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ON CENTRALIZERS OF MONOIDS

Hajime Machida1, Ivo G. Rosenberg2

Abstract. For a monoid M of k-valued unary operations, the centralizer
M∗ is the clone consisting of all k-valued multi-variable operations which
commute with every operation in M . First we give a sufficient condition
for a monoid M to have the least clone as its centralizer. Then using
this condition we determine centralizers of all monoids containing the
symmetric group.
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1. Preliminaries

Let k = {0, 1, . . . , k − 1} for a fixed integer k ≥ 2. For n > 0 let O(n)
k be

the set of all n-ary operations over k, i.e., the set of all functions from kn into
k. Set Ok =

⋃∞
n=1O(n)

k . A projection en
i over k, for 1 ≤ i ≤ n, is defined by

en
i (x1, . . . , xi, . . . , xn) = xi for every (x1, . . . , xn) ∈ kn. The set of all projections

over k is denoted by Jk.
A subset C of Ok is a clone on k if (i) C is closed under (functional) compo-

sition and (ii) C contains Jk. The set of all clones on k is a lattice with respect
to inclusion. In this lattice, Ok is the greatest clone and Jk is the least clone.
It is called the lattice of clones on k and is denoted by Lk. The structure of
L2 is completely known, but the structure of Lk for any k ≥ 3 is still largely
unknown.

An operation f ∈ O(n)
k commutes (or permutes) with an operation g ∈ O(m)

k ,
denoted by f ⊥ g, if for every m× n matrix B = (xij) over k it holds that

f(g(x11, . . . , xm1), . . . , g(x1n, . . . , xmn)) = g(f(x11, . . . , x1n), . . . , f(xm1, . . . , xmn)).

For any subset G of Ok, the centralizer G∗ of G is defined to be the set of all
operations f which commutes with every g in G, i.e.,

G∗ = { f ∈ Ok | f ⊥ g for all g ∈ G }.
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It is clear that G∗ is a clone for any subset G of Ok, i.e., G∗ ∈ Lk.
A transformation monoid (or, simply, a monoid ) on k is defined as a composi-

tion-closed subset of unary operations on k containing the identity operation,
that is, a subset M of O(1)

k is a (transformation) monoid on k if (i) M is closed
under composition and (ii) the identity operation idk (= e1

1) belongs to M . The
set of all monoids on k is also a lattice with respect to inclusion. The lattice
of monoids on k is denoted by Mk. Mk is a finite lattice, but its structure is
quite complicated when k is large.

The purpose of this paper is to study the centralizers of monoids of unary
operations instead of centralizers of any subsets of Ok. So, we examine more
closely the definition of a centralizer of a monoid of unary operations. For a
monoid M in Mk, the centralizer of M is defined as follows:

M∗ = { f ∈ Ok | f ⊥ s for all s ∈ M }
=

⋃
n>0

{ f ∈ O(n)
k | f(s(x1), . . . , s(xn)) = s(f(x1, . . . , xn))

for every (x1, x2, . . . , xn) ∈ kn and for all s ∈ M }.

Note that a unary operation s ∈ O(1)
k induces a binary relation s2 such that

s2 = { (x, s(x)) | x ∈ k }

and that, for f ∈ O(n)
k and s ∈ O(1)

k , f ∈ Pol s2 if and only if

f(s(x1), s(x2), . . . , s(xn)) = s(f(x1, x2, . . . , xn))

for every (x1, x2, . . . , xn) ∈ kn. In other words, f ∈ Pol s2 if and only if s is an
endomorphism of the algebra 〈k; {f}〉.

Hence, for a monoid M in Mk, the centralizer M∗ of M is characterized as

M∗ =
⋂

s∈M

Pol s2.

For a subset S of O(1)
k the monoid generated by S is defined to be the least

monoid containing S, and is denoted by 〈S〉. The following property justifies us
to consider centralizers only of monoids instead of centralizers of all subsets of
O(1)

k . The proof is straightforward from the definition.

Proposition 1.1 For a subset S of O(1)
k let M ∈Mk be the monoid generated

by S, i.e., M = 〈S〉. Then S∗ = M∗.

