoid M ⊆ Hyp we denote by L(M) the submonoid
lattice of M .
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Proposition 8. There holds
⋂

2≤i∈N
L(Hi) = L(D).

Proof. ” ⊇ ” : Clearly, for 2 ≤ i ∈ N we have D ⊆ Hi, i.e. D ∈ L(Hi). Thus
L(D) ⊆ L(Hi) for 2 ≤ i ∈ N, i.e. L(D) ⊆ ⋂

2≤i∈N
L(Hi).

” ⊆ ” : Let M ∈ ⋂
2≤i∈N

L(Hi) and let σ ∈ M . Then there is a natural number

n ≥ 1 with cx(σ(f)) − cx−1(σ(f)) = n. Assume that n 6= 1. Then n 6≡ 1(n),
i.e. σ /∈ Hn and M /∈ L(Hn), contradicts M ∈ ⋂

2≤i∈N
L(Hi). Thus cx(σ(f)) −

cx−1(σ(f)) = 1. Similarly, one can show that cy(σ(f)) − cy−1(σ(f)) = 1 and
cx(σ(g))− cx−1(σ(g)) = −1.
Consequently, σ ∈ D and thus M ⊆ D, i.e. M ∈ L(D). 2

4. All Hp-solid varieties of groups

The monoids Hp, for prime numbers p, are the maximal elements in Hnt. In
particular, for any M ∈ Hnt there is a prime number p with M ⊆ Hp, i.e. SGr

Hp
⊆

SGr
M . If we have a characterization of the lattice SGr

Hp
for all prime numbers

p then we have some knowledge about a complete sublattice of SGr
M for any

monoid M ∈ Hnt. The main theorem of the present paper, the characterization
of SGr

Hp
for all prime numbers p, is the topic of this section. We start with some

properties of Hp-solid varieties of groups.

Lemma 9. Let n ≥ 2 be a natural number. Then in each Hn-solid variety V
of groups there holds xyx−1zxy−1x−1 ≈ yzy−1.

Proof. We consider the following hypersubstitution σ:

σ(f) := x2yx−1

σ(g) := x−1

σ(e) := e.

We have cx(σ(f)) − cx−1(σ(f)) = 2 − 1 = 1 ≡ 1(n), cy(σ(f)) − cy−1(σ(f)) =
1−0 = 1 ≡ 1(n), and cx(σ(g))− cx−1(σ(g)) = 0−1 = −1 ≡ −1(n), i.e. σ ∈ Hn.
Since V is Hn-solid, the application of σ to the associative law provides the
identities x2yx−1x2yx−1z(x2yx−1)−1 ≈ x2y2zy−1x−1, x2yxyx−1zxy−1x−2 ≈
x2y2zy−1x−1, xyx−1zxy−1x−1 ≈ yzy−1 in V . 2

For a group A = (A; ·,−1 , e), by C(A) := {a ∈ A | xa = ax for all x ∈ A} we
denote the centre of A. In particular, C(A) forms a subgroup of A (see [5]). For
a, b ∈ A let [a, b] := aba−1b−1 be the commutator of a and b. The commutator
group of A, i.e. the group generated by the set {[a, b] | a, b ∈ A}, is denoted by
[A,A].
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Proposition 10. Let n ≥ 2 be a natural number, V be an Hn-solid variety of
groups and A ∈ V . Then

[A,A] ⊆ C(A),

i.e. the commutator group is a subgroup of the centre.

Proof. We will show that for any a, b ∈ A the commutator [a, b] belongs to the
centre of A, i.e. {[a, b] | a, b ∈ A} ⊆ C(A).
Let a, b ∈ A. Then for any x ∈ A holds ba−1b−1xbab−1 ≈ a−1xa by Lemma
9. This implies aba−1b−1xbab−1ba−1b−1 ≈ aa−1xaba−1b−1, i.e. aba−1b−1x ≈
xaba−1b−1 and thus the commutator [a, b] = aba−1b−1 belongs to the centre
of A. Since {[a, b] | a, b ∈ A} ⊆ C(A) and C(A) is a subgroup of A the group
generated by the set {[a, b] | a, b ∈ A}, i.e. the commutator group [A,A], is a
subgroup of C(A). 2

Lemma 11. Let n ≥ 2 be a natural number. Then in each Hn-solid variety V
of groups there holds xn ≈ e.

