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HYPERSUBSTITUTIONS AND GROUPS
Jorg Koppitz!

Abstract. We consider groups as algebras of type (2,1,0). A hypersub-
stitution of type (2,1,0) is a mapping o from the set of the operation
symbols {-f1 ,e} into the set of terms of type (2,1,0) preserving the
arity. For a monoid M of hypersubstitutions of type (2,1,0) a variety
V is called M-solid if for each group (G;-,~',e) € V the derived group
(G;0(-),0("1),0(e)) also belongs to V for all ¢ € M. The class S§ of
all M-solid varieties of groups forms a complete sublattice of the lattice
L(Gr) of all varieties of groups. In this way we get a tool for a better
description of the whole lattice £(Gr) by characterization of complete
sublattices S$/ .
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1. Introduction

It is of some interest to know what the lattice of all varieties of some type
7 looks like, but it has become clear that it is very complicated, even for such
special case as the lattice of all varieties of semigroups. In [3] a new method to
study these lattices was proposed, using complete sublattices consisting of M-
solid varieties, where M is a monoid of hypersubstitutions. M-solid varieties of
semigroups are considered in a range of papers (see for example [1], [2], and [7]).
Although groups can be considered as semigroups not every variety of groups
correponds to a variety of semigroups. Considering groups as algebras of type
(2,1,0) we can use the method of M-solid varieties for the description of the
lattice of all varieties of groups.
In the next section we introduce the concept of a M-solid variety and collect
some basic properties. In the third section we determine the set H,; of all
monoids M of hypersubstitutions of type (2,1, 0) such that there is a nontrivial
M-solid variety of groups. It turns out that H,; has infinitely many maximal
and one minimal element, and H,; consists of the submonoids of its maximal
elements. The last section is devoted to the main result: For all maximal
elements Hj, of H,; we characterize the complete lattice of all H,-solid varieties
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of groups. An open problem is the characterization of the lattice of all M-
solid varieties of groups for arbitrary monoids M. In the commutative case this
problem is already solved (see [4]). The present paper will give the answer for
another class of varieties of groups, namely for varieties of groups satisfying the
identity z%y ~ yx2.

2. M-solid varieties of groups

Let W(X) be the set of all terms of type (2,1,0) over some fixed alpha-
bet X := {x1,x9,3,...} where {f,g,e} denotes the set of operation symbols
(f is binary, ¢ is unary and e is O-ary). Instead of z1,x9,xs,... we write also
z,Y, 2, .... Further, W(X3) (W(X1), W(0)) denotes the set of all terms of type
(2,1,0) over Xy :={z1,22} (X1 := {z1}, 0).

We recall that the identities g(f(y,x)) =~ f(g(x),9(y)), g(g(x)) = x, and g(e) =~
e hold in every variety of groups and usually one writes z~! instead of g(z) ([5]).
This allows us to write a term ¢ € W(X) as a semigroup word over the alphabet
X*:= XU{w | we X}U{e}. For example, for t = f(f(g(x),x),9(f(x,e)))
one can write t = z~txex 1. (But if necessary we will write terms by using the
operation symbols f and g.)

For a variable w € X* and a term t € W(X) we put:

w? :=e, w!' :=w, and W™t == W™w for m > 1;

w™™ = (w™ )™ for any m > 2;

¢w(t) - the number of occurrences of w in the term t regarded as a semigroup
word. For example, for ¢t = f(f(g(z),z),g(f(x,e))) we have ¢,(t) = 1 and
cg—1(t) = 2 since the semigroup word 2~ lzex™! corresponds to this term.

A mapping o : {f,g,e} — W(X2) with o(g9) € W(X;) and o(e) € W(0)
is called a hypersubstitution of type (2,1,0) (for short hypersubstitution). Any
hypersubstitution o can be uniquely extended to a map o : W(X) — W(X),
this is defined inductively by

(i) o[w] ;= w for any w € X U {e},

(i) 511 (11, t2)] i= o (F)(F111], 5lt2]), and Flg(t)] == o) B1H).

Here o(f) and o(g) on the right-hand side of (ii) have to be interpreted as op-
erations induced by the term o(f) and o(g), respectively, on the term algebra
induced on W (X).

We denote by Hyp the set of all hypersubstitutions. If we define a product oy,
of hypersubstitutions by o1 o, 0o := 71 0 02, where o is the usual composition of
functions, then Hyp = (Hyp; op,04q) is a monoid. Note that 0,4 is the identity
hypersubstitution, defined by ¢;4(f) = 2122, 0:4(g) = xfl, and o;4(e) =e.

