（eds．I．Dolinka，A．TepavČević）

ON CENTRALIZERS OF MONOIDS

Hajime Machida ${ }^{1}$ ，Ivo G．Rosenberg ${ }^{2}$

Abstract

For a monoid M of k－valued unary operations，the centralizer M^{*} is the clone consisting of all k－valued multi－variable operations which commute with every operation in M ．First we give a sufficient condition for a monoid M to have the least clone as its centralizer．Then using this condition we determine centralizers of all monoids containing the symmetric group．

AMS Mathematics Subject Classification（2000）：

Key words and phrases：Clone；centralizer；monoid

1．Preliminaries

Let $\boldsymbol{k}=\{0,1, \ldots, k-1\}$ for a fixed integer $k \geq 2$ ．For $n>0$ let $\mathcal{O}_{k}^{(n)}$ be the set of all n－ary operations over \boldsymbol{k} ，i．e．，the set of all functions from \boldsymbol{k}^{n} into \boldsymbol{k} ．Set $\mathcal{O}_{k}=\bigcup_{n=1}^{\infty} \mathcal{O}_{k}^{(n)}$ ．A projection e_{i}^{n} over \boldsymbol{k} ，for $1 \leq i \leq n$ ，is defined by $e_{i}^{n}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i}$ for every $\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{k}^{n}$ ．The set of all projections over \boldsymbol{k} is denoted by \mathcal{J}_{k} ．

A subset C of \mathcal{O}_{k} is a clone on \boldsymbol{k} if（i）C is closed under（functional）compo－ sition and（ii）C contains \mathcal{J}_{k} ．The set of all clones on \boldsymbol{k} is a lattice with respect to inclusion．In this lattice， \mathcal{O}_{k} is the greatest clone and \mathcal{J}_{k} is the least clone． It is called the lattice of clones on \boldsymbol{k} and is denoted by \mathcal{L}_{k} ．The structure of \mathcal{L}_{2} is completely known，but the structure of \mathcal{L}_{k} for any $k \geq 3$ is still largely unknown．

An operation $f \in \mathcal{O}_{k}^{(n)}$ commutes（or permutes）with an operation $g \in \mathcal{O}_{k}^{(m)}$ ， denoted by $f \perp g$ ，if for every $m \times n$ matrix $B=\left(x_{i j}\right)$ over \boldsymbol{k} it holds that
$f\left(g\left(x_{11}, \ldots, x_{m 1}\right), \ldots, g\left(x_{1 n}, \ldots, x_{m n}\right)\right)=g\left(f\left(x_{11}, \ldots, x_{1 n}\right), \ldots, f\left(x_{m 1}, \ldots, x_{m n}\right)\right)$.
For any subset G of \mathcal{O}_{k} ，the centralizer G^{*} of G is defined to be the set of all operations f which commutes with every g in G ，i．e．，

$$
G^{*}=\left\{f \in \mathcal{O}_{k} \mid f \perp g \text { for all } g \in G\right\}
$$

[^0]It is clear that G^{*} is a clone for any subset G of \mathcal{O}_{k}, i.e., $G^{*} \in \mathcal{L}_{k}$.
A transformation monoid (or, simply, a monoid) on \boldsymbol{k} is defined as a composi-tion-closed subset of unary operations on \boldsymbol{k} containing the identity operation, that is, a subset M of $\mathcal{O}_{k}^{(1)}$ is a (transformation) monoid on \boldsymbol{k} if (i) M is closed under composition and (ii) the identity operation $\operatorname{id}_{\boldsymbol{k}}\left(=e_{1}^{1}\right)$ belongs to M. The set of all monoids on \boldsymbol{k} is also a lattice with respect to inclusion. The lattice of monoids on \boldsymbol{k} is denoted by $\mathcal{M}_{k} . \mathcal{M}_{k}$ is a finite lattice, but its structure is quite complicated when k is large.

The purpose of this paper is to study the centralizers of monoids of unary operations instead of centralizers of any subsets of \mathcal{O}_{k}. So, we examine more closely the definition of a centralizer of a monoid of unary operations. For a monoid M in \mathcal{M}_{k}, the centralizer of M is defined as follows:

$$
\begin{aligned}
M^{*}= & \left\{f \in \mathcal{O}_{k} \mid f \perp s \text { for all } s \in M\right\} \\
= & \bigcup_{n>0}\left\{f \in \mathcal{O}_{k}^{(n)} \mid f\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right)=s\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right. \\
\quad & \left.\quad \text { for every }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \boldsymbol{k}^{n} \text { and for all } s \in M\right\} .
\end{aligned}
$$

Note that a unary operation $s \in \mathcal{O}_{k}^{(1)}$ induces a binary relation s^{\square} such that

$$
s^{\square}=\{(x, s(x)) \mid x \in \boldsymbol{k}\}
$$

and that, for $f \in \mathcal{O}_{k}^{(n)}$ and $s \in \mathcal{O}_{k}^{(1)}, f \in \operatorname{Pol} s^{\square}$ if and only if

$$
f\left(s\left(x_{1}\right), s\left(x_{2}\right), \ldots, s\left(x_{n}\right)\right)=s\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

for every $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \boldsymbol{k}^{n}$. In other words, $f \in \operatorname{Pol} s^{\square}$ if and only if s is an endomorphism of the algebra $\langle\boldsymbol{k} ;\{f\}\rangle$.

Hence, for a monoid M in \mathcal{M}_{k}, the centralizer M^{*} of M is characterized as

$$
M^{*}=\bigcap_{s \in M} \operatorname{Pol} s^{\square}
$$

For a subset S of $\mathcal{O}_{k}^{(1)}$ the monoid generated by S is defined to be the least monoid containing S, and is denoted by $\langle S\rangle$. The following property justifies us to consider centralizers only of monoids instead of centralizers of all subsets of $\mathcal{O}_{k}^{(1)}$. The proof is straightforward from the definition.

