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COMPOSITION OF ABEL-GRASSMANN’S 3-BANDS1

Neboǰsa Stevanović2, Petar V. Protić2

Abstract. Abel-Grassmann’s groupoids, or shortly AG-groupoids, have
been considered in quite a number of papers, although under the dif-
ferent names. In some papers they are named left-almost semigroups,
LA-semigroups [3], in other left invertive groupoids [2]. In this paper we
introduce the notions of a 3-potent element of an AG-groupoid and of
AG-3-band. We describe AG-3-band as an AG-band of Abelian groups
of a certain type. Furthermore we define mappings which take part in
the construction that illuminates the structure of AG-3-bands. This con-
struction defines the multiplication between the elements from different
components, thus it gives the way how to make an AG-3-band.
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1. Introduction

Groupoid S on which the following is true

(∀a, b, c ∈ S) (ab)c = (cb)a, (1)

is an Abel-Grassmann’s groupoid (AG-groupoid), [1]. It is easy to verify that
on every AG-groupoid holds medial law

(ab)(cd) = (ac)(bd). (2)

The Abel-Grassmann’s groupoid satisfying (∀a, b, c ∈ S) (ab)c = b(ca) is an
AG∗-groupoid. It is easy to prove that any AG∗-groupoid satisfies permutation
identity of a following type

(a1a2)(a3a4) = (aπ(1)aπ(2))(aπ(3)aπ(4)),

where π is any permutation of a set {1, 2, 3, 4}, [7].
Since AG-groupoids satisfy medial law, they belong to the class of entropic

groupoids. Entropic groupoids are first introduced by D.C. Murdoch (1941)
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under the name Abelian quasigroups and appeared to be the most investigated
class of groupoids. Entropic groupids also appear under the name bisymmetric,
J. Aczel and M. Hoszu as well as medial, S. Stein.

Abell-Grassmann’s groupoids are not associative in general, however, there
is a close relation with semigroups as well as with commutative structures.
Introducing new operation on AG-groupoid gives commutative semigroup.

Let (S, ·) be AG-groupoid, a ∈ S fixed element, we can define the ”sandwich”
operation on S as follows:

x ◦ y = (xa)y, x, y ∈ S.

It was verified in [6] that if G is an AG∗-groupoid then (x◦y)◦z = x◦ (y ◦z)
i.e. (S, ◦) is a commutative semigroup.

Connections mentioned above make AG-groupoids to be among the most
interesting nonassociative structures.

As in Semigroup Theory, bands and band decompositions appear as one of
the most useful method for research on AG-groupoids.

If on AG-groupoid G every element is an idempotent, then G is an AG-band.
An AG-groupoid G is an AG-band Y of AG-groupoids Gα if G =

⋃
α∈Y Gα, Y

is an AG-band, Gα ∩Gβ = ∅ for α, β ∈ Y , α 6= β and GαGβ ⊆ Gαβ .
A congruence ρ on G is called band congruence if G/ρ is a band.

2. Band decompositions of AG-3-bands

Let S be a semigroup such that a2 = a holds for each a ∈ S, i.e. let S be
an associative band. If ab = ba holds for all a, b ∈ S, then S is a semilattice.
A band S, satisfying a = aba for all a, b ∈ S is the rectangular band. It is a
well-known result from Semigroup Theory that the band S is a semilattice of
rectangular bands. It is not hard to prove that a commutative AG-band is a
semilattice.

Let us now introduce the following notion.

Definition 2.1 Let G be an AG-groupoid, a ∈ G arbitrary element if (aa)a =
a(aa) = a we say that a is a 3-potent. AG-groupoid G is a 3-band (or AG-3-
band) if all of its elements are 3-potents. 2

Some interesting properties of 3-potents in an arbitrary AG-groupoid will
be given below as well as their connection with idempotent elements.

Proposition 2.1 Let G be an AG-groupoid, if a ∈ G is a 3-potent then a2 is
an idempotent.

Proof. Let a ∈ G be 3-potent i.e. (aa)a = a(aa) = a then

a2a2 = (aa)(aa) = ((aa)a)a = aa = a2.

Whence a2 is an idempotent. 2
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Remark 2.1. Let G be an AG-groupoid, a, b ∈ G arbitrary elements. Suppose
a2 = b2 is an idempotent, then, (ab)2 = (ab)(ab) = (aa)(bb) = a2b2 = a2a2 = a2,
consequently, (ab)2 = a2 = b2.

