NOVI SAD J. MATH. Vol. 34, No. 2, 2004, 153-166 PROC. NOVI SAD ALGEBRAIC CONF. 2003 (EDS. I. DOLINKA, A. TEPAVČEVIĆ)

ON CENTRALIZERS OF MONOIDS

Hajime Machida¹, Ivo G. Rosenberg²

Abstract. For a monoid M of k-valued unary operations, the centralizer M^* is the clone consisting of all k-valued multi-variable operations which commute with every operation in M. First we give a sufficient condition for a monoid M to have the least clone as its centralizer. Then using this condition we determine centralizers of all monoids containing the symmetric group.

AMS Mathematics Subject Classification (2000):

Key words and phrases: Clone; centralizer; monoid

1. Preliminaries

Let $\mathbf{k} = \{0, 1, \dots, k-1\}$ for a fixed integer $k \ge 2$. For n > 0 let $\mathcal{O}_k^{(n)}$ be the set of all *n*-ary operations over \mathbf{k} , i.e., the set of all functions from \mathbf{k}^n into \mathbf{k} . Set $\mathcal{O}_k = \bigcup_{n=1}^{\infty} \mathcal{O}_k^{(n)}$. A projection e_i^n over \mathbf{k} , for $1 \le i \le n$, is defined by $e_i^n(x_1, \dots, x_i, \dots, x_n) = x_i$ for every $(x_1, \dots, x_n) \in \mathbf{k}^n$. The set of all projections over \mathbf{k} is denoted by \mathcal{J}_k .

A subset C of \mathcal{O}_k is a *clone* on k if (i) C is closed under (functional) composition and (ii) C contains \mathcal{J}_k . The set of all clones on k is a lattice with respect to inclusion. In this lattice, \mathcal{O}_k is the greatest clone and \mathcal{J}_k is the least clone. It is called the *lattice of clones* on k and is denoted by \mathcal{L}_k . The structure of \mathcal{L}_2 is completely known, but the structure of \mathcal{L}_k for any $k \geq 3$ is still largely unknown.

An operation $f \in \mathcal{O}_k^{(n)}$ commutes (or permutes) with an operation $g \in \mathcal{O}_k^{(m)}$, denoted by $f \perp g$, if for every $m \times n$ matrix $B = (x_{ij})$ over k it holds that

 $f(g(x_{11},\ldots,x_{m1}),\ldots,g(x_{1n},\ldots,x_{mn})) = g(f(x_{11},\ldots,x_{1n}),\ldots,f(x_{m1},\ldots,x_{mn})).$

For any subset G of \mathcal{O}_k , the *centralizer* G^* of G is defined to be the set of all operations f which commutes with every g in G, i.e.,

$$G^* = \{ f \in \mathcal{O}_k \mid f \perp g \text{ for all } g \in G \}.$$

 $^{^1 \}rm Department$ of Mathematics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 Japan $\langle \rm machida@math.hit-u.ac.jp \rangle$

 $^{^2}$ Départment de mathématiques et de statistique, Université de Montréal, C.P.6128, Succ. "Centre-ville", Montréal, Québec, H3C 3J7, Canada \langle rosenb@DMS.UMontreal.CA \rangle

H. Machida, I. G. Rosenberg

It is clear that G^* is a clone for any subset G of \mathcal{O}_k , i.e., $G^* \in \mathcal{L}_k$.

A transformation monoid (or, simply, a monoid) on \mathbf{k} is defined as a composition-closed subset of unary operations on \mathbf{k} containing the identity operation, that is, a subset M of $\mathcal{O}_k^{(1)}$ is a (transformation) monoid on \mathbf{k} if (i) M is closed under composition and (ii) the identity operation id \mathbf{k} (= e_1^1) belongs to M. The set of all monoids on \mathbf{k} is also a lattice with respect to inclusion. The lattice of monoids on \mathbf{k} is denoted by \mathcal{M}_k . \mathcal{M}_k is a finite lattice, but its structure is quite complicated when k is large.

The purpose of this paper is to study the centralizers of monoids of unary operations instead of centralizers of any subsets of \mathcal{O}_k . So, we examine more closely the definition of a centralizer of a monoid of unary operations. For a monoid M in \mathcal{M}_k , the centralizer of M is defined as follows:

$$M^* = \{ f \in \mathcal{O}_k \mid f \perp s \text{ for all } s \in M \}$$

=
$$\bigcup_{n>0} \{ f \in \mathcal{O}_k^{(n)} \mid f(s(x_1), \dots, s(x_n)) = s(f(x_1, \dots, x_n))$$

for every $(x_1, x_2, \dots, x_n) \in \mathbf{k}^n$ and for all $s \in M \}.$

Note that a unary operation $s\in \mathcal{O}_k^{(1)}$ induces a binary relation s^\square such that

$$s^{\Box} = \{ (x, s(x)) \mid x \in \mathbf{k} \}$$

and that, for $f \in \mathcal{O}_k^{(n)}$ and $s \in \mathcal{O}_k^{(1)}$, $f \in \operatorname{Pol} s^{\Box}$ if and only if

$$f(s(x_1), s(x_2), \dots, s(x_n)) = s(f(x_1, x_2, \dots, x_n))$$

for every $(x_1, x_2, \ldots, x_n) \in \mathbf{k}^n$. In other words, $f \in \operatorname{Pol} s^{\Box}$ if and only if s is an endomorphism of the algebra $\langle \mathbf{k}; \{f\} \rangle$.