2. Useful Conditions

Hereafter, we assume k ≥ 3, unless otherwise stated.
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In [MR 04] we presented a sufficient condition for a monoid M to satisfy
M∗ = Jk, i.e., a condition which induces the centralizer M∗ to be the least
clone.

Properties: Let M ∈Mk.

I. (Partial separation property)
For all a, b, c, d ∈ k, if {a, b} 6= {c, d} and c 6= d then M contains f (= fab

cd )
which satisfies the following:

f(a) = f(b) and f(c) 6= f(d).

II. (Fixed-point-free property)
For every i ∈ k, M contains gi which satisfies gi(i) 6= i.

The next theorem states a sufficient condition for a monoid M to satisfy
M∗ = Jk, whose proof appears in [MR 04]. However, for the reader’s conve-
nience, we reproduce the proof, with certain modification, in the final section
of this paper.

Theorem 2.1 For any M ∈ Mk, if M satisfies both Properties I and II then
M∗ = Jk.

There is another sufficient condition which is a bit weaker but, in most cases,
more convenient to use than the above condition.

Additional Property: Let M ∈Mk.

I’. For every i ∈ k, M contains fi which satisfies f−1
i (α) = k \ {i} for some

α ∈ k.

Corollary 2.2 For any M ∈Mk, if M satisfies both Properties I ′ and II then
M∗ = Jk.

Proof. It is easy to see that fc or fd in Property I’ serves as fab
cd in Property

I and thus Property I follows from Property I’. 2

3. Centralizers of Monoids Containing the Symmetric Group

We denote by Sk the symmetric group on k. In this section we determine
centralizers of all monoids which contain Sk.

Before we proceed, it is worth noting that the restriction of ∗-operator to
the set of permutation groups, i.e., subgroups of Sk, on k is injective, that is,
for any permutation groups G1 and G2 on k, G∗1 = G∗2 implies G1 = G2. This
fact gives a clear contrast to what follows below.
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3.1 The Symmetric Group Sk

We characterize the centralizer S∗k of the symmetric group Sk. An operation
f in S∗k is called a homogeneous operation. Note that the following result was
known by Marczewski [Marcz64]. The following definitions are from [MMR 01].

For n-tuples (x1, . . . , xn) and (y1, . . . , yn) ∈ kn, (x1, . . . , xn) is similar to
(y1, . . . , yn) if the following is satisfied:

xi = xj ⇐⇒ yi = yj for any 1 ≤ i, j ≤ n.

Definition 3.1 An operation f ∈ O(n)
k is synchronous (or, pattern) if the fol-

lowing condition is satisfied for any element (x1, . . . , xn) in kn:
(i) If |{x1, . . . , xn}| 6= k − 1 then

(1) f(x1, . . . , xn) = x` for some 1 ≤ ` ≤ n, and

(2) f(y1, . . . , yn) = y` for any (y1, . . . , yn) ∈ kn which is similar to (x1, . . . , xn).

(ii) If |{x1, . . . , xn}| = k − 1 and f(x1, . . . , xn) = u for some u ∈ k then

(1) u = x` for some 1 ≤ ` ≤ n implies f(y1, . . . , yn) = y` for any (y1, . . . , yn) ∈
kn which is similar to (x1, . . . , xn), and

(2) u ∈ k \ {x1, . . . , xn} implies f(y1, . . . , yn) = v, where v ∈ k \ {y1, . . . , yn}
for any (y1, . . . , yn) ∈ kn which is similar to (x1, . . . , xn).

The set of all synchronous operations in Ok is denoted by SYN k.

It is known ([Marcz64]; Also see [Sze 86] and [MR 04]) that the centralizer
S∗k of Sk is the clone consisting of synchronous operations. Thus,

Proposition 3.1 For k ≥ 2, it holds that S∗k = SYN k.

3.2 The Union of Sk and CONST

For a ∈ k, let ca ∈ O(1)
k be the unary constant operation such that ca(x) = a

for all x ∈ k. Denote by CONST the set of all constant operations in O(1)
k , i.e.,

CONST = { ca | a ∈k }.