Proposition 1.1 For a subset S of $\mathcal{O}_{k}^{(1)}$ let $M \in \mathcal{M}_{k}$ be the monoid generated by S, i.e., $M=\langle S\rangle$. Then $S^{*}=M^{*}$.

2. Useful Conditions

Hereafter, we assume $k \geq 3$, unless otherwise stated.

In [MR 04] we presented a sufficient condition for a monoid M to satisfy $M^{*}=\mathcal{J}_{k}$, i.e., a condition which induces the centralizer M^{*} to be the least clone.

Properties: Let $M \in \mathcal{M}_{k}$.
I. (Partial separation property)

For all $a, b, c, d \in \boldsymbol{k}$, if $\{a, b\} \neq\{c, d\}$ and $c \neq d$ then M contains $f\left(=f_{c d}^{a b}\right)$ which satisfies the following:

$$
f(a)=f(b) \quad \text { and } \quad f(c) \neq f(d)
$$

II. (Fixed-point-free property)

For every $i \in \boldsymbol{k}, M$ contains g_{i} which satisfies $g_{i}(i) \neq i$.
The next theorem states a sufficient condition for a monoid M to satisfy $M^{*}=\mathcal{J}_{k}$, whose proof appears in [MR 04]. However, for the reader's convenience, we reproduce the proof, with certain modification, in the final section of this paper.

Theorem 2.1 For any $M \in \mathcal{M}_{k}$, if M satisfies both Properties I and $I I$ then $M^{*}=\mathcal{J}_{k}$.

There is another sufficient condition which is a bit weaker but, in most cases, more convenient to use than the above condition.

Additional Property: Let $M \in \mathcal{M}_{k}$.
I'. For every $i \in \boldsymbol{k}, M$ contains f_{i} which satisfies $f_{i}^{-1}(\alpha)=\boldsymbol{k} \backslash\{i\}$ for some $\alpha \in \boldsymbol{k}$.

Corollary 2.2 For any $M \in \mathcal{M}_{k}$, if M satisfies both Properties I^{\prime} and $I I$ then $M^{*}=\mathcal{J}_{k}$.

Proof. It is easy to see that f_{c} or f_{d} in Property I' serves as $f_{c d}^{a b}$ in Property I and thus Property I follows from Property I'.

3. Centralizers of Monoids Containing the Symmetric Group

We denote by S_{k} the symmetric group on \boldsymbol{k}. In this section we determine centralizers of all monoids which contain S_{k}.

Before we proceed, it is worth noting that the restriction of $*$-operator to the set of permutation groups, i.e., subgroups of S_{k}, on \boldsymbol{k} is injective, that is, for any permutation groups G_{1} and G_{2} on $\boldsymbol{k}, G_{1}^{*}=G_{2}^{*}$ implies $G_{1}=G_{2}$. This fact gives a clear contrast to what follows below.

3.1 The Symmetric Group S_{k}

We characterize the centralizer S_{k}^{*} of the symmetric group S_{k}. An operation f in S_{k}^{*} is called a homogeneous operation. Note that the following result was known by Marczewski [Marcz64]. The following definitions are from [MMR 01].

For n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right) \in \boldsymbol{k}^{n},\left(x_{1}, \ldots, x_{n}\right)$ is similar to $\left(y_{1}, \ldots, y_{n}\right)$ if the following is satisfied:

$$
x_{i}=x_{j} \Longleftrightarrow y_{i}=y_{j} \quad \text { for } \quad \text { any } \quad 1 \leq i, j \leq n
$$

Definition 3.1 An operation $f \in \mathcal{O}_{k}^{(n)}$ is synchronous (or, pattern) if the following condition is satisfied for any element $\left(x_{1}, \ldots, x_{n}\right)$ in \boldsymbol{k}^{n} :
(i) If $\left|\left\{x_{1}, \ldots, x_{n}\right\}\right| \neq k-1$ then
(1) $f\left(x_{1}, \ldots, x_{n}\right)=x_{\ell}$ for some $1 \leq \ell \leq n$, and
(2) $f\left(y_{1}, \ldots, y_{n}\right)=y_{\ell}$ for any $\left(y_{1}, \ldots, y_{n}\right) \in \boldsymbol{k}^{n}$ which is similar to $\left(x_{1}, \ldots, x_{n}\right)$.
(ii) If $\left|\left\{x_{1}, \ldots, x_{n}\right\}\right|=k-1$ and $f\left(x_{1}, \ldots, x_{n}\right)=u$ for some $u \in \boldsymbol{k}$ then
(1) $u=x_{\ell}$ for some $1 \leq \ell \leq n$ implies $f\left(y_{1}, \ldots, y_{n}\right)=y_{\ell}$ for any $\left(y_{1}, \ldots, y_{n}\right) \in$ \boldsymbol{k}^{n} which is similar to $\left(x_{1}, \ldots, x_{n}\right)$, and
(2) $u \in \boldsymbol{k} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ implies $f\left(y_{1}, \ldots, y_{n}\right)=v$, where $v \in \boldsymbol{k} \backslash\left\{y_{1}, \ldots, y_{n}\right\}$ for any $\left(y_{1}, \ldots, y_{n}\right) \in \boldsymbol{k}^{n}$ which is similar to $\left(x_{1}, \ldots, x_{n}\right)$.

The set of all synchronous operations in \mathcal{O}_{k} is denoted by $\mathcal{S Y}_{k}$.
It is known ([Marcz64]; Also see [Sze 86] and [MR 04]) that the centralizer S_{k}^{*} of S_{k} is the clone consisting of synchronous operations. Thus,

Proposition 3.1 For $k \geq 2$, it holds that $S_{k}^{*}=\mathcal{S Y N}_{k}$.

3.2 The Union of S_{k} and CONST

For $a \in \boldsymbol{k}$, let $c_{a} \in \mathcal{O}_{k}^{(1)}$ be the unary constant operation such that $c_{a}(x)=a$ for all $x \in \boldsymbol{k}$. Denote by CONST the set of all constant operations in $\mathcal{O}_{k}^{(1)}$, i.e., CONST $=\left\{c_{a} \mid a \in \boldsymbol{k}\right\}$.