Hence, for a monoid M in \mathcal{M}_k , the centralizer M^* of M is characterized as

$$M^* = \bigcap_{s \in M} \operatorname{Pol} s^{\Box}.$$

For a subset S of $\mathcal{O}_k^{(1)}$ the monoid *generated* by S is defined to be the least monoid containing S, and is denoted by $\langle S \rangle$. The following property justifies us to consider centralizers only of monoids instead of centralizers of all subsets of $\mathcal{O}_k^{(1)}$. The proof is straightforward from the definition.

Proposition 1.1 For a subset S of $\mathcal{O}_k^{(1)}$ let $M \in \mathcal{M}_k$ be the monoid generated by S, *i.e.*, $M = \langle S \rangle$. Then $S^* = M^*$.

2. Useful Conditions

Hereafter, we assume $k \geq 3$, unless otherwise stated.

In [MR 04] we presented a sufficient condition for a monoid M to satisfy $M^* = \mathcal{J}_k$, i.e., a condition which induces the centralizer M^* to be the least clone.

Properties: Let $M \in \mathcal{M}_k$.

I. (Partial separation property) For all $a, b, c, d \in \mathbf{k}$, if $\{a, b\} \neq \{c, d\}$ and $c \neq d$ then M contains $f (= f_{cd}^{ab})$ which satisfies the following:

$$f(a) = f(b)$$
 and $f(c) \neq f(d)$.

II. (Fixed-point-free property) For every $i \in \mathbf{k}$, M contains g_i which satisfies $g_i(i) \neq i$.

The next theorem states a sufficient condition for a monoid M to satisfy $M^* = \mathcal{J}_k$, whose proof appears in [MR 04]. However, for the reader's convenience, we reproduce the proof, with certain modification, in the final section of this paper.

Theorem 2.1 For any $M \in \mathcal{M}_k$, if M satisfies both Properties I and II then $M^* = \mathcal{J}_k$.

There is another sufficient condition which is a bit weaker but, in most cases, more convenient to use than the above condition.

Additional Property: Let $M \in \mathcal{M}_k$.

I'. For every $i \in \mathbf{k}$, M contains f_i which satisfies $f_i^{-1}(\alpha) = \mathbf{k} \setminus \{i\}$ for some $\alpha \in \mathbf{k}$.

Corollary 2.2 For any $M \in \mathcal{M}_k$, if M satisfies both Properties I' and II then $M^* = \mathcal{J}_k$.

Proof. It is easy to see that f_c or f_d in Property I' serves as f_{cd}^{ab} in Property I and thus Property I follows from Property I'.

3. Centralizers of Monoids Containing the Symmetric Group

We denote by S_k the symmetric group on k. In this section we determine centralizers of all monoids which contain S_k .

Before we proceed, it is worth noting that the restriction of *-operator to the set of permutation groups, i.e., subgroups of S_k , on \mathbf{k} is injective, that is, for any permutation groups G_1 and G_2 on \mathbf{k} , $G_1^* = G_2^*$ implies $G_1 = G_2$. This fact gives a clear contrast to what follows below.

3.1 The Symmetric Group S_k

We characterize the centralizer S_k^* of the symmetric group S_k . An operation f in S_k^* is called a *homogeneous* operation. Note that the following result was known by Marczewski [Marcz64]. The following definitions are from [MMR 01].

For *n*-tuples (x_1, \ldots, x_n) and $(y_1, \ldots, y_n) \in \mathbf{k}^n$, (x_1, \ldots, x_n) is similar to (y_1, \ldots, y_n) if the following is satisfied:

$$x_i = x_j \iff y_i = y_j \quad \text{for} \quad \text{any} \quad 1 \le i, j \le n.$$

Definition 3.1 An operation $f \in \mathcal{O}_k^{(n)}$ is synchronous (or, pattern) if the following condition is satisfied for any element (x_1, \ldots, x_n) in \mathbf{k}^n : (i) If $|\{x_1, \ldots, x_n\}| \neq k - 1$ then

- (1) $f(x_1,\ldots,x_n) = x_\ell$ for some $1 \le \ell \le n$, and
- (2) $f(y_1,\ldots,y_n) = y_\ell$ for any $(y_1,\ldots,y_n) \in \mathbf{k}^n$ which is similar to (x_1,\ldots,x_n) .
- (*ii*) If $|\{x_1, ..., x_n\}| = k 1$ and $f(x_1, ..., x_n) = u$ for some $u \in k$ then
 - (1) $u = x_{\ell}$ for some $1 \leq \ell \leq n$ implies $f(y_1, \ldots, y_n) = y_{\ell}$ for any $(y_1, \ldots, y_n) \in \mathbf{k}^n$ which is similar to (x_1, \ldots, x_n) , and
 - (2) $u \in \mathbf{k} \setminus \{x_1, \ldots, x_n\}$ implies $f(y_1, \ldots, y_n) = v$, where $v \in \mathbf{k} \setminus \{y_1, \ldots, y_n\}$ for any $(y_1, \ldots, y_n) \in \mathbf{k}^n$ which is similar to (x_1, \ldots, x_n) .

The set of all synchronous operations in \mathcal{O}_k is denoted by SYN_k .

It is known ([Marcz64]; Also see [Sze 86] and [MR 04]) that the centralizer S_k^* of S_k is the clone consisting of synchronous operations. Thus,

Proposition 3.1 For $k \geq 2$, it holds that $S_k^* = SYN_k$.