Lemma 3.2 (i) The union Sk ∪ CONST is a monoid and (ii) it covers Sk,
i.e., for any M ∈Mk if Sk ⊂ M ⊆ Sk ∪ CONST then M = Sk ∪ CONST.

Proof. (i) It is clear that Sk ∪CONST is a monoid. (ii) It is easy to see that
Sk ⊂ M ⊆ Sk ∪ CONST implies the existence of a unary constant operation in
M . Suppose ca ∈ M for some a ∈ k. Then, for any b ∈ k, cb = (a b) ◦ ca, where
(a b) is a transposition in Sk interchanging a and b. It follows that cb ∈ M .
Hence CONST ⊆ M holds and the claim (ii) follows. 2
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An operation f ∈ Ok is idempotent if f(a, . . . , a) = a for all a ∈ k. We
observe without difficulty that the centralizer (Sk ∪ CONST)∗ is the set of
operations in Ok which are both synchronous and idempotent. However, it is
easy to see that a synchronous operation is always idempotent when k ≥ 3.
Hence, (Sk ∪ CONST)∗ is identical to the set of synchronous operations when
k ≥ 3.

Proposition 3.3 For k = 2, (S2 ∪CONST)∗ = { f ∈ SYN 2 | f : idempotent }.
For k ≥ 3, (Sk ∪ CONST)∗ = SYN k (= S∗k).

3.3 Other Monoids Containing Sk

Lemma 3.4 Let M be a monoid in Mk. If M strictly contains Sk, i.e., Sk ⊂
M ⊆ O(1)

k , then Sk ∪ CONST ⊆ M .

Proof. Since M strictly contains Sk, there exists u ∈ M such that # Im(u) <
k. Here, Im(u) denotes the image of u and, for a finite set X, #X denotes the
number of elements in X.
Claim 1 If # Im(u) = 1 then Sk ∪ CONST ⊆ M .
Proof of Claim 1 Immediate from Lemma 3.2 (ii).
Claim 2 If # Im(u) = r where 1 < r < k then there exists v ∈ M such that
# Im(v) < r.
Proof of Claim 2 Let R be the range of u, and u|R be the restriction of u to
R.

(i) Suppose that u|R is not a permutation on R. Then let v = u ◦ u. It is
clear that # Im(v) < #Im(u) = r.

(ii) Suppose that u|R is a permutation on R. Since r < k by assumption,
there exist a ∈ R and b ∈ k \R such that u(a) = u(b). Let c = u(a)(= u(b)).
Choose d ∈ k such that d ∈ Im(u) and c 6= d. Then construct v as v = u◦(b d)◦u
where (b d) is a transposition in Sk interchanging b and d. For this v it clearly
holds that # Im(v) < #Im(u) = r, because u|R is a permutation on R and
u(d) 6∈ Im(v).

Claims 1 and 2 suffice to show the desired property: Sk ∪ CONST ⊆ M . 2

Lemma 3.5 Let k ≥ 5. Let M be a monoid in Mk. If M strictly contains
Sk ∪ CONST, i.e., Sk ∪ CONST ⊂ M ⊆ O(1)

k , then M satisfies Property I.

Proof. The assumption Sk ∪ CONST ⊂ M ⊆ O(1)
k asserts that there exists

u ∈ M such that 1 < #Im(u) < k. Then the number t (= t(u)) of blocks of the
equivalence relation keru satisfies 1 < t < k.

Now, suppose that a, b, c and d in k are given such that {a, b} 6= {c, d} and
c 6= d.
Case 1: t = 2
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Since k ≥ 5, one block B must have 3 or 4 elements. Choose a permutation
σ ∈ Sk which sends (mutually distinct elements of) a, b and c to mutually
distinct elements in B, and d to an element in k \B. Then define f = u ◦ σ.
Case 2: 2 < t < k

Let a block B1 consist of 2 or more elements and B2 and B3 be two other
blocks. Choose a permutation τ ∈ Sk which sends a and b to mutually distinct
elements in B1 if a 6= b and to an element if a = b, c to an element in B2 and d
to an element in B3. Then define f = u ◦ τ .