Let M be a submonoid of Hyp. Further let V' be a variety of type (2,1,0).
Then an identity s ~ ¢t of V is called an M-hyperidentity of V if for every
o € M the equation o[s| ~ o[t] is an identity in V. If every identity in V is an
M-hyperidentity then V is called M-solid. In the special case that M is all of
Hyp, we speak of a hyperidentity and a solid variety. In order to show that any
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identity is an M-hyperidentity in V' we have not to check all o € M, we need
only one representative of each equivalence class with respect to the following
equivalence relation on Hyp, established by J. Plonka ([6]):

o1 ~y o9 iff o1(u) = o9(p) is an identity in V' for all operation symbols
ne{f,g,e}.

If 01 ~y o2 we say that o1 and o9 are V-equivalent. In [6] was shown that if
o1 and o3 are V-equivalent and &1[s] &~ 1[t] holds in V then also 73[s] &~ 72]t]
holds in V.

By definition, to tell if a variety is M-solid, one has to test that application of
any hypersubstitution o to any identity of V results in an identity of V. De-
necke and Reichel have developed a reduction in [3]. It suffices to show that
every identity of the generating system of V is an M-hyperidentity.

We denote by IdV the set of all identities in V and by £(V') we mean the subvari-
ety lattice of V. The set P(V') of all hypersubstitutions o with &[s] ~ o[t] € IdV
for all s ~ ¢t € IdV forms a submonoid of Hyp [8]. An element of P(V) is
called proper hypersubstitution ([6]). The variety Gr := Mod{f(f(z,y),2) ~
[, [(y,2), flg(z),z) = f(z,9(x)) = e, f(z,e) = f(e,x) ~ x} is the variety
of all groups (considered as algebras of type (2,1,0)). For a set ¥ of equations
let Gr(¥) be the variety of groups satisfying ¥. By S{ we denote the class
of all M-solid varieties of groups. S§/ forms a complete sublattice of £(Gr).
Moreover, if My C Ms then SACfIZ C Sf[l (see [3]).

3. Characterization of H,,

For each monoid M of hypersubstitutions the trivial variety TR := Mod{x =~
y} belongs to S]CV’}T. This is clear, since the application of any 0 € Hyp to x = y
provides again = = y, i.e. gives an identity of T'R. But there are monoids M
such that S§/ consists only of TR, for example in the case M = Hyp. To make
this clear we consider a hypersubstitution o € Hyp with o(f) and o(e) = e. If
we apply this o to the group identity f(e,x) &~ x we get e ~ x which holds only
in the trivial variety. This shows that T'R is the only solid variety of groups.
Moreover, this example shows that S{7 = {T'R} for all monoids M containing
the previously defined o. It raises the question: For which monoids M there
are nontrivial M-solid varieties of groups. In this section we determine the set
H ¢+ of all such submonoids M of Hyp for which SIC\’;[ contains not only T'R:

For a > 1 let V¢ be the variety of all commutative groups of order a:
Vi = GT({f(SC, y) ~ f(yvx)7xa ~ 6})
Note that Vi* =TR. Clearly, V¢ # V for i # j.

Definition 1. Let a > 2 be a natural number. Let H, be the set of all hyper-
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substitutions o satisfying the following properties:

a) cx(o(f)) — ca1(o(f)) = 1(a);
b) ¢y(a(f)) — cyr(o(f)) = 1(a);
c) c(o(g) — ci(olg) = — 1a).

Proposition 2. For all natural numbers a > 2 we have H, = P(Vf).

Proof. Let o € P(VF). We will show that o satisfies the properties a), b), and
c).

Assume that a) does not hold. Then c,(o(f))— cz-1(o(f)) = m(a) for some
natural number m with 1 < m < a. We apply o to f(x,e) =z € IdV, and get
g (@)= o1 (0(f) ~ g € 1dV¢ since o is a proper hypersubstitution for V.
But x¢ (@D~ ¢-1(0() x~ 1 29 x e, and ¢, (0 (f))— cz-1(a(f)) = m(a) imply
™~ ie ™ & e with 1 <m—1 < ais an identity in V¢, a contradiction.
Dually we get that b) is satisfied.

Assume that ¢) does not hold. Then ¢, (c(g))— cz-1(c(g)) = m(a) for some nat-
ural number m with 0 < m < a — L Then o(g)(x) =~
g0 (7(9)=¢.-1(0(9)) ~ 2™ € [dVE because of 2% ~ e € IdVS. By a) and b)
we have c,(0(f))— cp-1(0(f)) = 1(a) and cy(o(f))— cy-1(a(f)) = 1(a), re-
spectively. Thus z™ (@)= c.-1 (@) Fey(@(5))= ¢, -1(e(F) & zm+1 pecause of
2 ~ee€ldVy.