3.2 The Union of S_k and CONST

For $a \in \mathbf{k}$, let $c_a \in \mathcal{O}_k^{(1)}$ be the unary constant operation such that $c_a(x) = a$ for all $x \in \mathbf{k}$. Denote by CONST the set of all constant operations in $\mathcal{O}_k^{(1)}$, i.e., CONST = { $c_a \mid a \in \mathbf{k}$ }.

Lemma 3.2 (i) The union $S_k \cup \text{CONST}$ is a monoid and (ii) it covers S_k , *i.e.*, for any $M \in \mathcal{M}_k$ if $S_k \subset M \subseteq S_k \cup \text{CONST}$ then $M = S_k \cup \text{CONST}$.

Proof. (i) It is clear that $S_k \cup \text{CONST}$ is a monoid. (ii) It is easy to see that $S_k \subset M \subseteq S_k \cup \text{CONST}$ implies the existence of a unary constant operation in M. Suppose $c_a \in M$ for some $a \in \mathbf{k}$. Then, for any $b \in \mathbf{k}$, $c_b = (a \ b) \circ c_a$, where $(a \ b)$ is a transposition in S_k interchanging a and b. It follows that $c_b \in M$. Hence $\text{CONST} \subseteq M$ holds and the claim (ii) follows. \Box

An operation $f \in \mathcal{O}_k$ is *idempotent* if $f(a, \ldots, a) = a$ for all $a \in \mathbf{k}$. We observe without difficulty that the centralizer $(S_k \cup \text{CONST})^*$ is the set of operations in \mathcal{O}_k which are both synchronous and idempotent. However, it is easy to see that a synchronous operation is always idempotent when $k \geq 3$. Hence, $(S_k \cup \text{CONST})^*$ is identical to the set of synchronous operations when $k \geq 3$.

Proposition 3.3 For k = 2, $(S_2 \cup \text{CONST})^* = \{ f \in SYN_2 | f : \text{idempotent} \}$. For $k \ge 3$, $(S_k \cup \text{CONST})^* = SYN_k (= S_k^*)$.

3.3 Other Monoids Containing S_k

Lemma 3.4 Let M be a monoid in \mathcal{M}_k . If M strictly contains S_k , i.e., $S_k \subset M \subseteq \mathcal{O}_k^{(1)}$, then $S_k \cup \text{CONST} \subseteq M$.

Proof. Since M strictly contains S_k , there exists $u \in M$ such that $\# \operatorname{Im}(u) < k$. Here, $\operatorname{Im}(u)$ denotes the image of u and, for a finite set X, #X denotes the number of elements in X.

Claim 1 If $\# \operatorname{Im}(u) = 1$ then $S_k \cup \operatorname{CONST} \subseteq M$.

<u>Proof of Claim 1</u> Immediate from Lemma 3.2 (ii).

Claim 2 If $\# \operatorname{Im}(u) = r$ where 1 < r < k then there exists $v \in M$ such that $\# \operatorname{Im}(v) < r$.

<u>Proof of Claim 2</u> Let R be the range of u, and $u|_R$ be the restriction of u to R.

(i) Suppose that $u|_R$ is not a permutation on R. Then let $v = u \circ u$. It is clear that $\# \operatorname{Im}(v) < \# \operatorname{Im}(u) = r$.

(ii) Suppose that $u|_R$ is a permutation on R. Since r < k by assumption, there exist $a \in R$ and $b \in \mathbf{k} \setminus R$ such that u(a) = u(b). Let c = u(a)(=u(b)). Choose $d \in \mathbf{k}$ such that $d \in \operatorname{Im}(u)$ and $c \neq d$. Then construct v as $v = u \circ (b \ d) \circ u$ where $(b \ d)$ is a transposition in S_k interchanging b and d. For this v it clearly holds that $\# \operatorname{Im}(v) < \# \operatorname{Im}(u) = r$, because $u|_R$ is a permutation on R and $u(d) \notin \operatorname{Im}(v)$.

Claims 1 and 2 suffice to show the desired property: $S_k \cup \text{CONST} \subseteq M$. \Box

Lemma 3.5 Let $k \geq 5$. Let M be a monoid in \mathcal{M}_k . If M strictly contains $S_k \cup \text{CONST}$, *i.e.*, $S_k \cup \text{CONST} \subset M \subseteq \mathcal{O}_k^{(1)}$, then M satisfies Property I.

Proof. The assumption $S_k \cup \text{CONST} \subset M \subseteq \mathcal{O}_k^{(1)}$ asserts that there exists $u \in M$ such that 1 < # Im(u) < k. Then the number $t \ (= t(u))$ of blocks of the equivalence relation ker u satisfies 1 < t < k.

Now, suppose that a, b, c and d in k are given such that $\{a, b\} \neq \{c, d\}$ and $c \neq d$.

<u>Case 1</u>: t = 2

Since $k \geq 5$, one block *B* must have 3 or 4 elements. Choose a permutation $\sigma \in S_k$ which sends (mutually distinct elements of) *a*, *b* and *c* to mutually distinct elements in *B*, and *d* to an element in $\mathbf{k} \setminus B$. Then define $f = u \circ \sigma$. Case 2: 2 < t < k

Let a block B_1 consist of 2 or more elements and B_2 and B_3 be two other blocks. Choose a permutation $\tau \in S_k$ which sends a and b to mutually distinct elements in B_1 if $a \neq b$ and to an element if a = b, c to an element in B_2 and d to an element in B_3 . Then define $f = u \circ \tau$.