In both cases, clearly f belongs to M and f serves as f (= fab
cd ) in Prop-

erty I, namely, f satisfies the required property: f(a) = f(b) and f(c) 6= f(d). 2

Let k = 4. For a unary operation u in O(1)
4 the kernel of u is defined by

keru = {(x, y) ∈ 42 | u(x) = u(y)}.

Clearly, ker u is an equivalence relation on k. An equivalence class is called a
block.

Let M2 be the monoid consisting of unary operations u of O(1)
4 satisfying

one of the following:

(i) keru has four singleton blocks. (i.e., u is a permutation on 4.)

(ii) keru has one block. (i.e., u is a constant function on 4.)

(iii) keru has two blocks of size 2. (i.e., u sends two elements in 4 to an
element in 4 and the other two to another element in 4.)

Analogously to Lemma 3.5, we have the following, excluding M2.

Lemma 3.6 Let k = 4. Let M be a monoid in M4 \ {M2}. If M strictly
contains S4 ∪ CONST then M satisfies Property I.

Proof. M contains u whose kernel has either (i) two blocks, one of which
consists of 3 elements, or (ii) three blocks, one of which consists of 2 elements.
Then, the proof is carried out similarly to that of the previous lemma. 2

Proposition 3.7 Let M be a monoid in Mk which strictly contains Sk ∪
CONST. Then the following holds.

(i) If k = 3 then M∗ = Jk.

(ii) If k = 4 and M 6= M2 then M∗ = Jk.

(iii) If k ≥ 5 then M∗ = Jk.
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Proof. (i) Let k = 3. If M strictly contains Sk ∪ CONST, then M is clearly
the set of all unary operations, i.e., M = O(1)

3 . Hence M∗ = Jk. (ii) By Lemma
3.6, M satisfies Property I. Clearly, M also satisfies Property II. Hence, the
result follows from Theorem 2.1. (iii) Similarly, the result follows from Lemma
3.5 and Theorem 2.1. 2

Remark Let k = 4. The centralizer M∗
2 of the monoid M2 is not the least

clone. In fact, M2 contains, e.g., the following ternary operation m ∈ O(3)
4 .

m(x1, x2, x3) =





x1 if x1 = x2 = x3

x1 if x1 6= x2 = x3

x2 if x2 6= x1 = x3

x3 if x3 6= x1 = x2

y if {x1, x2, x3, y} = 4.

For each element x of 4 let x1, x0 in 2 be elements satisfying x = 2x1 + x0. Let
q ∈ O(m)

4 be an operation defined by

q(x1, . . . , xm) ≈ 2·(x1
i1 + x1

i2 + · · ·+ x1
i2`+1

) mod 2 + ·(x0
i1 + x0

i2 + · · ·+ x0
i2`+1

) mod 2

where m ≥ 1, ` ≥ 0 and 1 ≤ i1 < · · · < i2`+1 ≤ m. Denote by Q2 the set of all
such operations q. Then it follows that M∗

2 = Q2. (Proof will appear elsewhere.)

We summarize as follows:

Theorem 3.8 Let k ≥ 3. For any monoid M ∈ Mk containing Sk, the cen-
tralizer M∗ of M is as follows:

(1) S∗k = SYN k.

(2) (Sk ∪ CONST)∗ = SYN k.

(3A) For k = 3 or k ≥ 5, if M 6∈ {Sk, Sk ∪ CONST} then M∗ = Jk.

(3B) For k = 4, if M 6∈ {S4, S4 ∪ CONST, M2} then M∗ = J4.

(3C) For k = 4, M∗ = Q2.

4. An Application of Corollary 2.2

Here we show a typical application of Corollary 2.2 to prove M∗ = Jk for
some monoid M .

For each i ∈ k let χi ∈ O(1)
k be defined by χi(i) = 1 and χi(x) = 0 if x 6= i.

Set Γk = {χi | i ∈ k }. For each i ∈ k let χi(x) = 1− χi(x) for all x ∈ k. The
elements of the monoid 〈Γk〉 generated by Γk is as follows:

〈Γk〉 = {χ0, χ1, . . . , χk−1, χ0, χ1, . . . , χk−1, c0, c1, idk}.
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Define a submonoid Hk of 〈Γk〉 by

Hk = {χ1, . . . , χk−1, χ0, χ2, . . . , χk−1, c0, c1, idk},

that is, Hk = 〈Γk〉 \ {χ0, χ1}. It is easy to see that Hk is also a monoid. We
prove the following:

Proposition 4.1 For every k ≥ 3, it holds that H∗
k = Jk.