Further, there holds o[f(g9(x),z)] = o(f)(clg(z),olz]) = o(f)
(o(9)(x),z) = o(f)(z™, z) ~ 2™ =N comr(elfFes (@)= eym1 (@) o gmt1,

Since o is a proper hypersubstitution for V¢ from f(g(x),x) ~ e € IdV follows
olf(g(x),x)] ~ Gle] € IdVE, i.e. ™! ~ e with 1 <m + 1 < a is an identity in
V¢, a contradiction.

Conversely, let 0 € H,. We will show that ¢ is a proper hypersubstitution for
H,. For this we show that ¢ is V,’-equivalent to the identity hypersubstitution
0;4- There are natural numbers k, I, m, n such that ¢, (o(f)) =k, c,—1(o(f)) =,
cy(o(f)) =m, and c,~1(o(f)) = n. Then o(f) ~ 2*~ly™~" because of the com-
mutative law. Because of a) and b) we have k — 1 = 1(a) and m — n = 1(a),
respectively. Thus o(f) = zy (because of 2% = e).

Further, there are natural numbers ¢,j such that c;(c(g9)) = 4,c-1(0(g))
= j. Then o(g) ~ 277 because of the commutative law. Because of c) we
have i — j = —1(a). Thus o(g) ~ 2~ (because of 2% ~ ¢).

Obviously, we have dle] ~ e. O

Notation 3 For a monoid M of hypersubstitutions of type (2,1,0) we define
ged(M) as be the greatest common divisor of the following integers:

a0 (1) = ot (0(N)—1, &y (0(f)—cymr (0(f) L, and co(o(g)) — o (o(g))+1
for allo € M.

Theorem 4. Let M be a monoid of hypersubstitutions of type (2,1,0). Then
ST # {TR} iff there is a prime number p with M C H,.
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Proof. Let S§7 # {TR}. Then there is an M-solid variety V of groups with
V £TR.

Assume that M ¢ H, for all prime numbers p. Then for each prime num-
ber p there is a 0 € M with ¢, (0(f)) — cp—1(c(f)) # 1(p) or cy(o(f))—
¢ (0(f)) £ 1(p) or e2(0(9))— cor (0(g)) # —1(p). This means ged(M) = 1.
On the other hand we have

{olf(z,e)] ~ o] | o € M} U {a[fle,x)] =~ ofz] | o € MU
{Glf(g(x),z)] = Gle] | o € M} C IdV. This provides {zc(@(/))=ce-1(o(f))
~ z | o e M}u {av@-o) ~ 5 | 5 e MW

{zlee @D =czm1 (@(Dlex(@(@) =com1 (@@tey(@(N=c, 10N ~ ¢ | ¢ € M} C
IdV. For o € M, using z°(©(N)=c.=1(0(N) ~ g and zev(@(D)=¢,=10() ~ 4
from zlce (@) —co—1(a(f)]lcs(o(g))=c -1 (a(g)l+ey(0(f))=c,—1(o(f)) ~ ¢ it follows
xee (7)) =ce-1(@@)+ ~ ¢ and thus z¢=(@@)=¢-1(0(@)+2 ~ 5 This shows
that {ze=(@-c.1(0) ~ 2 | ¢ € M} U {zov@=10) ~ 2| o €
M} U {zo(0@))=c.=1(0)+2 o | ¢ € M} C IdV. From these identities we can
derive z9°¢M)+1 ~ 2 € [dV. Since ged(M) = 1, we have 22 ~ x € IdV, i.e.
r~e€ldV and x ~y € IdV. Thus V = TR, a contradiction.

Conversely, let M C H, for some prime number p. Then Sg: C S§r. Since

P(Vy) = H, (Proposition 2) we have V€ Sg; C S§7 and thus S§7 # {TR}.
0O

Remark 5. The previous theorem shows that the monoids H, are mazimal el-
ements in Hyu:, where for two different prime numbers p1 and ps the monoids
H,, and H,, are different.

Moreover, it is easy to check that

Ml = {Uid}
forms a monoid. My is the least element in Hpy.

The following set D of hypersubstitutions of type (2,1,0) is the set of all
proper hypersubstitutions of the variety of all commutative groups ([4]).