In both cases, clearly f belongs to M and f serves as $f (= f_{cd}^{ab})$ in Property I, namely, f satisfies the required property: f(a) = f(b) and $f(c) \neq f(d)$. \Box

Let k = 4. For a unary operation u in $\mathcal{O}_4^{(1)}$ the **kernel** of u is defined by

$$\ker u = \{(x, y) \in \mathbf{4}^2 \mid u(x) = u(y)\}.$$

Clearly, ker u is an equivalence relation on k. An equivalence class is called a **block**.

Let M_2 be the monoid consisting of unary operations u of $\mathcal{O}_4^{(1)}$ satisfying one of the following:

- (i) ker u has four singleton blocks. (i.e., u is a permutation on 4.)
- (ii) ker u has one block. (i.e., u is a constant function on 4.)
- (iii) ker u has two blocks of size 2. (i.e., u sends two elements in 4 to an element in 4 and the other two to another element in 4.)

Analogously to Lemma 3.5, we have the following, excluding M_2 .

Lemma 3.6 Let k = 4. Let M be a monoid in $\mathcal{M}_4 \setminus \{M_2\}$. If M strictly contains $S_4 \cup \text{CONST}$ then M satisfies Property I.

Proof. M contains u whose kernel has either (i) two blocks, one of which consists of 3 elements, or (ii) three blocks, one of which consists of 2 elements. Then, the proof is carried out similarly to that of the previous lemma.

Proposition 3.7 Let M be a monoid in \mathcal{M}_k which strictly contains $S_k \cup$ CONST. Then the following holds.

- (i) If k = 3 then $M^* = \mathcal{J}_k$.
- (ii) If k = 4 and $M \neq M_2$ then $M^* = \mathcal{J}_k$.
- (iii) If $k \geq 5$ then $M^* = \mathcal{J}_k$.

Proof. (i) Let k = 3. If M strictly contains $S_k \cup \text{CONST}$, then M is clearly the set of all unary operations, i.e., $M = \mathcal{O}_3^{(1)}$. Hence $M^* = \mathcal{J}_k$. (ii) By Lemma 3.6, M satisfies Property I. Clearly, M also satisfies Property II. Hence, the result follows from Theorem 2.1. (iii) Similarly, the result follows from Lemma 3.5 and Theorem 2.1.

Remark Let k = 4. The centralizer M_2^* of the monoid M_2 is *not* the least clone. In fact, M_2 contains, e.g., the following ternary operation $m \in \mathcal{O}_4^{(3)}$.

$$m(x_1, x_2, x_3) = \begin{cases} x_1 & \text{if } x_1 = x_2 = x_3 \\ x_1 & \text{if } x_1 \neq x_2 = x_3 \\ x_2 & \text{if } x_2 \neq x_1 = x_3 \\ x_3 & \text{if } x_3 \neq x_1 = x_2 \\ y & \text{if } \{x_1, x_2, x_3, y\} = 4 \end{cases}$$

For each element x of 4 let x^1 , x^0 in 2 be elements satisfying $x = 2x^1 + x^0$. Let $q \in \mathcal{O}_4^{(m)}$ be an operation defined by

$$q(x_1,\ldots,x_m) \approx 2 \cdot (x_{i_1}^1 + x_{i_2}^1 + \cdots + x_{i_{2\ell+1}}^1) \mod 2 + \cdot (x_{i_1}^0 + x_{i_2}^0 + \cdots + x_{i_{2\ell+1}}^0) \mod 2$$

where $m \ge 1$, $\ell \ge 0$ and $1 \le i_1 < \cdots < i_{2\ell+1} \le m$. Denote by Q_2 the set of all such operations q. Then it follows that $M_2^* = Q_2$. (Proof will appear elsewhere.)

We summarize as follows:

Theorem 3.8 Let $k \geq 3$. For any monoid $M \in \mathcal{M}_k$ containing S_k , the centralizer M^* of M is as follows:

- (1) $S_k^* = SYN_k.$
- (2) $(S_k \cup \text{CONST})^* = SYN_k.$
- (3A) For k = 3 or $k \ge 5$, if $M \notin \{S_k, S_k \cup \text{CONST}\}$ then $M^* = \mathcal{J}_k$.
- (3B) For k = 4, if $M \notin \{S_4, S_4 \cup \text{CONST}, M_2\}$ then $M^* = \mathcal{J}_4$.
- (3C) For k = 4, $M^* = Q_2$.

4. An Application of Corollary 2.2

Here we show a typical application of Corollary 2.2 to prove $M^* = \mathcal{J}_k$ for some monoid M.

For each $i \in \mathbf{k}$ let $\chi_i \in \mathcal{O}_k^{(1)}$ be defined by $\chi_i(i) = 1$ and $\chi_i(x) = 0$ if $x \neq i$. Set $\Gamma_k = \{\chi_i \mid i \in \mathbf{k}\}$. For each $i \in \mathbf{k}$ let $\overline{\chi}_i(x) = 1 - \chi_i(x)$ for all $x \in \mathbf{k}$. The elements of the monoid $\langle \Gamma_k \rangle$ generated by Γ_k is as follows:

$$\langle \Gamma_k \rangle = \{\chi_0, \chi_1, \dots, \chi_{k-1}, \overline{\chi}_0, \overline{\chi}_1, \dots, \overline{\chi}_{k-1}, c_0, c_1, \mathrm{id}_k \}.$$

Define a submonoid H_k of $\langle \Gamma_k \rangle$ by

$$H_k = \{\chi_1, \ldots, \chi_{k-1}, \overline{\chi}_0, \overline{\chi}_2, \ldots, \overline{\chi}_{k-1}, c_0, c_1, \mathrm{id}_k\},\$$

that is, $H_k = \langle \Gamma_k \rangle \setminus \{\chi_0, \overline{\chi}_1\}$. It is easy to see that H_k is also a monoid. We prove the following:

Proposition 4.1 For every $k \geq 3$, it holds that $H_k^* = \mathcal{J}_k$.