Proof. We consider the following hypersubstitution σ:

σ(f) := xn+1y
σ(g) := x−1

σ(e) := e.

We have cx(σ(f))−cx−1(σ(f)) = n+1−0 = n+1 ≡ 1(n), cy(σ(f))−cy−1(σ(f)) =
1−0 = 1 ≡ 1(n), and cx(σ(g))− cx−1(σ(g)) = 0−1 = −1 ≡ −1(n), i.e. σ ∈ Hn.
Since V is Hn-solid, the application of σ to the group identity f(x, e) ≈ x
provides an identity in V , namely xn+1 ≈ x, i.e. xn ≈ e. 2

By Proposition 10 and Lemma 11, respectively, it becomes clear that an
Hn-solid variety of groups consists of solvable groups.

Definition 12. We define a hypersubstitution σd by

σd(f) := yx
σd(g) := x−1

σd(e) := e.

A variety V of groups is called self-dual if the application of σd to any identity
of V gives again an identity in V :

{σ̂du] ≈ σ̂d[v] | u ≈ v ∈ IdV } ⊆ IdV .

Lemma 13. Let n ≥ 2 be a natural number. Any Hn-solid variety V of groups
is self-dual.
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Proof. We have cx(σd(f)) − cx−1(σd(f)) = cy(σd(f)) − cy−1(σd(f)) = 1 − 0 =
1 ≡ 1(n), and cx(σd(g)) − cx−1(σd(g)) = 0 − 1 = −1 ≡ −1(n), i.e. σd ∈ Hn.
Since V is Hn-solid, the application of σd to an identity of V gives again an
identity of V . 2

Lemma 14. Let V be a variety of groups satisfying xyx−1zxy−1x−1 ≈
yzy−1. Then for any integer a there holds

xyx−1ya ≈ yaxyx−1 ∈ IdV .

Proof. All is clear for a = 0. Let a 6= 0 be an integer. Then we have xyx−1ya ≈
yaxy−ayyax−1y−aya ≈ yaxyx−1 (using xyx−1zxy−1x−1 ≈ yzy−1). 2

Lemma 15. Let V be a variety of groups satisfying xyx−1zxy−1x−1 ≈
yzy−1. Then for integers r, s, t, u 6= 0 the following identities (i)-(iv) are satis-
fied in V :
(i) xrysx−rytxu ≈ ytxrysxu−r

(ii) xrysx−tyuxt ≈ xr−tyuxtys

(iii) xrysxrytxu ≈ y−txrys+2txr+u

(iv) xrysxtyuxt ≈ xr+tyu+2sxty−s.

Proof. The identities (i) and (ii) are immediate consequences of Lemma 14.
We show (iii). The identity (iv) can be checked dually. Using Lemma 14 we
have xrysxrytxu ≈ xrysxrytx−rxu+r

≈ xrxrytx−rysxu+r

≈ x2rytx−ry−tys+txu+r

≈ ytx−ry−tx2rys+txu+r

≈ ytx−ry−tx2rys+tx−2rxu+3r

≈ ytx−rx2rys+tx−2ry−txu+3r

≈ ytxrys+tx−rx−ry−txu+3r

≈ xrys+tx−rytx−ry−txu+3r

≈ xrys+tytx−ry−tx−rxu+3r

≈ xrys+2tx−ry−txu+2r

≈ y−txrys+2tytx−rxu+2r

≈ y−txrys+2tytxu+r. 2

Theorem 16. Let r ≥ 2 be a natural number and let V be a variety of
groups. V is Hr-solid iff V is self-dual and satisfies both identities xr ≈ e and
xyx−1zxy−1x−1 ≈ yzy−1.

Proof. Suppose that V is Hr-solid. Then V is self-dual by Lemma 13,
satisfies xr ≈ e (i.e. it is a variety of r-group) by Lemma 11 and satisfies
xyx−1zxy−1x−1 ≈ yzy−1 by Lemma 9.