Definition 6. Let D be the set of all hypersubstitutions o satisfying the follow-
ing properties:

a) cx(a(f)) — c(o(f)) = 1;
b) cy(o(f)) = cyi(a(f) = 1;
¢) clolg) — clolg) = — 1.

Obviously, we have D C H,, for all natural numbers n > 2. We will deter-
mine such monoids M with M C H,, for all natural numbers n > 2.

g
g

Definition 7. For any submonoid M C Hyp we denote by L(M) the submonoid
lattice of M.
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Proposition 8. There holds () L(H;) = L(D).
2<ieN

Proof. 7 27 : Clearly, for 2 < i € N we have D C H;, i.e. D € L(H;). Thus
L(D)C L(H) for2<ieN,ie L(D)C (| L(H).
2<ieN
"C7:Let M € (| L(H;) and let 0 € M. Then there is a natural number
2<ieN
n > 1 with ¢, (o(f)) — c,—1(o(f)) = n. Assume that n # 1. Then n #Z 1(n),

ie. 0 ¢ Hy, and M ¢ L(H,,), contradicts M € (| L(H;). Thus ¢, (o(f)) —
2<ieN

cy-1(0(f)) = 1. Similarly, one can show that c,(o(f)) — ¢,-1(c(f)) = 1 and

ca(0(9)) = o1 (0(g)) = 1.
Consequently, o € D and thus M C D, i.e. M € L(D). ]

4. All H,-solid varieties of groups

The monoids H,,, for prime numbers p, are the maximal elements in Hy;. In
particular, for any M € H,; there is a prime number p with M C H,, i.e. Sg: -
S$r. If we have a characterization of the lattice Sg; for all prime numbers
p then we have some knowledge about a complete sublattice of S]\G[ for any
monoid M € H,;. The main theorem of the present paper, the characterization
of Sfl: for all prime numbers p, is the topic of this section. We start with some
properties of Hy,-solid varieties of groups.

Lemma 9. Let n > 2 be a natural number. Then in each H,-solid variety V
of groups there holds zyx 'zzy lz~! ~ yzy~!.

Proof. We consider the following hypersubstitution o:

o(f) = a?ya~!
o(g)=a""
o(e) :=e.

We have cz(0(f)) = co-1(0(f)) =2 -1 =1=1(n), ¢y(a(f)) — ¢y-1(a(f)) =
1-0=1=1(n), and c;(0(g)) —cz-1(c(g)) =0—1= -1 = —1(n), i.e. 0 € Hy,.
Since V' is Hp-solid, the application of o to the associative law provides the
identities 2?yz~ta?yr~tz(zlyax~l) 7! = 2?2y la7t, 2Pyayarlzay !
22y22y~1 —1,.—1

2
—1 —1 ~ -1 Vv O
r T,TYyr "zZxyYy T ~Yyzy m V.

For a group A = (4;-,7%,e), by C(A) :=={a € A | za = az for all z € A} we
denote the centre of A. In particular, C(.A) forms a subgroup of A (see [5]). For
a,b € Alet [a,b] := aba1b~! be the commutator of a and b. The commutator
group of A, i.e. the group generated by the set {[a,b] | a,b € A}, is denoted by

(A, Al
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Proposition 10. Let n > 2 be a natural number, V be an H,-solid variety of
groups and A € V. Then
[A, A] € C(A),

i.e. the commutator group is a subgroup of the centre.

Proof. We will show that for any a,b € A the commutator [a,b] belongs to the
centre of A, i.e. {[a,b] | a,be A} CC(A).

Let a,b € A. Then for any 2 € A holds ba~'b~'zbab~! ~ a~'za by Lemma
9. This implies aba ‘b~ 'axbab 'ba b~ ~ aa 'zaba"'b"!, ie. aba b2 &~
raba~1b~! and thus the commutator [a,b] = aba~1b~! belongs to the centre
of A. Since {[a,b] | a,b € A} C C(A) and C(A) is a subgroup of A the group
generated by the set {[a,b] | a,b € A}, i.e. the commutator group [A, A], is a
subgroup of C(A). a

Lemma 11. Let n > 2 be a natural number. Then in each Hy-solid variety V
of groups there holds x™ =~ e.

Proof. We consider the following hypersubstitution o:

o(f) :=a""ly
o(g) =a~"
ole):=e

We have ¢, (0(f))—cz-1(0(f)) = n+1-0 = n+1 = 1(n), ¢y (o (f))—c,-1(c(f)) =
1-0=1=1(n), and ¢, (0(g9)) —cz-1(0(g9)) =0—1= -1 = —1(n), i.e. 0 € Hy.
Since V is H,-solid, the application of o to the group identity f(z,e) ~ =z

provides an identity in V, namely z"*! ~ z, i.e. 2" ~ e. m|

By Proposition 10 and Lemma 11, respectively, it becomes clear that an

H,,-solid variety of groups consists of solvable groups.