Lemma 3.2 (i) The union $S_{k} \cup$ CONST is a monoid and (ii) it covers S_{k}, i.e., for any $M \in \mathcal{M}_{k}$ if $S_{k} \subset M \subseteq S_{k} \cup$ CONST then $M=S_{k} \cup$ CONST.

Proof. (i) It is clear that $S_{k} \cup$ CONST is a monoid. (ii) It is easy to see that $S_{k} \subset M \subseteq S_{k} \cup$ CONST implies the existence of a unary constant operation in M. Suppose $c_{a} \in M$ for some $a \in \boldsymbol{k}$. Then, for any $b \in \boldsymbol{k}, c_{b}=(a b) \circ c_{a}$, where $(a b)$ is a transposition in S_{k} interchanging a and b. It follows that $c_{b} \in M$. Hence CONST $\subseteq M$ holds and the claim (ii) follows.

An operation $f \in \mathcal{O}_{k}$ is idempotent if $f(a, \ldots, a)=a$ for all $a \in \boldsymbol{k}$. We observe without difficulty that the centralizer ($S_{k} \cup$ CONST)* ${ }^{*}$ is the set of operations in \mathcal{O}_{k} which are both synchronous and idempotent. However, it is easy to see that a synchronous operation is always idempotent when $k \geq 3$. Hence, $\left(S_{k} \cup \mathrm{CONST}\right)^{*}$ is identical to the set of synchronous operations when $k \geq 3$.

Proposition 3.3 For $k=2,\left(S_{2} \cup \mathrm{CONST}\right)^{*}=\left\{f \in \mathcal{S Y} \mathcal{N}_{2} \mid f\right.$: idempotent $\}$. For $k \geq 3$, $\left(S_{k} \cup \mathrm{CONST}\right)^{*}=\mathcal{S Y \mathcal { N }}_{k}\left(=S_{k}^{*}\right)$.

3.3 Other Monoids Containing S_{k}

Lemma 3.4 Let M be a monoid in \mathcal{M}_{k}. If M strictly contains S_{k}, i.e., $S_{k} \subset$ $M \subseteq \mathcal{O}_{k}^{(1)}$, then $S_{k} \cup \mathrm{CONST} \subseteq M$.

Proof. \quad Since M strictly contains S_{k}, there exists $u \in M$ such that $\# \operatorname{Im}(u)<$ k. Here, $\operatorname{Im}(u)$ denotes the image of u and, for a finite set $X, \# X$ denotes the number of elements in X.
Claim 1 If $\# \operatorname{Im}(u)=1$ then $S_{k} \cup \operatorname{CONST} \subseteq M$.
Proof of Claim 1 Immediate from Lemma 3.2 (ii).
Claim 2 If $\# \operatorname{Im}(u)=r$ where $1<r<k$ then there exists $v \in M$ such that $\# \operatorname{Im}(v)<r$.
$\underline{\text { Proof of Claim } 2}$ Let R be the range of u, and $\left.u\right|_{R}$ be the restriction of u to R.
(i) Suppose that $\left.u\right|_{R}$ is not a permutation on R. Then let $v=u \circ u$. It is clear that $\# \operatorname{Im}(v)<\# \operatorname{Im}(u)=r$.
(ii) Suppose that $\left.u\right|_{R}$ is a permutation on R. Since $r<k$ by assumption, there exist $a \in R$ and $b \in \boldsymbol{k} \backslash R$ such that $u(a)=u(b)$. Let $c=u(a)(=u(b))$. Choose $d \in \boldsymbol{k}$ such that $d \in \operatorname{Im}(u)$ and $c \neq d$. Then construct v as $v=u \circ(b d) \circ u$ where $(b d)$ is a transposition in S_{k} interchanging b and d. For this v it clearly holds that $\# \operatorname{Im}(v)<\# \operatorname{Im}(u)=r$, because $\left.u\right|_{R}$ is a permutation on R and $u(d) \notin \operatorname{Im}(v)$.

Claims 1 and 2 suffice to show the desired property: $S_{k} \cup \mathrm{CONST} \subseteq M$.
Lemma 3.5 Let $k \geq 5$. Let M be a monoid in \mathcal{M}_{k}. If M strictly contains $S_{k} \cup \mathrm{CONST}$, i.e., $S_{k} \cup \mathrm{CONST} \subset M \subseteq \mathcal{O}_{k}^{(1)}$, then M satisfies Property I.

Proof. The assumption $S_{k} \cup \mathrm{CONST} \subset M \subseteq \mathcal{O}_{k}^{(1)}$ asserts that there exists $u \in M$ such that $1<\# \operatorname{Im}(u)<k$. Then the number $t(=t(u))$ of blocks of the equivalence relation ker u satisfies $1<t<k$.

Now, suppose that a, b, c and d in \boldsymbol{k} are given such that $\{a, b\} \neq\{c, d\}$ and $c \neq d$.
Case 1: $t=2$

Since $k \geq 5$, one block B must have 3 or 4 elements. Choose a permutation $\sigma \in S_{k}$ which sends (mutually distinct elements of) a, b and c to mutually distinct elements in B, and d to an element in $\boldsymbol{k} \backslash B$. Then define $f=u \circ \sigma$. Case 2: $2<t<k$

Let a block B_{1} consist of 2 or more elements and B_{2} and B_{3} be two other blocks. Choose a permutation $\tau \in S_{k}$ which sends a and b to mutually distinct elements in B_{1} if $a \neq b$ and to an element if $a=b, c$ to an element in B_{2} and d to an element in B_{3}. Then define $f=u \circ \tau$.

In both cases, clearly f belongs to M and f serves as $f\left(=f_{c d}^{a b}\right)$ in Property I, namely, f satisfies the required property: $f(a)=f(b)$ and $f(c) \neq f(d)$.