One of the best approaches to study of one type of algebraic structure is to
connect it with the other type which is better explored. This aim is accomplished
for AG-3-bands by the next theorem, which connects AG-3-bands with Abelian
groups.

Connections between 3-potents and idempotents mentioned above give us
the motivation to introduce relation K on arbitrary AG-groupoid, as follows,

aKb ⇔ a2 = b2. (3)

It follows immediately from its definition that K is reflexive, symmetric and
transitive, i.e. it is an equivalence relation.

Theorem 2.1 Let G be an AG-groupoid. G is an AG-3-band if and only if
it can be decomposed to an AG-band Y of Abelian groups Sα, α ∈ Y satisfying
a2 = eα for all a ∈ Sα.

Proof. Let G be an AG-3-band, K congruence relation defined above. Since
G is an AG-3-band, by Proposition 2.1. a2 is an idempotent for all a ∈ G so
K is a band congruence on G. Therefore, G is an AG-band Y = S/K of AG-
groupoids, by Sα, α ∈ Y we shall mean equivalence classes of K. Let b ∈ Sα

be an arbitrary element by eα = b2, we shall mean (the unique) idempotent
element of the class Sα. It is now clear that a2 = eα for all a ∈ Sα. The fact
that eα is the unique idempotent follows from the fact that K is the idempotent
separating congruence.

Since G is an AG-3-band we have a2a = aa2 = a for all a ∈ G, which means
that a2 is a neutral for a. Denote a2 = e, b ∈ Ka then be = eb = b since
b2 = a2 = e, whence e is the identity element in Ka. Clearly, a2 = e holds for
all a ∈ Ka. Since AG-groupoid with the identity is a semigroup we have that
Ka is a semigroup with identity a2 = e.

Let a, b ∈ G be elements such that aKb, then ab = (a2a)(bb2) since a, b
are 3-potent furthermore, (a2a)(bb2) = (a2b)(ab2) = (b2b)(aa2) = ba, because
a2 = b2. By the above we have that ab = ba for all a, b ∈ Ka, whence Ka is a
commutative semigroup.

Conversely, suppose that G = ∪α∈Y Sα where Sα, α ∈ Y are commutative
semigroups satisfying a2 = eα for all a ∈ Sα, Y an AG-band. We are going to
prove that G is an AG-3-band. Let x ∈ G be an arbitrary element, then there
exist β ∈ Y such that x ∈ Sβ . If eβ is the identity element of Sβ then x2 = eβ ,
consequently x(xx) = xeβ = x and (xx)x = eβx = x. By the above it follows
that (xx)x = x(xx) = x holds for all x ∈ G, so G is an AG-3-band. 2

Example 2.1 Let G be an AG-groupoid given by the following table
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· 1 2 3 4 5 6 7 8
1 1 2 7 8 3 4 5 6
2 2 1 8 7 4 3 6 5
3 5 6 3 4 7 8 1 2
4 6 5 4 3 8 7 2 1
5 7 8 1 2 5 6 3 4
6 8 7 2 1 6 5 4 3
7 3 4 5 6 1 2 7 8
8 4 3 6 5 2 1 8 7

By using an AG-test [6] we can easily verify that G is an AG-groupoid, but
G is not a semigroup since, for example, (3 · 2) · 8 = 6 · 8 = 3 and 3 · (2 · 8) =
3 · 5 = 7. It is easy to verify that G is an AG-3-band as well. Consequently,
G is decomposable to an AG-band T = {1, 3, 5, 7} of a commutative inverse
semigroups Sα = {α, α + 1}, α ∈ T with the identity element. Band T is
isomorphic with the unique AG-band of order 4 (T4 [8]), and multiplication in
Gα is given with αα = (α+1)(α+1) = α and α(α+1) = (α+1)α = α+1, α ∈
T . Obviosly, the semigroups Sα satisfy x2 = α.

In Theorem 2.1. we have described the class of AG-3-bands as the AG-band
of Abelian groups. This description, however, did not illuminate the actual
structure of AG-3-bands. Thus, our task now is to provide the structural de-
scription.

Similarly as in Semigroup Theory an important role in making compositions
plays the concept of inner translations. Left and right inner translations on the
class of AG∗-groupoids are discussed by the authors of this paper in [8], here
we give a few more general properties which will be useful in the construction
that comes.