Proof. We show that Properties I’ and II hold for Hk. Property I’ is verified
by the following table which gives an example of fi in Property I’ belonging to
Hk for every i ∈ k.

i 0 1 2 · · · k − 2 k − 1
fi χ0 χ1 χ2 · · · χk−2 χk−1

Next, it is easy to see that Property II holds for Hk. 2

Since Hk is a subset of 〈Γk〉, the above proposition immediately implies:

Corollary 4.2 〈Γk〉∗ = Jk for every k ≥ 3.

Moreover, by looking at the table in the proof of Proposition 4.1, we can
readily find even a smaller monoid M which satisfies M∗ = Jk. Define H ′

k as

H ′
k = {χ1, . . . , χk−1, χ0, c0, c1, idk}.

H ′
k is a monoid. It is clear that Properties I’ and II hold for H ′

k. Hence we have:

Corollary 4.3 (H ′
k)∗ = Jk for every k ≥ 3.

5. Proof of Theorem 2.1

In this section we present a proof of Theorem 2.1. We shall prove Propositon
A. It is straightforward that Theorem 2.1 follows from Proposition A.

Proposition A For any M ∈Mk, the following holds.

(1) If M satisfies Property I then, for every f ∈ M∗, f is either a projection
or a constant operation.

(2) If M satisfies Property II then, for every f ∈ M∗, f is not a constant
operation.

The proof of Proposition A begins with the next lemma.
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Lemma 5.1 Let f ∈ O(n)
k . If |Imf | ≥ 2 then there exist i ∈ {1, 2, . . . , n},

a, b ∈ k, u ∈ ki−1 and v ∈ kn−i such that

f(u, a, v) 6= f(u, b, v).

Proof. Consider the (undirected) graph G = (V,E) where the vertex set V
is kn and the edge set E consists of all (x,y) such that x and y differ exactly
at one place, i.e., the “Hamming distance” of x and y is one. To each vertex
x = (x1, . . . , xn) in V , put the label f(x1, . . . , xn)(∈ k). Denote this labeled
graph by H(f).

Now the assumption |Imf | ≥ 2 implies that there are at least two different
labels inH(f). Hence there must be a pair (x, y) of neighboring vertices ofH(f)
such that the label of x is different from the label of y. For these x = (u, a,v)
and y = (u, b,v), we have f(u, a,v) 6= f(u, b, v) as desired. 2

Let f ∈ O(n)
k and s ∈ O(1)

k be n-ary and unary operations. Suppose that
f(a1, . . . , an) = α for some a1, . . . , an, α ∈ k. Then by saying ‘apply s to f ’ we
mean to construct the expression f(s(a1), . . . , s(an)) = s(α).

Lemma 5.2 Let f ∈ O(n)
k satisfy Property I. For i ∈ {1, 2, . . . , n}, a, b ∈ k,

u ∈ ki−1 and v ∈ kn−i, let
{

f(u, a, v) = α
f(u, b, v) = β

for some α, β ∈ k. If α 6= β, then it follows that α = a and β = b.

Proof. Note that α 6= β forces a 6= b. We divide the case into two.
Case 1 {a, b} 6= {α, β} :

By assumption M contains fab
αβ . Apply fab

αβ to
{

f(u, a,v) = α
f(u, b,v) = β

Then we have a contradiction because fab
αβ(a) = fab

αβ(b) and fab
αβ(α) 6= fab

αβ(β).

Case 2 {a, b} = {α, β} :
Since a 6= b and α 6= β, we have either “a = α and b = β” or “a = β and

b = α”.

Subcase 2–1 a = α and b = β :
In this case, we are done.