Let $k=4$. For a unary operation u in $\mathcal{O}_{4}^{(1)}$ the kernel of u is defined by

$$
\operatorname{ker} u=\left\{(x, y) \in 4^{2} \mid u(x)=u(y)\right\}
$$

Clearly, ker u is an equivalence relation on \boldsymbol{k}. An equivalence class is called a block.

Let M_{2} be the monoid consisting of unary operations u of $\mathcal{O}_{4}^{(1)}$ satisfying one of the following:
(i) $\operatorname{ker} u$ has four singleton blocks. (i.e., u is a permutation on 4.)
(ii) $\operatorname{ker} u$ has one block. (i.e., u is a constant function on 4.)
(iii) $\operatorname{ker} u$ has two blocks of size 2. (i.e., u sends two elements in 4 to an element in 4 and the other two to another element in 4.)

Analogously to Lemma 3.5, we have the following, excluding M_{2}.
Lemma 3.6 Let $k=4$. Let M be a monoid in $\mathcal{M}_{4} \backslash\left\{M_{2}\right\}$. If M strictly contains $S_{4} \cup$ CONST then M satisfies Property I.

Proof. $\quad M$ contains u whose kernel has either (i) two blocks, one of which consists of 3 elements, or (ii) three blocks, one of which consists of 2 elements. Then, the proof is carried out similarly to that of the previous lemma.

Proposition 3.7 Let M be a monoid in \mathcal{M}_{k} which strictly contains $S_{k} \cup$ CONST. Then the following holds.
(i) If $k=3$ then $M^{*}=\mathcal{J}_{k}$.
(ii) If $k=4$ and $M \neq M_{2}$ then $M^{*}=\mathcal{J}_{k}$.
(iii) If $k \geq 5$ then $M^{*}=\mathcal{J}_{k}$.

Proof. (i) Let $k=3$. If M strictly contains $S_{k} \cup$ CONST, then M is clearly the set of all unary operations, i.e., $M=\mathcal{O}_{3}^{(1)}$. Hence $M^{*}=\mathcal{J}_{k}$. (ii) By Lemma 3.6, M satisfies Property I. Clearly, M also satisfies Property II. Hence, the result follows from Theorem 2.1. (iii) Similarly, the result follows from Lemma 3.5 and Theorem 2.1.

Remark Let $k=4$. The centralizer M_{2}^{*} of the monoid M_{2} is not the least clone. In fact, M_{2} contains, e.g., the following ternary operation $m \in \mathcal{O}_{4}^{(3)}$.

$$
m\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}x_{1} & \text { if } x_{1}=x_{2}=x_{3} \\ x_{1} & \text { if } x_{1} \neq x_{2}=x_{3} \\ x_{2} & \text { if } x_{2} \neq x_{1}=x_{3} \\ x_{3} & \text { if } x_{3} \neq x_{1}=x_{2} \\ y & \text { if }\left\{x_{1}, x_{2}, x_{3}, y\right\}=4\end{cases}
$$

For each element x of $\mathbf{4}$ let x^{1}, x^{0} in $\mathbf{2}$ be elements satisfying $x=2 x^{1}+x^{0}$. Let $q \in \mathcal{O}_{4}^{(m)}$ be an operation defined by
$q\left(x_{1}, \ldots, x_{m}\right) \approx 2 \cdot\left(x_{i_{1}}^{1}+x_{i_{2}}^{1}+\cdots+x_{i_{2 \ell+1}}^{1}\right) \bmod 2+\cdot\left(x_{i_{1}}^{0}+x_{i_{2}}^{0}+\cdots+x_{i_{2 \ell+1}}^{0}\right) \bmod 2$
where $m \geq 1, \ell \geq 0$ and $1 \leq i_{1}<\cdots<i_{2 \ell+1} \leq m$. Denote by Q_{2} the set of all such operations \bar{q}. Then it follows that $M_{2}^{*}=\bar{Q}_{2}$. (Proof will appear elsewhere.)

We summarize as follows:
Theorem 3.8 Let $k \geq 3$. For any monoid $M \in \mathcal{M}_{k}$ containing S_{k}, the centralizer M^{*} of M is as follows:
(1) $\quad S_{k}^{*}=\mathcal{S Y}_{\mathcal{N}}^{k}$.
(2) $\left(S_{k} \cup \mathrm{CONST}^{*}=\mathcal{S} \mathcal{Y}_{k}\right.$.
(3A) For $k=3$ or $k \geq 5$, if $M \notin\left\{S_{k}, S_{k} \cup \operatorname{CONST}\right\}$ then $M^{*}=\mathcal{J}_{k}$.
(3B) For $k=4$, if $M \notin\left\{S_{4}, S_{4} \cup \mathrm{CONST}, M_{2}\right\}$ then $M^{*}=\mathcal{J}_{4}$.
(3C) For $k=4, M^{*}=Q_{2}$.

4. An Application of Corollary 2.2

Here we show a typical application of Corollary 2.2 to prove $M^{*}=\mathcal{J}_{k}$ for some monoid M.