Definition 2.2. [8] Let G be an AG-groupoid and a ∈ S an arbitrary element.
Mapping λa : G −→ G defined with λa(x) = ax is the inner left translation
on G. Dually we can define the inner right translation ρa : G −→ G with
ρa(x) = xa.

Lemma 2.1 Let G be an arbitrary AG-groupoid, a, b ∈ G arbitrary elements,
λa, ρa, λb, ρb and λab inner translations, then:

1. ρa ◦ ρb = λab,
2. ρa ◦ λb = ρb ◦ λa ,
3. ρe ◦ ρe = λe, if e ∈ E(G).

Proof. (1) Let x ∈ G be arbitrary element, then

(ρa ◦ ρb)(x) = ρa(ρb(x)) = (xb)a = (ab)x = λab(x).

(2) Similarly,

(ρa ◦ λb)(x) = ρa(λb(x)) = (bx)a = (ax)b = ρb(λa(x)) = (ρb ◦ λa)(x).
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(3) Let e ∈ G be an idempotent then by 1. we have

ρe ◦ ρe = λee = λe.

Lemma 2.2 Let G be an AG-groupoid, e ∈ E(G). Inner translations λe and
ρe are automorphisms on G.

Proof. Let x, y ∈ G be arbitrary elements, then

λe(xy) = e(xy) = (ee)(xy) = (ex)(ey) = λe(x)λe(y).

Similarly,

ρe(xy) = (xy)e = (xy)(ee) = (xe)(ye) = ρe(x)ρe(y).

By the above it follows that λe and ρe are homomorphisms from G to G i.e.
automorphisms. 2

From now on we assume that G is an AG-3-band or AG-band of Abelian
groups, which is the same by Theorem 2.1. Let Y be an AG-band isomor-
phic with E(G). Let α −→ eα be the isomorphism of Y upon E(G). Thus
eαeβ = eαβ . Elements of Gα will be denoted by aα, bα, . . .. In the next three
lemmas we shall introduce two families of mappings between the components in
decomposition of AG-3-band. We shall also give the properties of those map-
pings which are naturally connected with the structure of AG-3-band.

Lemma 2.3 Mappings ρα,β : Sβ −→ Sβα, defined by ρα,β(aβ) = aβeα and
λα,β : Sβ −→ Sαβ, defined by λα,β(aβ) = eαaβ, are homomorphisms for all
α, β ∈ Y . Moreover, ρα,α and λα,α are identity mappings.

Proof. Let aβ , bβ ∈ Gβ be arbitrary elements, then we have

ρα,β(aβbβ) = (aβbβ)eα = (aβbβ)(eαeα) = (aβeα)(bβeα) = ρα,β(aβ)ρα,β(bβ).

Similarly,

λα,β(aβbβ) = eα(aβbβ) = (eαeα)(aβbβ) = (eαaβ)(eαbβ) = λα,β(aβ)λα,β(bβ).

Obviously, λα,α and ρα,α are identity mappings since eα is the identity in Sα.2

Lemma 2.4 Let mappings ρα,β and λα,β be defined like in Lemma 2.3 then the
following identities hold

(a) ρα,βγ ◦ λβ,γ = ρβ,αγ ◦ λα,γ ,
(b) ρα,γβ ◦ ρβ,γ = λαβ,γ .

Proof. Let aγ ∈ Sγ be arbitrary element, then we have

(ρα,βγ ◦ λβ,γ)(aγ) = ρα,βγ(λβ,γ(aγ)) = ρα,βγ(eβaγ) = (eβaγ)eα = (eαaγ)eβ

= λα,γ(aγ)eβ = ρβ,αγ(λα,γ(aγ) = (ρβ,αγ ◦ λα,γ)(aγ).
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Similarly,

(ρα,γβ ◦ ρβ,γ)(aγ) = ρα,γβ(ρβ,γ(aγ)) = ρα,γβ(aγeβ) = (aγeβ)eα

= (eαeβ)aγ = (eαβ)aγ = λαβ,γ(aγ).

The following corollary gives the connection between the mappings ρ and
λ, in other words it gives the possibility to represent the mappings from λ by
mappings from ρ.

Corollary 2.1 Let α, β ∈ Y be arbitrary elements then we have

λα,β = ρα,βα ◦ ρα,β .

Proof. If we put α instead of β and β instead of γ in (b) of Lemma 2.4. we
obtain the above identity. 2

Lemma 2.5 Let mappings ρα,β and λα,β be defined like in Lemma 2.3., aβ , bβ ∈
Gβ be arbitrary elements, then

aα · bβ = ρβ,α(aα) · λα,β(bβ).