Proof. We show that Properties I' and II hold for H_k . Property I' is verified by the following table which gives an example of f_i in Property I' belonging to H_k for every $i \in k$.

i	0	1	2	•••	k-2	k-1
f_i	$\overline{\chi}_0$	χ_1	χ_2	• • •	χ_{k-2}	χ_{k-1}

Next, it is easy to see that Property II holds for H_k .

Since H_k is a subset of $\langle \Gamma_k \rangle$, the above proposition immediately implies:

Corollary 4.2 $\langle \Gamma_k \rangle^* = \mathcal{J}_k$ for every $k \geq 3$.

Moreover, by looking at the table in the proof of Proposition 4.1, we can readily find even a smaller monoid M which satisfies $M^* = \mathcal{J}_k$. Define H'_k as

$$H'_{\boldsymbol{k}} = \{\chi_1, \ldots, \chi_{k-1}, \overline{\chi}_0, c_0, c_1, \mathrm{id}_{\boldsymbol{k}}\}.$$

 H'_k is a monoid. It is clear that Properties I' and II hold for H'_k . Hence we have: Corollary 4.3 $(H'_k)^* = \mathcal{J}_k$ for every $k \ge 3$.

5. Proof of Theorem 2.1

In this section we present a proof of Theorem 2.1. We shall prove Propositon A. It is straightforward that Theorem 2.1 follows from Proposition A.

Proposition A For any $M \in \mathcal{M}_k$, the following holds.

- (1) If M satisfies Property I then, for every $f \in M^*$, f is either a projection or a constant operation.
- (2) If M satisfies Property II then, for every $f \in M^*$, f is not a constant operation.

The proof of Proposition A begins with the next lemma.

On Centralizers of Monoids

Lemma 5.1 Let $f \in \mathcal{O}_k^{(n)}$. If $|\text{Im}f| \geq 2$ then there exist $i \in \{1, 2, ..., n\}$, $a, b \in \mathbf{k}, \mathbf{u} \in \mathbf{k}^{i-1}$ and $\mathbf{v} \in \mathbf{k}^{n-i}$ such that

$$f(\boldsymbol{u}, a, \boldsymbol{v}) \neq f(\boldsymbol{u}, b, \boldsymbol{v}).$$

Proof. Consider the (undirected) graph G = (V, E) where the vertex set V is \mathbf{k}^n and the edge set E consists of all (\mathbf{x}, \mathbf{y}) such that \mathbf{x} and \mathbf{y} differ exactly at one place, i.e., the "Hamming distance" of \mathbf{x} and \mathbf{y} is one. To each vertex $\mathbf{x} = (x_1, \ldots, x_n)$ in V, put the label $f(x_1, \ldots, x_n) (\in \mathbf{k})$. Denote this labeled graph by $\mathcal{H}(f)$.

Now the assumption $|\text{Im} f| \geq 2$ implies that there are at least two different labels in $\mathcal{H}(f)$. Hence there must be a pair $(\boldsymbol{x}, \boldsymbol{y})$ of neighboring vertices of $\mathcal{H}(f)$ such that the label of \boldsymbol{x} is different from the label of \boldsymbol{y} . For these $\boldsymbol{x} = (\boldsymbol{u}, a, \boldsymbol{v})$ and $\boldsymbol{y} = (\boldsymbol{u}, b, \boldsymbol{v})$, we have $f(\boldsymbol{u}, a, \boldsymbol{v}) \neq f(\boldsymbol{u}, b, \boldsymbol{v})$ as desired. \Box

Let $f \in \mathcal{O}_k^{(n)}$ and $s \in \mathcal{O}_k^{(1)}$ be *n*-ary and unary operations. Suppose that $f(a_1, \ldots, a_n) = \alpha$ for some $a_1, \ldots, a_n, \alpha \in \mathbf{k}$. Then by saying 'apply s to f' we mean to construct the expression $f(s(a_1), \ldots, s(a_n)) = s(\alpha)$.

Lemma 5.2 Let $f \in \mathcal{O}_k^{(n)}$ satisfy Property I. For $i \in \{1, 2, ..., n\}$, $a, b \in k$, $u \in k^{i-1}$ and $v \in k^{n-i}$, let

$$\begin{cases} f(\boldsymbol{u}, a, \boldsymbol{v}) &= \alpha \\ f(\boldsymbol{u}, b, \boldsymbol{v}) &= \beta \end{cases}$$

for some $\alpha, \beta \in \mathbf{k}$. If $\alpha \neq \beta$, then it follows that $\alpha = a$ and $\beta = b$.