Suppose now that V is a self-dual variety of r-groups satisfying

xyx−1zxy−1x−1 ≈ yzy−1(i).
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Let σ ∈ Hr. We will show that σ(f) ≈ xaybxcyd or σ(f) ≈ ydxcybxa for some
natural numbers a, b, c, d with a + c ≡ b + d ≡ 1(r).
For this we check that for natural numbers a, n2, n3, n4, n5 we have

xan3yn2xn3yn4xn5 ≈ y(−a+1)n2−an4xn3yan2+(a+1)n4xn5+an3 ∈ IdV (ii).

We show by induction on k that xkn3yn2xn3yn4xn5 ≈
y(−k+1)n2−kn4xn3ykn2+(k+1)n4xn5+kn3 ∈ IdV .
For k = 1 we have x1n3yn2xn3yn4xn5 ≈ y(−1+1)n2−1n4xn3y1n2+(1+1)n4xn5+1n3

∈ IdV by Lemma 15(iii).
Suppose now that the statement is true for k = m, i.e. xmn3yn2xn3yn4xn5

≈ y(−m+1)n2−mn4xn3ymn2+(m+1)n4xn5+mn3 ∈ IdV (hypothesis).
Then for k = m + 1 holds x(m+1)n3yn2xn3yn4xn5

≈ xn3xmn3yn2xn3yn4xn5

≈ xn3y(−m+1)n2−mn4xn3ymn2+(m+1)n4xn5+mn3 (by hypothesis)
≈ y−mn2−(m+1)n4xn3y(−m+1)n2−mn4+2mn2+2(m+1)n4xn5+mn3+n3 (by Lemma 15(iii))
≈ y(−(m+1)+1)n2−(m+1)n4xn3y(m+1)n2+((m+1)+1)n4xn5+(m+1)n3 .
This shows that (ii) holds.
We show now that the following statement (iii) holds:

For any natural numbers n1, n2, n3, n4, n5 there are natural numbers a, b, c, d
such that xn1yn2xn3yn4xn5 ≈ yaxbycxd, n1 + n3 + n5 ≡ b + d(r), and n2 + n4 ≡
a + c(r).

Let a1, b1, c1, d1, e1 be natural numbers. Then there are natural numbers k1 and
r1 with r1 < c1 such that a1 = k1c1 + r1. Then we have xa1yb1xc1yd1xe1

≈ xr1xk1c1yb1xc1yd1xe1

≈ xr1y(−k1+1)b1−k1d1xc1yk1b1+(k1+1)d1xe1+k1c1 (by (ii))
≈ xr1y(−k1+1)b1−k1d1xc1y(k1−1)b1+k1d1yb1+d1xe1+k1c1

≈ y(−k1+1)b1−k1d1xc1y(k1−1)b1+k1d1xr1yb1+d1xe1+k1c1 (by Lemma 14)
≈ yf2xa2yb2xc2yd2xe2 with a2 := c1, b2 := (k1 − 1)b1 + k1d1, c2 := r1, d2 :=
b1 +d1, e2 := e1 +k1c1 and f2 := (−k1 +1)b1−k1d1 where b2 +d2 +f2 = b1 +d1

and a2 + c2 + e2 = a1 + c1 + e1. In n ≥ 1 such steps we can derive from
xa1yb1xc1yd1xe1 a term
yf2 ... yfn+1xan+1ybn+1xcn+1ydn+1xen+1 with integers an+1, bn+1, cn+1, dn+1, en+1,

f2, ..., fn+1 such that cn+1 = 0 and bn+1 + dn+1+
n∑

i=1

fi+1 = b1 + d1 and

an+1 + cn+1 + en+1 = a1 + c1 + e1. Because of xr ≈ e there are natural num-

bers a, b, c, d such that
n∑

i=1

fi+1 ≡ a(r), an+1 ≡ b(r), bn+1+ dn+1 ≡ c(r) and

en+1 ≡ d(r), i.e., yf2 ... yfn+1xan+1ybn+1xcn+1ydn+1xen+1 ≈ yaxbycxd ∈ IdV
and altogether we have xn1yn2xn3yn4xn5 ≈ yaxbycxd ∈ IdV . This shows the
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statement (iii).

On the other hand there are natural numbers n ≥ 1 and a1, ..., a2n such that

σ(f) ≈ xa1ya2 ...xa2n−1ya2n ∈ IdV with
n−1∑
i=0

a2i+1 ≡
n∑

i=1

a2i ≡ 1(r). Using

(iii) we get σ(f) ≈ xaybxcyd ∈ IdV or σ(f) ≈ ydxcybxa ∈ IdV for some

natural numbers a, b, c, d with a + c ≡
n−1∑
i=0

a2i+1 and
n∑

i=1

a2i ≡ b + d, i.e.

a + c ≡ b + d ≡ 1(r).