Definition 12. We define a hypersubstitution o4 by

oa(f)
oa(g)
ca(e)

1

yx
=
€.

A wvariety V' of groups is called self-dual if the application of o4 to any identity
of V' gives again an identity in V:

{Gqu] = o4fv] |umv e IdV} CIdV.

Lemma 13. Let n > 2 be a natural number. Any H,-solid variety V' of groups
is self-dual.
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Proof. We have c,(0a(f)) = ¢z-1(0a(f)) = ¢y(0a(f)) — ¢y-1(0a(f)) =1 -0 =
1 = 1(n), and cz(04(g)) — cp-1(0a(g)) =0—1= -1 = —1(n), i.e. o4 € Hy.
Since V is H,-solid, the application of o4 to an identity of V gives again an
identity of V. O

Lemma 14. Let V be a wariety of groups satisfying xyr ‘zzxy 'lz~! =

yzy~'. Then for any integer a there holds

ryx Yyt ~ylayx~! € IdV.

1,a

Proof. All is clear for a = 0. Let a # 0 be an integer. Then we have zyz™ " y® ~
yrary tyytely "% ~ yloyr~! (using xyrlzoylaT! & yzy ). |

Lemma 15. Let V be a wariety of groups satisfying xzyr ‘zzy 'lz~! =

yzy~t. Then for integers r,s,t,u # 0 the following identities (i)-(iv) are satis-
fied in V:

(Z) iCTyS{E_Tyt.’IJu ~ ytxrysxu—r

(”) m'r'ysm—tyuxt ~ xr—tyuxtys

(ZZ’L) xrysxrytxu ~ y—txrys+2t$r+u

(Z’U) xrysxtyuxt ~ xr+tyu+25xtyfs.

Proof. The identities (i) and (ii) are immediate consequences of Lemma 14.
We show (iii). The identity (iv) can be checked dually. Using Lemma 14 we

have xrysxrytxu ~ xrysxrytxfrmu%»r
~ xrxTytl,frysl.zH»r

~ x2rytx7ry7tys+txu+r

~ ytl,fryftx2rys+tzu+r

~ ytxfryftx2rys+tx72rxu+3r

~ ytx—rx2ry5+tx—2ry—txu+3r

~ ythySthz*Tz*T’y*tqurBT

~ x?“ys+tx—rytx—ry—txu+3r
~ xrys-&-tytx—ry—tm—rx
~ xrys+2tx—7'y—txu+2r
~ yftmrys+2tytx7rxu+2r
~ y_t{IJTyS—i_ztytqu'_T. O

u+3r

Theorem 16. Let r > 2 be a natural number and let V' be a variety of
groups. V is H.-solid iff V is self-dual and satisfies both identities " =~ e and
xyx_lzmy_lx_l ~ yzy‘l,

Proof. Suppose that V' is H,-solid. Then V is self-dual by Lemma 13,
satisfiles " =~ e (i.e. it is a variety of r-group) by Lemma 11 and satisfies
ryr~tzey~lr~! ~ yzy~! by Lemma 9.

Suppose now that V is a self-dual variety of r-groups satisfying

ryrtzay e 2 yzy (D).
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Let o € H,. We will show that o(f) ~ z%ybzy? or o(f) ~ ydzcy’x® for some
natural numbers a, b, ¢,d with a +c=b+d = 1(r).
For this we check that for natural numbers a, ns, ns, ng, ns we have

xangynzwnsy'mxns ~ y(—a+1)n2—an4mn3yan2+(a+1)n4xn5+an3 c Idv (ii).

We show by induction on k  that  aFmsynagnsynagns R~
y(—k+1)n2—kn4xn3ykn2+(k+1)n4xn5+kn3 c Idv.

For k = 1 we have xlngynzmngyrmxns ~ y(—1+1)n2—1n4xn3y1n2+(1+1)n4$n5+1n3
€ IdV by Lemma 15(iii).

Suppose now that the statement is true for k& = m, i.e. z™"3ym2gm3ymagns
~ y(mmAlnz—mnagngymnat(mtnagnstmns ¢ 14y (hypothesis).