For each $i \in \boldsymbol{k}$ let $\chi_{i} \in \mathcal{O}_{k}^{(1)}$ be defined by $\chi_{i}(i)=1$ and $\chi_{i}(x)=0$ if $x \neq i$. Set $\Gamma_{k}=\left\{\chi_{i} \mid i \in \boldsymbol{k}\right\}$. For each $i \in \boldsymbol{k}$ let $\bar{\chi}_{i}(x)=1-\chi_{i}(x)$ for all $x \in \boldsymbol{k}$. The elements of the monoid $\left\langle\Gamma_{k}\right\rangle$ generated by Γ_{k} is as follows:

$$
\left\langle\Gamma_{k}\right\rangle=\left\{\chi_{0}, \chi_{1}, \ldots, \chi_{k-1}, \bar{\chi}_{0}, \bar{\chi}_{1}, \ldots, \bar{\chi}_{k-1}, c_{0}, c_{1}, \mathrm{id}_{\boldsymbol{k}}\right\}
$$

Define a submonoid H_{k} of $\left\langle\Gamma_{k}\right\rangle$ by

$$
H_{k}=\left\{\chi_{1}, \ldots, \chi_{k-1}, \bar{\chi}_{0}, \bar{\chi}_{2}, \ldots, \bar{\chi}_{k-1}, c_{0}, c_{1}, \mathrm{id}_{\boldsymbol{k}}\right\}
$$

that is, $H_{k}=\left\langle\Gamma_{k}\right\rangle \backslash\left\{\chi_{0}, \bar{\chi}_{1}\right\}$. It is easy to see that H_{k} is also a monoid. We prove the following:

Proposition 4.1 For every $k \geq 3$, it holds that $H_{k}^{*}=\mathcal{J}_{k}$.
Proof. We show that Properties I' and II hold for H_{k}. Property I' is verified by the following table which gives an example of f_{i} in Property I' belonging to H_{k} for every $i \in \boldsymbol{k}$.

i	0	1	2	\cdots	$k-2$	$k-1$
f_{i}	$\bar{\chi}_{0}$	χ_{1}	χ_{2}	\cdots	χ_{k-2}	χ_{k-1}

Next, it is easy to see that Property II holds for H_{k}.
Since H_{k} is a subset of $\left\langle\Gamma_{k}\right\rangle$, the above proposition immediately implies:
Corollary $4.2\left\langle\Gamma_{k}\right\rangle^{*}=\mathcal{J}_{k} \quad$ for every $k \geq 3$.
Moreover, by looking at the table in the proof of Proposition 4.1, we can readily find even a smaller monoid M which satisfies $M^{*}=\mathcal{J}_{k}$. Define H_{k}^{\prime} as

$$
H_{k}^{\prime}=\left\{\chi_{1}, \ldots, \chi_{k-1}, \bar{\chi}_{0}, c_{0}, c_{1}, \mathrm{id}_{\boldsymbol{k}}\right\} .
$$

H_{k}^{\prime} is a monoid. It is clear that Properties I' and II hold for H_{k}^{\prime}. Hence we have:
Corollary $4.3\left(H_{k}^{\prime}\right)^{*}=\mathcal{J}_{k} \quad$ for every $k \geq 3$.

5. Proof of Theorem 2.1

In this section we present a proof of Theorem 2.1. We shall prove Propositon A. It is straightforward that Theorem 2.1 follows from Proposition A.

Proposition A For any $M \in \mathcal{M}_{k}$, the following holds.
(1) If M satisfies Property I then, for every $f \in M^{*}, f$ is either a projection or a constant operation.
(2) If M satisfies Property $I I$ then, for every $f \in M^{*}, f$ is not a constant operation.

The proof of Proposition A begins with the next lemma.

Lemma 5.1 Let $f \in \mathcal{O}_{k}^{(n)}$. If $|\operatorname{Im} f| \geq 2$ then there exist $i \in\{1,2, \ldots, n\}$, $a, b \in \boldsymbol{k}, \boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$ such that

$$
f(\boldsymbol{u}, a, \boldsymbol{v}) \neq f(\boldsymbol{u}, b, \boldsymbol{v})
$$

Proof. Consider the (undirected) graph $G=(V, E)$ where the vertex set V is \boldsymbol{k}^{n} and the edge set E consists of all $(\boldsymbol{x}, \boldsymbol{y})$ such that \boldsymbol{x} and \boldsymbol{y} differ exactly at one place, i.e., the "Hamming distance" of \boldsymbol{x} and \boldsymbol{y} is one. To each vertex $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ in V, put the label $f\left(x_{1}, \ldots, x_{n}\right)(\in \boldsymbol{k})$. Denote this labeled graph by $\mathcal{H}(f)$.

Now the assumption $|\operatorname{Im} f| \geq 2$ implies that there are at least two different labels in $\mathcal{H}(f)$. Hence there must be a pair $(\boldsymbol{x}, \boldsymbol{y})$ of neighboring vertices of $\mathcal{H}(f)$ such that the label of \boldsymbol{x} is different from the label of \boldsymbol{y}. For these $\boldsymbol{x}=(\boldsymbol{u}, a, \boldsymbol{v})$ and $\boldsymbol{y}=(\boldsymbol{u}, b, \boldsymbol{v})$, we have $f(\boldsymbol{u}, a, \boldsymbol{v}) \neq f(\boldsymbol{u}, b, \boldsymbol{v})$ as desired.

Let $f \in \mathcal{O}_{k}^{(n)}$ and $s \in \mathcal{O}_{k}^{(1)}$ be n-ary and unary operations. Suppose that $f\left(a_{1}, \ldots, a_{n}\right)=\alpha$ for some $a_{1}, \ldots, a_{n}, \alpha \in \boldsymbol{k}$. Then by saying 'apply s to f ' we mean to construct the expression $f\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)=s(\alpha)$.

Lemma 5.2 Let $f \in \mathcal{O}_{k}^{(n)}$ satisfy Property I. For $i \in\{1,2, \ldots, n\}, a, b \in \boldsymbol{k}$, $\boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$, let

$$
\left\{\begin{array}{l}
f(\boldsymbol{u}, a, \boldsymbol{v})=\alpha \\
f(\boldsymbol{u}, b, \boldsymbol{v})=\beta
\end{array}\right.
$$

for some $\alpha, \beta \in \boldsymbol{k}$. If $\alpha \neq \beta$, then it follows that $\alpha=a$ and $\beta=b$.
Proof. Note that $\alpha \neq \beta$ forces $a \neq b$. We divide the case into two.
Case $1 \quad\{a, b\} \neq\{\alpha, \beta\}$:
By assumption M contains $f_{\alpha \beta}^{a b}$. Apply $f_{\alpha \beta}^{a b}$ to

$$
\left\{\begin{array}{l}
f(\boldsymbol{u}, a, \boldsymbol{v})=\alpha \\
f(\boldsymbol{u}, b, \boldsymbol{v})=\beta
\end{array}\right.
$$

Then we have a contradiction because $f_{\alpha \beta}^{a b}(a)=f_{\alpha \beta}^{a b}(b)$ and $f_{\alpha \beta}^{a b}(\alpha) \neq f_{\alpha \beta}^{a b}(\beta)$.
Case $2 \quad\{a, b\}=\{\alpha, \beta\}:$
Since $a \neq b$ and $\alpha \neq \beta$, we have either " $a=\alpha$ and $b=\beta$ " or " $a=\beta$ and $b=\alpha "$.