Subcase 2–2 a = β and b = α :
We have{

f(u, a, v) = b (1)
f(u, b, v) = a. (2)
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Since k ≥ 3 by assumption, k \ {a, b} is non-empty. Take any c ∈ k \ {a, b}
and let

f(u, c, v) = d. (3)

If d 6∈ {a, b}, apply fac
bd to (1) and (3). Then we have a contradiction because

fac
bd (a) = fac

bd (c) and fac
bd (b) 6= fac

bd (d).
If d = a, then b 6= d. Apply fac

bd to (1) and (3). Then we have a contradiction
as above.

If d = b, then a 6= d. Apply f bc
ad to (2) and (3). Then we have a contradiction

because f bc
ad(b) = f bc

ad(c) and f bc
ad(a) 6= f bc

ad(d).

To conclude, we must have a = α and b = β (Subcase 2–1). 2

Lemma 5.3 Let f ∈ O(n)
k satisfy Property I. For i ∈ {1, 2, . . . , n}, a, b ∈ k,

u ∈ ki−1 and v ∈ kn−i, suppose that a 6= b and that f satisfies the following:
{

f(u, a, v) = a (4)
f(u, b, v) = b. (5)

Then it follows that f(u, x, v) = x for every x ∈ k.

Proof. Suppose that

f(u, x, v) = y (6)

for some x, y ∈ k where x 6= y.
If y 6= a, apply fax

ay to the equations (4) and (6). Then we have
{

f(u’, fax
ay (a), v’) = fax

ay (a) (4)’
f(u’, fax

ay (x), v’) = fax
ay (y) (6)’

which is a contradiction because fax
ay (a) = fax

ay (x) and fax
ay (a) 6= fax

ay (y).
If y 6= b, apply f bx

by to the equations (5) and (6). Then we have
{

f(u’, f bx
by (b), v’) = f bx

by (b) (5)’
f(u’, f bx

by (x), v’) = f bx
by (y) (6)”

which is a contradiction because f bx
by (a) = f bx

by (x) and f bx
by (a) 6= f bx

by (y).
Since a 6= b, either y 6= a or y 6= b holds, and the assertion is proved. 2

To summarize, Lemmas 5.1, 5.2 and 5.3 imply:

Lemma 5.4 Let f ∈ O(n)
k satisfy Property I. If |Imf | ≥ 2 then there exist

i ∈ {1, 2, . . . , n}, u ∈ ki−1 and v ∈ kn−i such that

f(u, x, v) = x

for every x ∈ k.
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Proof. Immediate. 2

Lemma 5.5 Let f ∈ O(n)
k satisfy Property I. If for some i ∈ {1, 2, . . . , n} and

some u ∈ ki−1 and v ∈ kn−i it holds that

f(u, x, v) = x for every x ∈ k

then for any u’ ∈ ki−1 and v’ ∈ kn−i it holds that

f(u’, x, v’) = x for every x ∈ k.

Proof. For brevity, we assume that

f(x, c, w) = x

for some c ∈ k and w ∈ kn−2 and for every x ∈ k, that is, i = 1, u is null and
v = (c, w). Then we shall show that for every d ∈ k

f(x, d, w) = x

holds for every x ∈ k. It is clear that this suffices to prove the lemma. (By
repeating this procedure, we obtain f(x, v’) = x for any v’ ∈ kn−1 from
f(x,v) = x for some particular v ∈ kn−1.)

Moreover, we assume without loss of generality that c = 0. I.e., we have

f(x, 0, w) = x (7)

for every x ∈ k. We shall show that for every d ∈ {1, 2, . . . , k − 1} and every
x ∈ k it holds that

f(x, d, w) = x.

Without loss of generality, again, we may assume that d = 1.

Case 1 x ∈ {2, 3, . . . , k − 1} :
Let

f(x, 1, w) = y (8)

for some y ∈ k. Suppose y 6= x. Since x 6∈ {0, 1}, we have {x, y} 6= {0, 1}. So,
apply f01

xy to (7) and (8) and we obtain
{

f(f01
xy(x), f01

xy(0), w’) = f01
xy(x) (7)’

f(f01
xy(x), f01

xy(1), w’) = f01
xy(y) (8)’

which is a contradiction because f01
xy(0) = f01

xy(1) and f01
xy(x) 6= f01

xy(y). Hence
we have

f(x, 1, w) = x (9)

for any x ∈ {2, 3, . . . , k − 1}.
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Case 2 x = 0 :
Let y := f(0, 1,w). We consider two subcases.