Then for k = m + 1 holds z("tDnsyn2 gnsynagns

~ xngxmngynzwn3yn4xn5

~ xngy(—m+1)n2—mn4xn3ymn2+(m+1)n4xn5+mn3 (by hypOtheblb)

~ yfmngf(m+1)n4xngy(ferl)ng7mn4+2mn2+2(m+1)n4xn5+mn3+n3 (by Lemma, 15(111))
~ y(*(m+1)+1)”2*(m+1)’ﬂ4mnsy(m+1)n2+((m+1)+1)n4xn5+(m+1)n3.

This shows that (ii) holds.

We show now that the following statement (iii) holds:

For any natural numbers ni,ns,ng, ng4,ns there are natural numbers a, b, ¢, d
such that x™y"2g"3y™ 2" ~ y®2Pycx?, ny +nz+ns = b+d(r), and ny +ny =
a+ c(r).

Let a1, b1, c1,dy, €1 be natural numbers. Then there are natural numbers k; and

r1 with 71 < ¢ such that aq; = k1cqy + r1. Then we have xalyblxclydlxel

~ prigkia ybl 21 ydl el

~ Irly(—k1+1)bl—k1d1xC1yk151+(k1+1)d1x€1+/€101 (by (ll))

~ Zﬂ“ly(—kﬁ-l)bl—k1d1$61y(k1—1)b1+k1d1 yb1+d1x€1+k101

~ y(*k1+1)b1*k1d1xc1y(k1*1)b1+k1d1xﬁyb1+d1x€1+k1c1 (by Lemma 14)

~ yf2l'a2yb2$62yd21’€2 with as = Cy, b2 = (kl — ].)bl + kldl, Co ‘=T, d2 =

b1+dy, ea :=e1+kicy and fo := (—/ﬂl +].)b1 —ky1dy where by +do+ fo = b1 +dy

and as +cs + e = a1 +c¢1 +e1. Inn > 1 such steps we can derive from

x@ybrziyhiger a term

yf2 . yfrrigniigboia gpentiydnit pentt with integers n 1, bng 1, Cngts Aty €nil,

n
J2s s fug1 such that ¢,y = 0 and b,y + dpy1+ Y fig1r = by + di and
i=1

Gnt1 + Cpy1 + €nt1 = a1 + ¢ + e1. Because of 2" & e there are natural num-
n

bers a, b, ¢,d such that > fir1 = a(r), ant1 = b(r), bpt1+ dny1 = ¢(r) and
i=1

eni1 = d(r), ie., yf2... yfrrigontigbnrigeniigdniigentt ~ yagbyepd ¢ [qV

and altogether we have z"1y"2a"3y"4 2™ ~ y®2ly°x? € IdV. This shows the
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statement (iii).

On the other hand there are natural numbers n > 1 and aq, ..., as, such that
o(f) = a1y, g2n-1y2n ¢ JdV with nil agit1 = Zn: az; = 1(r). Using
(iii) we get o(f) ~ z%bxy? € IdV or 1200(]‘) R~ yd:lcéz;x“ € IdV for some

n—1 n
natural numbers a,b,c,d with a + ¢ =) ag;41 and Y, a9 = b+ d, ie.
i=0 i=1
at+c=b+d=1(r).

Now we check that the application of o to the group identities gives again
identities in V. We note that o(e) ~ e and o(g) ~ 2! since c.(o(g)) —
cz-1(0(g9)) = =1(r) and 2" =~ e € IdV. Thus we have
o[f(z,e)] ~ x%T¢ ~ z = 5lz] and
olf(x,g(z))] ~ xote(z )b+ m gx~l = e = Gle] since a + c = b+d = 1(r) and
x" =~ e € IdV. Dually we get 7[f(e,z)] = o[x] € IdV and 7[f(g(z),z)] = dle] €
1dv.

Now we show that the application of o to the associative law gives an identity
in V. For this we check by induction on k that
(maybxcyd)kz(yfdxfcyfbmfa)k ~ xkykzykafk c IdV (IV)
For k = 1 we have z%yPzcy?zy~dx—cy b2~
~ xaxcybxfcl.cydzyfdl.fcxcyfbxfcxfa (by (1))
~ xa+cyb+dzy—(b+d)x—(a+c)
~ zyzy loTlsincea+c=b+d=1(r) and 2" ~ e € IdV.
Suppose now that (iv) is true for k& = m, ie. it holds (x%’zy?)"z
(y~dz=cy~br=a)m x~ aMymzy~mz~™ € IdV (hypothesis).
Then for k = m + 1 we have (z%ybacyd)m+iz(y=dg—cy by—a)mtl
~ (x0yPacy®)amym 2y~ ™ (y~ ey b2 ~?) (by hypothesis)
~ xaxcybx—cxcydxmymzy—mx—my—dx—cxcy—bx—cx—a (by (1))
~ xa—&-cyb—&-dmmymzy—mx—my—(b+d)x—(a+c)
~ xa+cmmyb+dl,fmxmymnymxfml,myf(b+d)x7m$7(a+c) (by (1))
~ xa+c+myb+d+m2y7(b+d+m)xf(a+c+m)
~ gl tmyldm gy =(tm) p=(4m) gince a+ c = b+ d = 1(r) and 2" ~ e € IdV.