Now we check that the application of σ to the group identities gives again
identities in V . We note that σ(e) ≈ e and σ(g) ≈ x−1 since cx(σ(g)) −
cx−1(σ(g)) ≡ −1(r) and xr ≈ e ∈ IdV . Thus we have
σ̂[f(x, e)] ≈ xa+c ≈ x = σ̂[x] and
σ̂[f(x, g(x))] ≈ xa+c(x−1)b+d ≈ xx−1 = e = σ̂[e] since a + c ≡ b + d ≡ 1(r) and
xr ≈ e ∈ IdV . Dually we get σ̂[f(e, x)] ≈ σ̂[x] ∈ IdV and σ̂[f(g(x), x)] ≈ σ̂[e] ∈
IdV .
Now we show that the application of σ to the associative law gives an identity
in V . For this we check by induction on k that

(xaybxcyd)kz(y−dx−cy−bx−a)k ≈ xkykzy−kx−k ∈ IdV (iv)

For k = 1 we have xaybxcydzy−dx−cy−bx−a

≈ xaxcybx−cxcydzy−dx−cxcy−bx−cx−a (by (i))
≈ xa+cyb+dzy−(b+d)x−(a+c)

≈ xyzy−1x−1 since a + c ≡ b + d ≡ 1(r) and xr ≈ e ∈ IdV .
Suppose now that (iv) is true for k = m, i.e. it holds (xaybxcyd)mz
(y−dx−cy−bx−a)m ≈ xmymzy−mx−m ∈ IdV (hypothesis).
Then for k = m + 1 we have (xaybxcyd)m+1z(y−dx−cy−bx−a)m+1

≈ (xaybxcyd)xmymzy−mx−m(y−dx−cy−bx−a) (by hypothesis)
≈ xaxcybx−cxcydxmymzy−mx−my−dx−cxcy−bx−cx−a (by (i))
≈ xa+cyb+dxmymzy−mx−my−(b+d)x−(a+c)

≈ xa+cxmyb+dx−mxmymzy−mx−mxmy−(b+d)x−mx−(a+c) (by (i))
≈ xa+c+myb+d+mzy−(b+d+m)x−(a+c+m)

≈ x1+my1+mzy−(1+m)x−(1+m) since a + c ≡ b + d ≡ 1(r) and xr ≈ e ∈ IdV .

Now we have σ̂[f(f(x, y), z)] ≈ (xaybxcyd)azb(xaybxcyd)czd

≈ (xaybxcyd)azb(xaybxcyd)−a(xaybxcyd)zd (since a + c ≡ 1(r) and xr ≈ e ∈
IdV )
≈ (xaybxcyd)azb(y−dx−cy−bx−a)a(xaybxcyd)zd

≈ xayazby−ax−a(xaybxcyd)zd (by (iv))
≈ xayazby−a+bxcydzd

≈ xayazby−a+bxcya+c−bzd (since a + c ≡ b + d ≡ 1(r) and xr ≈ e ∈ IdV )
≈ xaybya−bzby−a+bxcya−bz−byb−ay−byazbyczd

≈ xaybzbxcz−by−byazbyczd (by (i))
≈ xa(yazbyczd)bxc(z−dy−cz−by−a)b(yazbyczd) (by (iv))
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≈ xa(yazbyczd)bxc(yazbyczd)−b+1

≈ xa(yazbyczd)bxc(yazbyczd)d (since b + d ≡ 1(r) and xr ≈ e ∈ IdV )
= σ̂[f(x, f(y, z))].
We will show that the application of σ to any identity in V gives again an identity
in V . Let s ≈ t ∈ IdV . Since we have already checked that the application of
σ to the group identities gives again identities in V we can consider the terms s
and t as semigroup words over the alphabet X∗. So there are natural numbers
j,m ≥ 1 and s1, ..., sj , t1, ..., tm ∈ X∗ such that s = s1...sj and t = t1...tm.
We will show by induction on j that

σ̂[s1...sj ] ≈ sa
1 ...sa

j sb−a
j ...sb−a

1 sd
1...s

d
j ∈ IdV .