Subcase 2-1 $\quad a=\alpha$ and $b=\beta$:
In this case, we are done.
Subcase 2-2 $\quad a=\beta$ and $b=\alpha:$
We have

$$
\left\{\begin{array}{l}
f(\boldsymbol{u}, a, \boldsymbol{v})=b \tag{1}\\
f(\boldsymbol{u}, b, \boldsymbol{v})=a .
\end{array}\right.
$$

Since $k \geq 3$ by assumption, $\boldsymbol{k} \backslash\{a, b\}$ is non-empty. Take any $c \in \boldsymbol{k} \backslash\{a, b\}$ and let

$$
\begin{equation*}
f(\boldsymbol{u}, c, \boldsymbol{v})=d \tag{3}
\end{equation*}
$$

If $d \notin\{a, b\}$, apply $f_{b d}^{a c}$ to (1) and (3). Then we have a contradiction because $f_{b d}^{a c}(a)=f_{b d}^{a c}(c)$ and $f_{b d}^{a c}(b) \neq f_{b d}^{a c}(d)$.

If $d=a$, then $b \neq d$. Apply $f_{b d}^{a c}$ to (1) and (3). Then we have a contradiction as above.

If $d=b$, then $a \neq d$. Apply $f_{a d}^{b c}$ to (2) and (3). Then we have a contradiction because $f_{a d}^{b c}(b)=f_{a d}^{b c}(c)$ and $f_{a d}^{b c}(a) \neq f_{a d}^{b c}(d)$.

To conclude, we must have $a=\alpha$ and $b=\beta$ (Subcase 2-1).

Lemma 5.3 Let $f \in \mathcal{O}_{k}^{(n)}$ satisfy Property I. For $i \in\{1,2, \ldots, n\}, a, b \in \boldsymbol{k}$, $\boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$, suppose that $a \neq b$ and that f satisfies the following:

$$
\left\{\begin{array}{l}
f(\boldsymbol{u}, a, \boldsymbol{v})=a \tag{4}\\
f(\boldsymbol{u}, b, \boldsymbol{v})=b
\end{array}\right.
$$

Then it follows that $f(\boldsymbol{u}, x, \boldsymbol{v})=x$ for every $x \in \boldsymbol{k}$.
Proof. Suppose that

$$
\begin{equation*}
f(\boldsymbol{u}, x, \boldsymbol{v})=y \tag{6}
\end{equation*}
$$

for some $x, y \in \boldsymbol{k}$ where $x \neq y$.
If $y \neq a$, apply $f_{a y}^{a x}$ to the equations (4) and (6). Then we have

$$
\left\{\begin{array}{rll}
f\left(\boldsymbol{u}^{\prime}, f_{a y}^{a x}(a), \boldsymbol{v}^{\prime}\right) & =f_{a y}^{a x}(a) \tag{4}\\
f\left(\boldsymbol{u}^{\prime}, f_{a y}^{a x}(x), \boldsymbol{v}^{\prime}\right) & =f_{a y}^{a x}(y)
\end{array}\right.
$$

which is a contradiction because $f_{a y}^{a x}(a)=f_{a y}^{a x}(x)$ and $f_{a y}^{a x}(a) \neq f_{a y}^{a x}(y)$.
If $y \neq b$, apply $f_{b y}^{b x}$ to the equations (5) and (6). Then we have

$$
\left\{\begin{array}{rll}
f\left(\boldsymbol{u}^{\prime}, f_{b y}^{b x}(b), \boldsymbol{v}^{\prime}\right) & =f_{b y}^{b x}(b) \tag{5}\\
f\left(\boldsymbol{u}^{\prime}, f_{b y}^{b x}(x), \boldsymbol{v}^{\prime}\right) & =f_{b y}^{b x}(y)
\end{array}\right.
$$

which is a contradiction because $f_{b y}^{b x}(a)=f_{b y}^{b x}(x)$ and $f_{b y}^{b x}(a) \neq f_{b y}^{b x}(y)$.
Since $a \neq b$, either $y \neq a$ or $y \neq b$ holds, and the assertion is proved.
To summarize, Lemmas 5.1, 5.2 and 5.3 imply:
Lemma 5.4 Let $f \in \mathcal{O}_{k}^{(n)}$ satisfy Property I. If $|\operatorname{Im} f| \geq 2$ then there exist $i \in\{1,2, \ldots, n\}, \boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$ such that

$$
f(\boldsymbol{u}, x, \boldsymbol{v})=x
$$

for every $x \in \boldsymbol{k}$.

Proof. Immediate.