Now we have G[f(f(x,y),2)] & (zy’zcy?)*2" (xy zy?) 2
~ (20ylxy?)2z2b (x%yPaxcyd) ~ (zyPacyd) 2% (since a + ¢ = 1(r) and 2" ~ e €

1dV)

~ (xaybxcyd)azb y dm—cy—bx—a>a(xaybxcyd)zd

~ aty 2yt (atyPacy )z (by (iv))

~ xayazby—a+bxcydzd

~ xtytzbyTetbpeyate=bd (since a+c=b+d=1(r) and 2" ~ e € IdV)

~ xaybyaszby7a+bxcyaszfbybfayfbyazbyczd
~ xaybszcszyfbyazbyczd (by (1))

~ 2% (y2lyez?)bac (2~ Y2 TPy m9) (y?2Py2?) (by (iv))
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b d\—b+1

~ xa(yazbyczd) xc(yazbycz )
~ 2%(y* 2Py 21) 2 (y 2Py 2?)? (since b+ d = 1(r) and 2" ~ e € IdV)

— 51f(x, f(y.2))]

We will show that the application of o to any identity in V' gives again an identity
inV. Let s~ te IdV. Since we have already checked that the application of
o to the group identities gives again identities in V' we can consider the terms s
and t as semigroup words over the alphabet X*. So there are natural numbers
j,m>1and si,...,55,t1,....,t,, € X* such that s = sy...5; and t =#;...t,,.

We will show by induction on j that

s;’-*a...sll’fas‘f...s? € 1dV.

ols1...55] = s7...57

First, we remark that from (i) it follows a™ty™a" zx~ "2y My~ ™ =~ g™ z"2

yMaT ez T 22y 2T e,

Y

xnlymxnzzx—nzy—mm—nl ~ $n1+n2ym2y_mx_(n2+n2) (V)

for any integers ny, ng, m.

If j = 1 then we have G[s1] = s; ~ s"7¢ (since b+ d = 1(r) and 2" =~ e € IdV)
~ sbsd

~ 59507 5.

Suppose that the statement is true for j = k, ie. O[s1...sx] =~ s‘f...sgszfa
s57%s¢...s¢ € IdV (hypothesis). We put r := s...5.

Then for j = k + 1 holds o[f(r, sk11)] = o[r]*sh, 0[r] st 4
~olr)*sth ,olr] " sl | (since a4+ c=1(r) and 2" ~ e € IdV)

~ Glr|*sy 1 Glr]alrlsiy

a a . b—a b—a .d d\a b —d —d _—b+a —b+a _—a —a\a( .a a
(59 sy “osy Mstsh) sy (5 Teesy T8 T s T s s ) (5T

Q

b—a b—a .d d\ .d .

sy "8y “st..8)sy . (by hypothesis)

~ a .a+b—a+d a+b—a+d a b—a _b—a _.d_d\a b —d _—d _—b+a _—b+a _—a
~ (sis3 Sk sisp sy sisp) siyq (s, “s1 U8y Sk Sk

s,;fl_b'“‘_d...55“_b+“_d51_a)a(s‘f...sﬁsz_“...slj_asf...sﬁ)sgﬂ (by (v))
~ (3%52...5k_1szs§sﬁ)asz+l(s,;dsl_cs,;bs,;ll...32_18{“)“(3?...3%32‘“...511’_“ d
..si)sd | (sincea+c=b+d=1(r) and 2" ~ e € IdV)

—(b+d) — 1 - _ _
(s‘f“sQ...sk,lserd)“si_H(sk( + )skil...s2 s) (aﬂ))a(s%...s%sz @ sbmagd
-5i)sig (By (V)
~ (5152...5k_13k)"52+1(s,zls,;ll...52_151_1)a(s‘f...SZSZ_“...s’{_asil...sg)sgﬂ
sincea+c=b+d=1(r) and 2" = e € IdV)
~ (s%...sg)sz_ﬂ(s;“...sfa)(s%...szszﬂl...slfas‘f...sg)sﬁﬂ (it follows from (iv))