Proof. Note that $\alpha \neq \beta$ forces $a \neq b$. We divide the case into two. Case 1 $\{a, b\} \neq \{\alpha, \beta\}$:

By assumption M contains $f^{ab}_{\alpha\beta}$. Apply $f^{ab}_{\alpha\beta}$ to

$$\begin{cases} f(\boldsymbol{u}, a, \boldsymbol{v}) &= \alpha \\ f(\boldsymbol{u}, b, \boldsymbol{v}) &= \beta \end{cases}$$

Then we have a contradiction because $f^{ab}_{\alpha\beta}(a) = f^{ab}_{\alpha\beta}(b)$ and $f^{ab}_{\alpha\beta}(\alpha) \neq f^{ab}_{\alpha\beta}(\beta)$.

 $\underline{\text{Case 2}} \quad \{a, b\} = \{\alpha, \beta\} :$

Since $a \neq b$ and $\alpha \neq \beta$, we have either " $a = \alpha$ and $b = \beta$ " or " $a = \beta$ and $b = \alpha$ ".

<u>Subcase 2–1</u> $a = \alpha$ and $b = \beta$: In this case, we are done.

Subcase $2-2$	$a = \beta$ and $b = \alpha$:	
We have		
ſ	$f(oldsymbol{u},a,oldsymbol{v}) = b$	(1)
ĺ	$f(\boldsymbol{u},b,\boldsymbol{v}) = a.$	(2)

Since $k \geq 3$ by assumption, $k \setminus \{a, b\}$ is non-empty. Take any $c \in k \setminus \{a, b\}$ and let

$$f(\boldsymbol{u}, \boldsymbol{c}, \boldsymbol{v}) = \boldsymbol{d}. \tag{3}$$

If $d \notin \{a, b\}$, apply f_{bd}^{ac} to (1) and (3). Then we have a contradiction because $f_{bd}^{ac}(a) = f_{bd}^{ac}(c)$ and $f_{bd}^{ac}(b) \neq f_{bd}^{ac}(d)$. If d = a, then $b \neq d$. Apply f_{bd}^{ac} to (1) and (3). Then we have a contradiction

as above.

If d = b, then $a \neq d$. Apply f_{ad}^{bc} to (2) and (3). Then we have a contradiction because $f_{ad}^{bc}(b) = f_{ad}^{bc}(c)$ and $f_{ad}^{bc}(a) \neq f_{ad}^{bc}(d)$.

To conclude, we must have
$$a = \alpha$$
 and $b = \beta$ (Subcase 2–1).

Lemma 5.3 Let $f \in \mathcal{O}_k^{(n)}$ satisfy Property I. For $i \in \{1, 2, ..., n\}$, $a, b \in k$, $u \in k^{i-1}$ and $v \in k^{n-i}$, suppose that $a \neq b$ and that f satisfies the following:

$$\begin{cases} f(\boldsymbol{u}, \boldsymbol{a}, \boldsymbol{v}) &= \boldsymbol{a} \\ f(\boldsymbol{u}, \boldsymbol{b}, \boldsymbol{v}) &= \boldsymbol{b}. \end{cases}$$
(4)
(5)

Then it follows that $f(\mathbf{u}, x, \mathbf{v}) = x$ for every $x \in \mathbf{k}$.

Proof. Suppose that

$$f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{y} \tag{6}$$

for some $x, y \in \mathbf{k}$ where $x \neq y$.

If $y \neq a$, apply f_{ay}^{ax} to the equations (4) and (6). Then we have

$$\begin{cases} f(\boldsymbol{u}', f_{ay}^{ax}(a), \boldsymbol{v}') &= f_{ay}^{ax}(a) \\ f(\boldsymbol{u}', f_{ay}^{ax}(x), \boldsymbol{v}') &= f_{ay}^{ax}(y) \end{cases}$$
(4)'

which is a contradiction because $f_{ay}^{ax}(a) = f_{ay}^{ax}(x)$ and $f_{ay}^{ax}(a) \neq f_{ay}^{ax}(y)$. If $y \neq b$, apply f_{by}^{bx} to the equations (5) and (6). Then we have

$$\begin{cases} f(\boldsymbol{u}', f_{by}^{bx}(b), \boldsymbol{v}') &= f_{by}^{bx}(b) \\ f(\boldsymbol{u}', f_{by}^{bx}(x), \boldsymbol{v}') &= f_{by}^{bx}(y) \end{cases}$$
(5)'
(6)"

which is a contradiction because $f_{by}^{bx}(a) = f_{by}^{bx}(x)$ and $f_{by}^{bx}(a) \neq f_{by}^{bx}(y)$. Since $a \neq b$, either $y \neq a$ or $y \neq b$ holds, and the assertion is proved.

To summarize, Lemmas 5.1, 5.2 and 5.3 imply:

Lemma 5.4 Let $f \in \mathcal{O}_k^{(n)}$ satisfy Property I. If $|\text{Im} f| \geq 2$ then there exist $i \in \{1, 2, ..., n\}$, $\boldsymbol{u} \in \boldsymbol{k}^{i-1}$ and $\boldsymbol{v} \in \boldsymbol{k}^{n-i}$ such that

$$f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{x}$$

for every $x \in \mathbf{k}$.

Proof. Immediate.

Lemma 5.5 Let $f \in \mathcal{O}_k^{(n)}$ satisfy Property I. If for some $i \in \{1, 2, ..., n\}$ and some $u \in k^{i-1}$ and $v \in k^{n-i}$ it holds that

$$f(\boldsymbol{u}, x, \boldsymbol{v}) = x$$
 for every $x \in \boldsymbol{k}$

then for any $u' \in k^{i-1}$ and $v' \in k^{n-i}$ it holds that

$$f(\boldsymbol{u}', \boldsymbol{x}, \boldsymbol{v}') = \boldsymbol{x}$$
 for every $\boldsymbol{x} \in \boldsymbol{k}$.