Lemma 5.5 Let $f \in \mathcal{O}_{k}^{(n)}$ satisfy Property I. If for some $i \in\{1,2, \ldots, n\}$ and some $\boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$ it holds that

$$
f(\boldsymbol{u}, x, \boldsymbol{v})=x \quad \text { for every } x \in \boldsymbol{k}
$$

then for any $\boldsymbol{u}^{\prime} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v}^{\prime} \in \boldsymbol{k}^{n-i}$ it holds that

$$
f\left(\boldsymbol{u}^{\prime}, x, \boldsymbol{v}^{\prime}\right)=x \quad \text { for every } x \in \boldsymbol{k}
$$

Proof. For brevity, we assume that

$$
f(x, c, \boldsymbol{w})=x
$$

for some $c \in \boldsymbol{k}$ and $\boldsymbol{w} \in \boldsymbol{k}^{n-2}$ and for every $x \in \boldsymbol{k}$, that is, $i=1, \boldsymbol{u}$ is null and $\boldsymbol{v}=(c, \boldsymbol{w})$. Then we shall show that for every $d \in \boldsymbol{k}$

$$
f(x, d, \boldsymbol{w})=x
$$

holds for every $x \in \boldsymbol{k}$. It is clear that this suffices to prove the lemma. (By repeating this procedure, we obtain $f\left(x, \boldsymbol{v}^{\prime}\right)=x$ for any $\boldsymbol{v}^{\prime} \in \boldsymbol{k}^{n-1}$ from $f(x, \boldsymbol{v})=x$ for some particular $\boldsymbol{v} \in \boldsymbol{k}^{n-1}$.)

Moreover, we assume without loss of generality that $c=0$. I.e., we have

$$
\begin{equation*}
f(x, 0, \boldsymbol{w})=x \tag{7}
\end{equation*}
$$

for every $x \in \boldsymbol{k}$. We shall show that for every $d \in\{1,2, \ldots, k-1\}$ and every $x \in \boldsymbol{k}$ it holds that

$$
f(x, d, \boldsymbol{w})=x
$$

Without loss of generality, again, we may assume that $d=1$.
$\xlongequal[\underline{\text { Case } 1}]{ } \quad x \in\{2,3, \ldots, k-1\}$:

$$
\begin{equation*}
f(x, 1, \boldsymbol{w})=y \tag{8}
\end{equation*}
$$

for some $y \in \boldsymbol{k}$. Suppose $y \neq x$. Since $x \notin\{0,1\}$, we have $\{x, y\} \neq\{0,1\}$. So, apply $f_{x y}^{01}$ to (7) and (8) and we obtain

$$
\left\{\begin{align*}
f\left(f_{x y}^{01}(x), f_{x y}^{01}(0), \boldsymbol{w}^{\prime}\right) & =f_{x y}^{01}(x) \tag{7}\\
f\left(f_{x y}^{01}(x), f_{x y}^{01}(1), \boldsymbol{w}^{\prime}\right) & =f_{x y}^{01}(y)
\end{align*}\right.
$$

which is a contradiction because $f_{x y}^{01}(0)=f_{x y}^{01}(1)$ and $f_{x y}^{01}(x) \neq f_{x y}^{01}(y)$. Hence we have

$$
\begin{equation*}
f(x, 1, \boldsymbol{w})=x \tag{9}
\end{equation*}
$$

for any $x \in\{2,3, \ldots, k-1\}$.

Case $2 x=0$:
Let $y:=f(0,1, \boldsymbol{w})$. We consider two subcases.
Claim 2-1. $y \notin\{2,3, \ldots, k-1\}$.
(Proof) It is enough to show that $y \neq 2$, because proof of $y \neq j$ for $j \in\{3, \ldots, k-1\}$ can be carried out analogously. Suppose to the contrary that

$$
\begin{equation*}
f(0,1, \boldsymbol{w})=2 \tag{10}
\end{equation*}
$$

Then apply f_{02}^{01} to (7) and (10). We obtain

$$
\left\{\begin{array}{l}
f\left(f_{02}^{01}(0), f_{02}^{01}(0), \boldsymbol{w}^{\prime}\right)=f_{02}^{01}(0) \tag{7}\\
f\left(f_{02}^{01}(0), f_{02}^{01}(1), \boldsymbol{w}^{\prime}\right)=f_{02}^{01}(2)
\end{array}\right.
$$

which is a contradiction because $f_{02}^{01}(0)=f_{02}^{01}(1)$ and $f_{02}^{01}(0) \neq f_{02}^{01}(2)$. Thus we have proved $y \neq 2$.

Similarly, we can show that $f(0,1, \boldsymbol{w}) \neq y$ for any $y \in\{3,4, \ldots, k-1\}$.
Claim 2-2. $y \neq 1$.
(Proof) Suppose to the contrary that

$$
\begin{equation*}
f(0,1, \boldsymbol{w})=1 \tag{11}
\end{equation*}
$$

Then apply f_{12}^{02} to (9) with $x=2$ and to (11). We obtain

$$
\begin{cases}f\left(f_{12}^{02}(2), f_{12}^{02}(1), \boldsymbol{w}^{\prime}\right) & =f_{12}^{02}(2) \tag{9}\\ f\left(f_{12}^{02}(0), f_{12}^{02}(1), \boldsymbol{w}^{\prime}\right) & =f_{12}^{02}(1)\end{cases}
$$

which is a contradiction because $f_{12}^{02}(0)=f_{12}^{02}(2)$ and $f_{12}^{02}(1) \neq f_{12}^{02}(2)$. Thus we have shown $y \neq 1$.

The remaining possibility for the value of $f(0,1, \boldsymbol{w})$ is 0 , i.e., $f(0,1, \boldsymbol{w})=$ 0.

Case 3 $\quad x=1$:
Let $z:=f(1,1, \boldsymbol{w})$. We consider two subcases.
Claim 3-1. $z \notin\{2,3, \ldots, k-1\}$.
(Proof) By the same reason as the proof of Claim 2-1, it is enough to show that $y \neq 2$. Suppose to the contrary that

$$
\begin{equation*}
f(1,1, \boldsymbol{w})=2 \tag{12}
\end{equation*}
$$

Then apply f_{02}^{01} to (7) and (12). Then we get

$$
\left\{\begin{align*}
f\left(f_{02}^{01}(0), f_{02}^{01}(0), \boldsymbol{w}^{\prime}\right) & =f_{02}^{01}(0) \tag{7}\\
f\left(f_{02}^{01}(1), f_{02}^{01}(1), \boldsymbol{w}^{\prime}\right) & =f_{02}^{01}(2)
\end{align*}\right.
$$

which is a contradiction because $f_{02}^{01}(0)=f_{02}^{01}(1)$ and $f_{02}^{01}(0) \neq f_{02}^{01}(2)$. Thus we have shown $z \neq 2$.

