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FREE BIASSOCIATIVE GROUPOIDS1
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Abstract. The subject of this paper is the study of the variety of
groupoids that have the following property: each subgroupoid generated
by two elements is a subsemigroup. A construction of free objects in this
variety is given. Free objects in the variety of idempotent and commuta-
tive groupoids with the mentioned property are also constructed.
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0. Preliminaries

The idea of considering biassociative groupoids came out from [3], where
monoassociative groupoids (i.e. groupoids with the property that each sub-
groupoid generated by one element is a subsemigroup) are investigated. The
goal of this paper is a description of free objects in the varieties of groupoids
with the property that each subgroupoid generated by a two-element set is a
subsemigroup. In order to accomplish this, some definitions, notations and facts
on free semigroups wil be given below.

Let A be a nonempty set. Then the set of all finite (nonempty) sequences
(a1, a2, . . . , an), where aν ∈ A, will be denoted by A+. The pair (A+, ·), where
“·” is the concatenation of sequences, is a free semigroup with the basis A. In
the sequel, A+ will denote the semigroup and its carrier, as well, and the element
(a1, a2, . . . , an) of A+ will be denoted simply by a1a2 . . . an, or an in the case
a1 = a2 = . . . = an = a.

The following propositions are true.

Proposition 0.1. Let N be the set of positive integers. Then:
(a) The semigroup A+ is cancellative.
(b) For each a ∈ A+ there is a unique pair (b, k) ∈ A+×N , such that a = bk,

where b 6= cr, for any c ∈ A+ and r ∈ N\{1}.
(c) If B 6= ∅ and B ⊆ C, then B+ ⊆ C+.
(d) B ∩ C 6= ∅ ⇒ (B ∩ C)+ = B+ ∩ C+. 2
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In the assertion (b), b is called the base and k the exponent of a. An element
u ∈ A+ is said to be primitive in A+ if and only if (∀v ∈ A+, n ≥ 2) (u 6= vn).
The notion of primitive element could be introduced for any semigroup S just
substituing A+ by S in the definition above.

A groupoid G = (G, ·) is said to be biassociative if and only if (shorter iff)
for any a, b ∈ G, the subgroupoid S of G generated by a and b, i.e. S = 〈a, b〉,
is a subsemigroup of G. Moreover, if S is commutative (idempotent, commu-
tative and idempotent) subsemigroup of G, then G is said to be commutative
(idempotent, commutative idempotent) biassociative groupoid, respectively. The
class of all biassociative (commutative, idempotent, commutative and idem-
potent) groupoids will be denoted by Bass (ComBass, IdBass, ComIdBass),
respectively.

Let G= (G, ·) ∈ Bass and a, b ∈ G. The subsemigroup C of G, generated by
a, i.e. C = 〈a〉, is described by C = {ak | k ≥ 1}. The subsemigroup S of G gen-
erated by a, b, i.e. S = 〈a, b〉, in the case when a /∈ 〈b〉 and b /∈ 〈a〉 consists of all
elements of the form aα1bβ1 . . . aαrbβr , where α1, βr ≥ 0, β1, α2, . . . , βr−1, αr ≥
1, and “x0” means “lack of any symbol”.

The class of biassociative groupoids is hereditary and closed under direct
products and homomorphisms. Therefore:

Proposition 0.2. The class of all biassociative groupoids is a variety. 2

The following proposition is also true.

Proposition 0.3. If 1 ≤ |B| ≤ 2, then B+ is a free object in Bass with the
basis B. 2

The corresponding proposition to 0.3 for ComIdBass is the following

Proposition 0.4. If |B| = 1, then a free ComIdBass with the basis B is B
itself. If B = {a, b}, a 6= b, then a free ComIdBass with the basis B is {a, b, ab}.
2

Considering Proposition 0.3 (Proposition 0.4), we will give in Section 1 (Sec-
tion 2) only the construction of a free groupoid in Bass (in ComIdBass) with a
basis B, such that |B| ≥ 3.

For this purpose we need some more definitions.
Let G 6= ∅, D ⊆ G × G, and · : D → G be a mapping. Then G= (G,D, ·)

is called a partial groupoid with the domain D. A subset P ⊆ G is said to be a
subgroupoid of the partial groupoid G iff

(a, b) ∈ P 2 ∩D ⇒ a · b ∈ P.

A subgroupoid of a partial groupoid need not be a groupoid, but it is a
partial groupoid with the domain P 2 ∩D.
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Let S= (S,D, ·) be a partial groupoid. S is called a partial semigroup5 iff

(∀a, b, c ∈ S)((ab)c, a(bc) ∈ S ⇒ (ab)c = a(bc)).(1)

Let P be a subgroupoid of a partial groupoid G. If P is a partial semigroup,
then P is called a partial subsemigroup of G.

A partial groupoid G= (G,D, ·) is said to be a partial commutative (idem-
potent, commutative idempotent) groupoid iff

(∀a, b ∈ G) (ab ∈ G⇒ ba ∈ G ∧ ab = ba),

((∀a ∈ G) (a2 ∈ G⇒ a = a2),

(∀a, b ∈ G) (ab, a2 ∈ G⇒ ba ∈ G ∧ ab = ba ∧ a2 = a)),

respectively.
The following proposition is also true.

Proposition 0.5. Let K,P be subgroupoids of the partial groupoid G= (G,D, ·).
If K ∩ P 6= ∅, then K ∩ P is a subgroupoid of G. 2

Let G be a partial groupoid, ∅ 6= A ⊆ G, {Pi | i ∈ I} the family of all
subgroupoids of G containing A, and P =

⋂
i∈I Pi. Then P 6= ∅, and (by

Proposition 0.5) P is a subgroupoid of G which is called the subgroupoid of G
generated by A and is denoted by P = 〈A〉.