Proof. For brevity, we assume that

$$f(x, c, \boldsymbol{w}) = x$$

for some $c \in \mathbf{k}$ and $\mathbf{w} \in \mathbf{k}^{n-2}$ and for every $x \in \mathbf{k}$, that is, $i = 1, \mathbf{u}$ is null and $\mathbf{v} = (c, \mathbf{w})$. Then we shall show that for every $d \in \mathbf{k}$

$$f(x, d, \boldsymbol{w}) = x$$

holds for every $x \in \mathbf{k}$. It is clear that this suffices to prove the lemma. (By repeating this procedure, we obtain $f(x, \mathbf{v}') = x$ for any $\mathbf{v}' \in \mathbf{k}^{n-1}$ from $f(x, \mathbf{v}) = x$ for some particular $\mathbf{v} \in \mathbf{k}^{n-1}$.)

Moreover, we assume without loss of generality that c = 0. I.e., we have

$$f(x,0,\boldsymbol{w}) = x \tag{7}$$

for every $x \in \mathbf{k}$. We shall show that for every $d \in \{1, 2, ..., k-1\}$ and every $x \in \mathbf{k}$ it holds that

$$f(x, d, \boldsymbol{w}) = x.$$

Without loss of generality, again, we may assume that d = 1.

$$\frac{\underline{\text{Case } 1}}{\underline{\text{Let}}} \quad x \in \{2, 3, \dots, k-1\}:$$

$$f(x, 1, \boldsymbol{w}) = y \tag{8}$$

for some $y \in \mathbf{k}$. Suppose $y \neq x$. Since $x \notin \{0, 1\}$, we have $\{x, y\} \neq \{0, 1\}$. So, apply f_{xy}^{01} to (7) and (8) and we obtain

$$\begin{cases} f(f_{xy}^{01}(x), f_{xy}^{01}(0), \boldsymbol{w}') &= f_{xy}^{01}(x) \\ f(f_{xy}^{01}(x), f_{xy}^{01}(1), \boldsymbol{w}') &= f_{xy}^{01}(y) \end{cases}$$
(7)

which is a contradiction because $f_{xy}^{01}(0) = f_{xy}^{01}(1)$ and $f_{xy}^{01}(x) \neq f_{xy}^{01}(y)$. Hence we have

$$f(x,1,\boldsymbol{w}) = x \tag{9}$$

for any $x \in \{2, 3, \dots, k-1\}$.

 $\frac{\underline{\text{Case } 2}}{\underline{\text{Let}}} \quad \begin{array}{l} x = 0 : \\ y := f(0, 1, \boldsymbol{w}). \end{array}$ We consider two subcases.

<u>Claim 2–1</u>. $y \notin \{2, 3, \dots, k-1\}.$

(Proof) It is enough to show that $y \neq 2$, because proof of $y \neq j$ for $j \in \{3, \ldots, k-1\}$ can be carried out analogously. Suppose to the contrary that

$$f(0,1,w) = 2. (10)$$

Then apply f_{02}^{01} to (7) and (10). We obtain

$$\begin{cases} f(f_{02}^{01}(0), f_{02}^{01}(0), \boldsymbol{w}') = f_{02}^{01}(0) \\ f(f_{02}^{01}(0), f_{02}^{01}(1), \boldsymbol{w}') = f_{02}^{01}(2) \end{cases}$$
(7)'

which is a contradiction because $f_{02}^{01}(0) = f_{02}^{01}(1)$ and $f_{02}^{01}(0) \neq f_{02}^{01}(2)$. Thus we have proved $y \neq 2$.

Similarly, we can show that $f(0,1, w) \neq y$ for any $y \in \{3, 4, \dots, k-1\}$.

<u>Claim 2–2</u>. $y \neq 1$.

(Proof) Suppose to the contrary that

$$f(0,1,\boldsymbol{w}) = 1. \tag{11}$$

Then apply f_{12}^{02} to (9) with x = 2 and to (11). We obtain

$$\int f(f_{12}^{02}(2), f_{12}^{02}(1), \boldsymbol{w}') = f_{12}^{02}(2)$$
(9)

$$\int f(f_{12}^{02}(0), f_{12}^{02}(1), \boldsymbol{w}') = f_{12}^{02}(1)$$
(11)

which is a contradiction because $f_{12}^{02}(0) = f_{12}^{02}(2)$ and $f_{12}^{02}(1) \neq f_{12}^{02}(2)$. Thus we have shown $y \neq 1$.

The remaining possibility for the value of $f(0, 1, \boldsymbol{w})$ is 0, i.e., $f(0, 1, \boldsymbol{w}) = 0$.

<u>Claim 3–1</u>. $z \notin \{2, 3, \dots, k-1\}.$

(Proof) By the same reason as the proof of Claim 2-1, it is enough to show that $y \neq 2$. Suppose to the contrary that

$$f(1,1,w) = 2. (12)$$

Then apply f_{02}^{01} to (7) and (12). Then we get

$$\begin{cases} f(f_{02}^{01}(0), f_{02}^{01}(0), \boldsymbol{w}') = f_{02}^{01}(0) \\ f(f_{02}^{01}(1), f_{02}^{01}(1), \boldsymbol{w}') = f_{02}^{01}(2) \end{cases}$$
(7)'
$$(12)'$$

which is a contradiction because $f_{02}^{01}(0) = f_{02}^{01}(1)$ and $f_{02}^{01}(0) \neq f_{02}^{01}(2)$. Thus we have shown $z \neq 2$.