First, we remark that from (i) it follows xn1ymxn2zx−n2y−mx−n1 ≈ xn1xn2

ymx−n2xn2zx−n2xn2ymx−n2x−n1 , i.e.

xn1ymxn2zx−n2y−mx−n1 ≈ xn1+n2ymzy−mx−(n2+n2) (v)

for any integers n1, n2,m.
If j = 1 then we have σ̂[s1] = s1 ≈ sb+d

1 (since b + d ≡ 1(r) and xr ≈ e ∈ IdV )
≈ sb

1s
d
1

≈ sa
1s

b−a
1 sd

1.
Suppose that the statement is true for j = k, i.e. σ̂[s1...sk] ≈ sa

1 ...sa
ksb−a

k ...

sb−a
1 sd

1...s
d
k ∈ IdV (hypothesis). We put r := s1...sk.

Then for j = k + 1 holds σ̂[f(r, sk+1)] ≈ σ̂[r]asb
k+1σ̂[r]csd

k+1

≈ σ̂[r]asb
k+1σ̂[r]−a+1sd

k+1 (since a + c ≡ 1(r) and xr ≈ e ∈ IdV )
≈ σ̂[r]asb

k+1σ̂[r]−aσ̂[r]sd
k+1

≈ (sa
1 ...s

a
ksb−a

k ...sb−a
1 sd

1...s
d
k)asb

k+1(s
−d
k ...s−d

1 s−b+a
1 ...s−b+a

k s−a
k ...s−a

1 )a(sa
1 ...sa

k

sb−a
k ...sb−a

1 sd
1...s

d
k)sd

k+1 (by hypothesis)
≈ (sa

1sa+b−a+d
2 ...sa+b−a+d

k−1 sa
ksb−a

k sb−a
1 sd

1s
d
k)asb

k+1(s
−d
k s−d

1 s−b+a
1 s−b+a

k s−a
k

s−a−b+a−d
k−1 ...s−a−b+a−d

2 s−a
1 )a(sa

1 ...sa
ksb−a

k ...sb−a
1 sd

1...s
d
k)sd

k+1 (by (v))
≈ (sa

1s2...sk−1s
b
ksc

1s
d
k)asb

k+1(s
−d
k s−c

1 s−b
k s−1

k−1...s
−1
2 s−a

1 )a(sa
1 ...sa

ksb−a
k ...sb−a

1 sd
1

...sd
k)sd

k+1 (since a + c ≡ b + d ≡ 1(r) and xr ≈ e ∈ IdV )
≈ (sa+c

1 s2...sk−1s
b+d
k )asb

k+1(s
−(b+d)
k s−1

k−1...s
−1
2 s

−(a+c)
1 )a(sa

1 ...sa
ksb−a

k ...sb−a
1 sd

1

...sd
k)sd

k+1 (by (v))
≈ (s1s2...sk−1sk)asb

k+1(s
−1
k s−1

k−1...s
−1
2 s−1

1 )a(sa
1 ...sa

ksb−a
k ...sb−a

1 sd
1...s

d
k)sd

k+1

(since a + c ≡ b + d ≡ 1(r) and xr ≈ e ∈ IdV )
≈ (sa

1 ...sa
k)sb

k+1(s
−a
k ...s−a

1 )(sa
1 ...sa

ksb−a
k ...sb−a

1 sd
1...s

d
k)sd

k+1 (it follows from (iv))
≈ sa

1 ...s
a
ksa

k+1s
b−a
k+1s

b−a
k ...sb−a

1 sd
1...s

d
ksd

k+1.

Similarly, one can show that σ̂[t] ≈ ta1 ...tamtb−a
m ...tb−a

1 td1...t
d
m ∈ IdV . Now we

substitute in s ≈ t each w ∈ X∗ by wa, wb−a, and wd, respectively. So we get



138 J. Koppitz

the following identities satisfied in V :

sa
1 ...sa

j ≈ ta1 ...tam,

sb−a
1 ...sb−a

j ≈ tb−a
1 ...tb−a

m ,

sd
1...s

d
j ≈ td1...t

d
m.