Claim 2–1. y 6∈ {2, 3, . . . , k − 1}.
(Proof) It is enough to show that y 6= 2, because proof of y 6= j for

j ∈ {3, . . . , k− 1} can be carried out analogously. Suppose to the contrary that

f(0, 1,w) = 2. (10)

Then apply f01
02 to (7) and (10). We obtain

{
f(f01

02 (0), f01
02 (0), w’) = f01

02 (0) (7)’
f(f01

02 (0), f01
02 (1), w’) = f01

02 (2) (10)’

which is a contradiction because f01
02 (0) = f01

02 (1) and f01
02 (0) 6= f01

02 (2). Thus we
have proved y 6= 2.

Similarly, we can show that f(0, 1, w) 6= y for any y ∈ {3, 4, . . . , k− 1}. 3

Claim 2–2. y 6= 1.
(Proof) Suppose to the contrary that

f(0, 1,w) = 1. (11)

Then apply f02
12 to (9) with x = 2 and to (11). We obtain

{
f(f02

12 (2), f02
12 (1), w’) = f02

12 (2) (9)’
f(f02

12 (0), f02
12 (1), w’) = f02

12 (1) (11)’

which is a contradiction because f02
12 (0) = f02

12 (2) and f02
12 (1) 6= f02

12 (2). Thus we
have shown y 6= 1. 3

The remaining possibility for the value of f(0, 1, w) is 0, i.e., f(0, 1, w) =
0.

Case 3 x = 1 :
Let z := f(1, 1,w). We consider two subcases.

Claim 3–1. z 6∈ {2, 3, . . . , k − 1}.
(Proof) By the same reason as the proof of Claim 2-1, it is enough to show

that y 6= 2. Suppose to the contrary that

f(1, 1,w) = 2. (12)

Then apply f01
02 to (7) and (12). Then we get

{
f(f01

02 (0), f01
02 (0), w’) = f01

02 (0) (7)’
f(f01

02 (1), f01
02 (1), w’) = f01

02 (2) (12)’

which is a contradiction because f01
02 (0) = f01

02 (1) and f01
02 (0) 6= f01

02 (2). Thus we
have shown z 6= 2.
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Similarly, we can show that f(1, 1, w) 6= z for any z ∈ {3, 4, . . . , k− 1}. 3

Claim 3–2. z 6= 0.
(Proof) Suppose to the contrary that

f(1, 1, w) = 0. (13)

Then apply f12
02 to (9) with x = 2 and to (13) we obtain

{
f(f12

02 (2), f12
02 (1),w’) = f12

02 (2) (9)’
f(f12

02 (1), f12
02 (1),w’) = f12

02 (0) (13)’

which is a contradiction because f12
02 (1) = f12

02 (2) and f12
02 (0) 6= f12

02 (2). Thus we
have shown z 6= 0. 3

The remaining possibility for the value of f(1, 1, w) is 1, i.e., f(1, 1, w) =
1.

Altogether, we have shown that f(x, 1,w) = x for every x ∈ k.
Analogously, we can verify that for every d ∈ {2, 3, . . . , k − 1} and every

x ∈ k we have

f(x, d, w) = x

as desired. 2

Proof of Proposition A (1) :
From Lemmas 5.4 and 5.5 it follows that if f is not a constant operation,

that is, if f satisfies |Im f | ≥ 2, then f is a projection. 2

Proof of Proposition A (2) :
For f ∈ M∗∩O(n)

k , suppose that f is a constant operation taking value i ∈ k,
i.e., f(x1, . . . , xn) = i for all (x1, . . . , xn) ∈ kn. Property II asserts that there
exists gi in M which satisfies gi(i) 6= i. Then we have f(gi(x1), . . . , gi(xn)) = i
and gi(f(x1, . . . , xn)) = gi(i) 6= i which contradicts the assumption f ∈ M∗. 2

Acknowledgment: The authors are grateful to an anonymous referee for
a valuable remark which led to improve the contents of the paper.
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