Proof. Let aα ∈ Sα and bβ ∈ Sβ be arbitrary elements, then we have

aα · bβ = (aα · eα)(eβ · bβ) = ρβ,α(aα) · λα,β(bβ). 2

The next theorem completely describes the structure of AG-3-bands and
gives the way for the construction of such groupoids.

Theorem 2.2 Let Y be an AG-band, for each α ∈ Y let us assign an Abelian
group Gα such that a2

α = eα for all aα ∈ Sα and Gα ∩ Gβ = ∅ if α 6= β in Y .
For each α, β ∈ Y let us introduce the family of mappings ρα,β : Sβ −→ Sβα,
and λα,β : Sβ −→ Sαβ such that λα,α = ρα,α = iSα and

(a)ρα,βγ ◦ λβ,γ = ρβ,αγ ◦ λα,γ

(b)ρα,γβ ◦ ρβ,γ = λαβ,γ .

Then G = ∪α∈Y Sα is an AG-3-band under the operation ? defined by

aα ? bβ = ρβ,α(aα) · λα,β(bβ).

Conversely, each AG-3-band can be constructed in the above manner.

Proof. The converse part of the theorem was already proved by Lemmas 2.3.-2.5.
Suppose G = ∪α∈Y Sα is the groupoid constructed like in the direct part

of the theorem. First we prove that (G, ·) is an AG-groupoid. Let aα ∈ Sα,
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bβ ∈ Sβ and cγ ∈ Sβ be arbitrary elements. By using (a), (b), the facts that
Sα, Sβ , Sγ are Abelian groups and Y is an AG-band we can obtain the following

(aα · bβ) · cγ = (ρβ,α(aα) · λα,β(bβ)) · cγ

= ργ,αβ(ρβ,α(aα) · λα,β(bβ)) · λαβ,γ(cγ)
= (ργ,αβ(ρβ,α(aα)) · ργ,αβ(λα,β(bβ))) · λαβ,γ(cγ)
= ((ργ,αβ ◦ ρβ,α)(aα) · (ργ,αβ ◦ λα,β)(bβ)) · λαβ,γ(cγ)
= λγβ,α(aα) · (ργ,αβ ◦ λα,β)(bβ) · (ρα,γβ ◦ ρβ,γ)(cγ)
= (ρα,γβ ◦ ρβ,γ)(cγ) · (ργ,αβ ◦ λα,β)(bβ) · λγβ,α(aα)
= (ρα,γβ ◦ ρβ,γ)(cγ) · (ρα,γβ ◦ λγ,β)(bβ) · λγβ,α(aα)
= ρα,γβ(ρβ,γ(cγ) · λγ,β(bβ)) · λγβ,α(aα)
= (ρβ,γ(cγ) · λγ,β(bβ)) · aα

= (cγ · bβ) · aα

For elements aα, bα, cα Abel-Grassmann’s law follows directly since Sα is an
Abelian group.

Let aα ∈ Sα be an arbitrary element. Since ρα,α and λα,α are identity
mappings on Sα and a2

α = eα, it follows that

(aα?aα)?aα = (ρα,α(aα)·λα,α(aα))?aα = (aα ·aα)?aα = eα?aα = eα ·aα = aα.

Consequently, G is an AG-3-band. 2

Since by Corollary 2.1. follows that each homomorphism λα,β : Sβ −→ Sαβ

can be replaced by the composition of appropriate ”right” homomorphisms we
can state the next theorem which makes the construction of AG-3-bands much
easier. Now we need only one family of mappings.

Theorem 2.3 Let Y be an AG-band, for each α, β ∈ Y let us assign Abelian
groups Gα, Gβ such that a2

α = eα for all aα ∈ Sα and Gα ∩ Gβ = ∅ if α 6= β.
Let us introduce the family of mappings ρα,β : Sβ −→ Sβα, such that ρα,α = iSα

and
ρα,βγ ◦ (ρβ,γβ ◦ ρβ,γ) = ρβ,αγ ◦ (ρα,γα ◦ ρα,γ)

Then G = ∪α∈Y Sα is an AG-3-band under the operation defined by

aα · bβ = ρβ,α(aα) · ρα,βα ◦ ρα,β(bβ).

Conversely, each AG-3-band can be constructed in above manner.

Proof. Follows from Corollary 2.1. and Theorem 2.1. 2
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