~ o a.a b—a b—a b—a .d d.d
~ Sl"'5k8k+lsk+18k S 81"'Sk8k+1'

Q

Similarly, one can show that [t] ~ t§..t¢,t5- #5794, % € IdV. Now we
substitute in s ~ t each w € X* by w®, w’=?, and w?, respectively. So we get
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the following identities satisfied in V:

a a a a
sll)s] ;: tl...tng,

—a —a —a b—a
81 sy R Lty

st..sd ~ bl

Q

th-a b7 € 1dV. These

~ a a tb—a b—a
A tetetba b

Moreover, since V is self-dual we have sg_a...sl{_“

. RS . a a b—a b—a _d
three identities provide —sf..sfs;™%..s] “s{...s

td.td € IdV, ie. o[s] =o[t] € IdV.
Consequently, the application of any o € H, to any identity of V gives again
an identity in V', i.e. V is H,-solid. O

<o

An open problem is the characterization of the lattice S{/ for any given
monoid M. For the commutative case we have given the answer in [4]:

Proposition 17. Let M be a monoid of hypersubstitutions and V' be a variety
of commutative groups. Then V is M-solid iff V' C Vgid(M).

In this paper we give the answer for a generalization of the commutative
case.

Remark 18. Let Q := ({%e, +i,%j, +k}; ~L.e) be the quaternion
group. The commutative law is not valid in Q. On the other hand we have
a’> = +e and te-b = +b = b- +e for all a,b € {*e,+i,+j,+k}. Thus
22y ~ yx? is an identity in Q. This motivates us to consider varieties of groups
satisfying x2y ~ ya?.

The next theorem characterizes the lattice of all M-solid varieties of groups
satisfying z2y ~ yx? for any given monoid M € H,,;.

Definition 19. Let 0 € Hyp with o(f) ~ z%y*2.. x%n-1y* where 1 < n €
N,as, ...,a9n,—1 € Z\ {0} and a1, as, € Z.

o is said to be y-odd if there is an i € {1,..n} such that as; is odd and
ay, ..., a2i_1 are even.

For example, any o € Hyp with o(f) = xa~tyyzay~!

is y-odd.

Theorem 20. Let p be a prime number and M be a submonoid of Hyp with
M C Hy,. A variety V' of groups satisfying 22y ~ yx? is M-solid iff 2P ~ e €
1dV and V is self-dual if there exists some y-odd hypersubstitution o € M.

Proof. Suppose that zP ~ e € IdV and V is self-dual if there exists some y-odd
hypersubstitution o € M. We show that for any ¢ € M holds

o~y og if o is y-odd and
o ~y 0;q otherwise.
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Let 0 € M with o(f) ~ a®y®..x% ~1y*r where 1 < r € N,ag,...,a2,-1 €
Z\ {0} and a1,aq, € Z. Using 2%y ~ yz? it is easy to calculate that from
o(f) ~ z®y®2.. .x%2r-1y%2r it follows o(f) ~ yry®a® or o(f) ~ y*tizb*tl if o
is y — odd and o(f) ~ zyz®y® or o(f) ~ xH1yb+! otherwise for some integer
a,b. Because of 2P =~ e € IdV we can assume that 0 < a,b < p — 1. Because of
a+1=1(p) and b+1 = 1(p) (since M C H,) we get a = b= 0. Thus o(f) ~ yz
if o is y-odd and o (f) ~ xy otherwise. Clearly, o(g) ~ 2"P~! for some integer
r. Using 2P ~ e we get o(g) ~ 1. Thus 0 ~y o4 if 0 is y-odd and o ~y 04g
otherwise. Consequently, any ¢ € M is V-equivalent to o;q or og.

If there is no y-odd hypersubsitution ¢ € M then all o € M are V-equivalent
to 0,4 and V' is M-solid (see [6]).

If there is some ¢ € M which is y-odd then V is self-dual and since each ¢ € M
is V-equivalent to o;4 or o4, V is M-solid (see [6]).

Suppose that V' is M-solid. Then a2 ~ ¢ € IdV by Lemma 11. We have to
consider the case that there is a y-odd hypersubstitution o € M. We have
already shown that then o ~y 04. Since V is M-solid, the application of o to
any identity in V gives again an identity in V. Thus the application of o4 to
any identity in V' is also an identity in V' (see [6]), i.e. V is self-dual. a
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