On Centralizers of Monoids

Similarly, we can show that $f(1,1, w) \neq z$ for any $z \in \{3, 4, \dots, k-1\}$.

<u>Claim 3–2</u>. $z \neq 0$.

(Proof) Suppose to the contrary that

$$f(1,1,w) = 0. (13)$$

Then apply f_{02}^{12} to (9) with x = 2 and to (13) we obtain

$$\begin{cases} f(f_{02}^{12}(2), f_{02}^{12}(1), \boldsymbol{w}') &= f_{02}^{12}(2) \\ f(f_{02}^{12}(1), f_{02}^{12}(1), \boldsymbol{w}') &= f_{02}^{12}(0) \end{cases}$$
(9)'
(13)'

which is a contradiction because $f_{02}^{12}(1) = f_{02}^{12}(2)$ and $f_{02}^{12}(0) \neq f_{02}^{12}(2)$. Thus we have shown $z \neq 0$.

The remaining possibility for the value of $f(1, 1, \boldsymbol{w})$ is 1, i.e., $f(1, 1, \boldsymbol{w}) = 1$.

Altogether, we have shown that f(x, 1, w) = x for every $x \in k$.

Analogously, we can verify that for every $d \in \{2, 3, \dots, k-1\}$ and every $x \in \mathbf{k}$ we have

$$f(x, d, \boldsymbol{w}) = x$$

as desired.

Proof of Proposition A(1):

From Lemmas 5.4 and 5.5 it follows that if f is not a constant operation, that is, if f satisfies $|\text{Im } f| \ge 2$, then f is a projection.

Proof of Proposition A(2):

For $f \in M^* \cap \mathcal{O}_k^{(n)}$, suppose that f is a constant operation taking value $i \in \mathbf{k}$, i.e., $f(x_1, \ldots, x_n) = i$ for all $(x_1, \ldots, x_n) \in \mathbf{k}^n$. Property II asserts that there exists g_i in M which satisfies $g_i(i) \neq i$. Then we have $f(g_i(x_1), \ldots, g_i(x_n)) = i$ and $g_i(f(x_1, \ldots, x_n)) = g_i(i) \neq i$ which contradicts the assumption $f \in M^*$. \Box

Acknowledgment: The authors are grateful to an anonymous referee for a valuable remark which led to improve the contents of the paper.

References

[BKKR 69] Bodnartchuk, V. G., Kaluzhnin, L. A., Kotov, V. N. and Romov, A. A. (1969). Galois theory for Post algebras I-II (in Russian), Kibernetika (Kiev), Part I: 3, 1-10; Part II: 5, 1-9; English translation: Cybernetics (1969), 3, 243-252 and 531-539.

[Co 65] Cohn, P. M. (1965). Universal Algebra, Harper and Row, 412pp.

- [Da 77] Danil'tchenko, A. F. (1977). Parametric expressibility of functions of threevalued logic (in Russian), Algebra i Logika, 16, 397-416; English traslation: Algebra and Logic (1977), 16, 266-280.
- [Da 79] Danil'tchenko, A. F. (1979). On parametrical expressibility of the functions of k-valued logic, Colloquia Mathematica Societatis János Bolyai, 28, Finite Algebra and Multiple-Valued Logic, 147-159.
- [Ku 61] Kuznetsov, A. V. (1961). Lattices with closure and criteria for functional completeness (in Russian), Uspekhi Mat. Nauk, 16/2(98), 201-202.
- [MMR 01] Machida, H., Miyakawa, M. and Rosenberg, I. G. (2001). Relations between clones and full monoids, Proc. 31st Int. Symp. Multiple-Valued Logic, IEEE, 279-284.
- [MMR 02] Machida, H., Miyakawa, M. and Rosenberg, I. G. (2002). Some results on the centralizers of monoids in clone theory, Proc. 32nd Int. Symp. Multiple-Valued Logic, IEEE, 10-16.
- [MR 03] Machida, H. and Rosenberg, I. G. (2003). On the centralizers of monoids in clone theory, Proc. 33rd Int. Symp. Multiple-Valued Logic, IEEE, 303-308.
- [MR 04] Machida, H. and Rosenberg, I. G. (2004). Monoids whose centralizer is the least clone, to appear in Proc. 34th Int. Symp. Multiple-Valued Logic, IEEE.
- [March82] Marchenkov, S. S. (1982). Homogeneous algebras (Russian), Problemy Kibernetiki, 39, 85-106.
- [Marcz64] Marczewski, E. (1964). Homogeneous algebras and homogeneous operations, Fund. Math., 56, 81-103.
- [Ro 78] Rosenberg, I. G. (1978). On a Galois connection between algebras and relations and its applications, Contributions of General Algebra, 273-289.
- [Sza 78] Szabó, L. (1978). Concrete representation of related structures of universal algebras. I, Acta. Sci. Math., 40, 175-184.
- [Sza 85] Szabó, L. (1985). Characterization of clones acting bicentrally and containing a primitive group, Acta. Cybernet., 7, 137-142.
- [Sze 86] Szendrei, Á. (1986). Clones in Universal Algebra, SMS Series 99, Les Presses de L'Université de Montréal, 166pp.