Similarly, we can show that $f(1,1, \boldsymbol{w}) \neq z$ for any $z \in\{3,4, \ldots, k-1\}$.
Claim 3-2. $z \neq 0$.
(Proof) Suppose to the contrary that

$$
\begin{equation*}
f(1,1, \boldsymbol{w})=0 \tag{13}
\end{equation*}
$$

Then apply f_{02}^{12} to (9) with $x=2$ and to (13) we obtain

$$
\left\{\begin{align*}
f\left(f_{02}^{12}(2), f_{02}^{12}(1), \boldsymbol{w}^{\prime}\right) & =f_{02}^{12}(2) \tag{9}\\
f\left(f_{02}^{12}(1), f_{02}^{12}(1), \boldsymbol{w}^{\prime}\right) & =f_{02}^{12}(0)
\end{align*}\right.
$$

which is a contradiction because $f_{02}^{12}(1)=f_{02}^{12}(2)$ and $f_{02}^{12}(0) \neq f_{02}^{12}(2)$. Thus we have shown $z \neq 0$.

The remaining possibility for the value of $f(1,1, \boldsymbol{w})$ is 1 , i.e., $\quad f(1,1, \boldsymbol{w})=$ 1.

Altogether, we have shown that $f(x, 1, \boldsymbol{w})=x$ for every $x \in \boldsymbol{k}$.
Analogously, we can verify that for every $d \in\{2,3, \ldots, k-1\}$ and every $x \in \boldsymbol{k}$ we have

$$
f(x, d, \boldsymbol{w})=x
$$

as desired.
Proof of Proposition A (1) :
From Lemmas 5.4 and 5.5 it follows that if f is not a constant operation, that is, if f satisfies $|\operatorname{Im} f| \geq 2$, then f is a projection.

Proof of Proposition A (2) :

For $f \in M^{*} \cap \mathcal{O}_{k}^{(n)}$, suppose that f is a constant operation taking value $i \in \boldsymbol{k}$, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=i$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{k}^{n}$. Property II asserts that there exists g_{i} in M which satisfies $g_{i}(i) \neq i$. Then we have $f\left(g_{i}\left(x_{1}\right), \ldots, g_{i}\left(x_{n}\right)\right)=i$ and $g_{i}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=g_{i}(i) \neq i$ which contradicts the assumption $f \in M^{*}$.

Acknowledgment: The authors are grateful to an anonymous referee for a valuable remark which led to improve the contents of the paper.

References

[BKKR 69] Bodnartchuk, V. G., Kaluzhnin, L. A., Kotov, V. N. and Romov, A. A. (1969). Galois theory for Post algebras I-II (in Russian), Kibernetika (Kiev), Part I: 3, 1-10; Part II: 5, 1-9; English translation: Cybernetics (1969), 3, 243-252 and 531-539.
[Co 65] Cohn, P. M. (1965). Universal Algebra, Harper and Row, 412pp.
[Da 77] Danil'tchenko, A. F. (1977). Parametric expressibility of functions of threevalued logic (in Russian), Algebra i Logika, 16, 397-416; English traslation: Algebra and Logic (1977), 16, 266-280.
[Da 79] Danil'tchenko, A. F. (1979). On parametrical expressibility of the functions of k-valued logic, Colloquia Mathematica Societatis János Bolyai, 28, Finite Algebra and Multiple-Valued Logic, 147-159.
[Ku 61] Kuznetsov, A. V. (1961). Lattices with closure and criteria for functional completeness (in Russian), Uspekhi Mat. Nauk, 16/2(98), 201-202.
[MMR 01] Machida, H., Miyakawa, M. and Rosenberg, I. G. (2001). Relations between clones and full monoids, Proc. 31st Int. Symp. Multiple-Valued Logic, IEEE, 279284.
[MMR 02] Machida, H., Miyakawa, M. and Rosenberg, I. G. (2002). Some results on the centralizers of monoids in clone theory, Proc. 32nd Int. Symp. Multiple-Valued Logic, IEEE, 10-16.
[MR 03] Machida, H. and Rosenberg, I. G. (2003). On the centralizers of monoids in clone theory, Proc. 33rd Int. Symp. Multiple-Valued Logic, IEEE, 303-308.
[MR 04] Machida, H. and Rosenberg, I. G. (2004). Monoids whose centralizer is the least clone, to appear in Proc. 34th Int. Symp. Multiple-Valued Logic, IEEE.
[March82] Marchenkov, S. S. (1982). Homogeneous algebras (Russian), Problemy Kibernetiki, 39, 85-106.
[Marcz64] Marczewski, E. (1964). Homogeneous algebras and homogeneous operations, Fund. Math., 56, 81-103.
[Ro 78] Rosenberg, I. G. (1978). On a Galois connection between algebras and relations and its applications, Contributions of General Algebra, 273-289.
[Sza 78] Szabó, L. (1978). Concrete representation of related structures of universal algebras. I, Acta. Sci. Math., 40, 175-184.
[Sza 85] Szabó, L. (1985). Characterization of clones acting bicentrally and containing a primitive group, Acta. Cybernet., 7, 137-142.
[Sze 86] Szendrei, Á. (1986). Clones in Universal Algebra, SMS Series 99, Les Presses de L'Université de Montréal, 166pp.

[^0]: ${ }^{1}$ Department of Mathematics，Hitotsubashi University，2－1 Naka，Kunitachi，Tokyo 186－ 8601 Japan 〈machida＠math．hit－u．ac．jp〉
 ${ }^{2}$ Départment de mathématiques et de statistique，Université de Montréal，C．P．6128，Succ． ＂Centre－ville＂，Montréal，Québec，H3C 3J7，Canada 〈rosenb＠DMS．UMontreal．CA 〉