Moreover, since V is self-dual we have sb−a
j ...sb−a

1 ≈ tb−a
m ...tb−a

1 ∈ IdV . These
three identities provide sa

1 ...s
a
j sb−a

j ...sb−a
1 sd

1...s
d
j ≈ ta1 ...tamtb−a

m ...tb−a
1

td1...t
d
m ∈ IdV , i.e. σ̂[s] ≈ σ̂[t] ∈ IdV .

Consequently, the application of any σ ∈ Hr to any identity of V gives again
an identity in V , i.e. V is Hr-solid. 2

An open problem is the characterization of the lattice SGr
M for any given

monoid M . For the commutative case we have given the answer in [4]:

Proposition 17. Let M be a monoid of hypersubstitutions and V be a variety
of commutative groups. Then V is M -solid iff V ⊆ V c

gcd(M).

In this paper we give the answer for a generalization of the commutative
case.

Remark 18. Let Q := ({±e,±i,±j,±k}; ·,−1 , e) be the quaternion
group. The commutative law is not valid in Q. On the other hand we have
a2 = ±e and ±e · b = ±b = b · ±e for all a, b ∈ {±e,±i,±j,±k}. Thus
x2y ≈ yx2 is an identity in Q. This motivates us to consider varieties of groups
satisfying x2y ≈ yx2.

The next theorem characterizes the lattice of all M -solid varieties of groups
satisfying x2y ≈ yx2 for any given monoid M ∈ Hnt.

Definition 19. Let σ ∈ Hyp with σ(f) ≈ xa1ya2 ...xa2n−1ya2n where 1 ≤ n ∈
N, a2, ..., a2n−1 ∈ Z \ {0} and a1, a2n ∈ Z.
σ is said to be y-odd if there is an i ∈ {1, ...n} such that a2i is odd and
a1, ..., a2i−1 are even.

For example, any σ ∈ Hyp with σ(f) = xx−1yyxxy−1 is y-odd.

Theorem 20. Let p be a prime number and M be a submonoid of Hyp with
M ⊆ Hp. A variety V of groups satisfying x2y ≈ yx2 is M -solid iff xp ≈ e ∈
IdV and V is self-dual if there exists some y-odd hypersubstitution σ ∈ M .

Proof. Suppose that xp ≈ e ∈ IdV and V is self-dual if there exists some y-odd
hypersubstitution σ ∈ M . We show that for any σ ∈ M holds

σ ∼V σd if σ is y-odd and
σ ∼V σid otherwise.
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Let σ ∈ M with σ(f) ≈ xa1ya2 ...xa2r−1ya2r where 1 ≤ r ∈ N, a2, ..., a2r−1 ∈
Z \ {0} and a1, a2r ∈ Z. Using x2y ≈ yx2 it is easy to calculate that from
σ(f) ≈ xa1ya2 ...xa2r−1ya2r it follows σ(f) ≈ yxyaxb or σ(f) ≈ ya+1xb+1 if σ
is y − odd and σ(f) ≈ xyxayb or σ(f) ≈ xa+1yb+1 otherwise for some integer
a, b. Because of xp ≈ e ∈ IdV we can assume that 0 ≤ a, b ≤ p− 1. Because of
a+1 ≡ 1(p) and b+1 ≡ 1(p) (since M ⊆ Hp) we get a = b = 0. Thus σ(f) ≈ yx
if σ is y-odd and σ(f) ≈ xy otherwise. Clearly, σ(g) ≈ xrp−1 for some integer
r. Using xp ≈ e we get σ(g) ≈ x−1. Thus σ ∼V σd if σ is y-odd and σ ∼V σid

otherwise. Consequently, any σ ∈ M is V -equivalent to σid or σd.
If there is no y-odd hypersubsitution σ ∈ M then all σ ∈ M are V -equivalent
to σid and V is M -solid (see [6]).
If there is some σ ∈ M which is y-odd then V is self-dual and since each σ ∈ M
is V -equivalent to σid or σd, V is M -solid (see [6]).

Suppose that V is M -solid. Then xp ≈ e ∈ IdV by Lemma 11. We have to
consider the case that there is a y-odd hypersubstitution σ ∈ M . We have
already shown that then σ ∼V σd. Since V is M -solid, the application of σ to
any identity in V gives again an identity in V . Thus the application of σd to
any identity in V is also an identity in V (see [6]), i.e. V is self-dual. 2
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