If G and G′ are partial groupoids and ϕ : G → G′ is a mapping, then ϕ is
called a partial homomorphism from G into G′ iff

(∀x, y ∈ G) (xy ∈ G,ϕ(x)ϕ(y) ∈ G′ ⇒ ϕ(xy) = ϕ(x)ϕ(y)).(2)

Using the notions of subgroupoid of a partial groupoid generated by a non-
empty set and partial homomorphism, one can define a partial free object in a
class of partial groupoids in a usual way.

In order to give constructions of free objects in the varieties Bass and Co-
mIdBass we need definitions of a partial biassociative groupoid and a free partial
biassociative groupoid.

A partial groupoid G= (G,D, ·) is said to be partial biassociative groupoid
(or partial Bass-groupoid) iff for any a, b ∈ G, 〈a, b〉 is a partial subsemigroup
of G.

A partial Bass-groupoid H is said to be a free partial Bass-groupoid with the
basis B (6= ∅), if H is generated by B and if G ∈ Bass and λ : B → G is a
mapping, then there is a (unique) mapping ϕ : H → G, such that ϕ is a partial
homomorphism that is an extension of λ.

5A partial semigroup S= (S, D, ·) could be defined as follows

(∀a, b, c ∈ S)((ab)c ∈ S ⇒ a(bc) ∈ S ∧ (ab)c = a(bc)),

but in this paper we will consider the one satisfying (1).
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1. Construction of a free biassociative groupoid

The construction of a free biassociative groupoid with a given basis B will
be given only for |B| ≥ 3, as it was mentioned in Section 0. It will be given in
several steps. In fact, an inductive construction of a chain H0,H1, . . . ,Hk, . . .
of partial biassociative groupoids will be given such that its union will be a free
object in Bass with the basis B.

The first step will be the construction of H1. To make the reading easier,
we give the full construction when |B| = 3, B = {a, b, c}, and then we give just
a short note for the case |B| > 3. Some auxiliary assertions in this section will
be marked as 1.x.x.

1.1. Construction of H1

The set B = {a, b, c} has no structure, so it is asumed that H0 = B is a
partial groupoid with the domain D0 = ∅. Define the set H1 by:

H1 = {a, b}+ ∪ {a, c}+ ∪ {b, c}+

(or, in general, H1 =
⋃
{{x, y}+ | x, y ∈ H0, x 6= y}).

The fact that H1 is a union of infinite sets, each being a free semigroup with
a two-element basis, implies that:

1.1.1. H1 = (H1, D1, ·) is a partial groupoid with the domain

D1 = {(t, u) | {t, u} ⊆ {a, b}+ ∨ {t, u} ⊆ {a, c}+ ∨ {t, u} ⊆ {b, c}+},

(or, in general, D1 =
⋃
{({x, y}+)2 | x, y ∈ H0, x 6= y}). 2

Note that H1 is a union (in general not disjoint) of free semigroups. It is
not a groupoid, in the case |B| ≥ 3. For example, if a, b, c ∈ B, a 6= b 6= c 6= a,
then ab, bc ∈ H1, but (ab, bc) /∈ D1, i.e. the “product” ab · bc does not exist in
H1. The elements of B are primitive elements in H1, but there are others, such
as ab, bc, . . . .

We give below some properties of H1.

1.1.2. H1 is a partial Bass-groupoid and

x, y ∈ H1 ⇒ ((x, y) ∈ D1 ⇐⇒ (y, x) ∈ D1). 2

The next proposition is true for H1, but not for Hk, k ≥ 2.

1.1.3. If x, y, z ∈ H1, then x(yz) ∈ H1 ⇒ (xy)z ∈ H1, and in this case,
x(yz) = (xy)z. 2

1.1.4. H1 is a free partial Bass-groupoid with the basis B.

Proof. Clearly, B generates H1. Let G∈ Bass and λ : B → G be a mapping.
If (x, y) ∈ D1, then x, y ∈ {u, v}+, where u, v ∈ B = {a, b, c}. Since {u, v}+ is
a free semigroup with the basis {u, v}, then there is a homomorphic extension
ψ1 of λ1 from {u, v}+ into G, where λ1 is the restriction of λ on the set {u, v}.
We put ϕ1(xy) = ψ1(xy) = ψ1(x)ψ1(y) = ϕ1(x)ϕ1(y). It is clear that ϕ1 is a
partial homomorphism from H1 into G. 2



Free Biassociative Groupoids 19

1.2. Construction of H2

Many “products” of elements of H1 are not defined in H1, such as a · (bc),
b · (ac), (ab) · (ac). To provide their existence, we extend H1 to H2 as follows:

H2 = H1 ∪ (∪{{t, u}+ | t, u are primitive elements in H1 & (t, u) /∈ D1}).

Remark 1. In definition to H2 we could have taken the union of the collection
{{v, w}+ | v, w ∈ H1, (v, w) /∈ D1}, for if v, w are not primitive elements in H1,
then v = tm, w = un for some t, u ∈ H1, and {v, w}+ ⊆ {t, u}+.

Remark 2. Denote C1 = ∪{{t, u}+ | t, u are primitive elements in H1 &
(t, u) /∈ D1}. Then: H1 ∩ C1 = {vn | v is a primitive element in H1, n ≥
1} 6= ∅, C1 \ H1 is infinite. For example, the set ∪{t · u | t, u are primitive
elements in H1 & (t, u) /∈ D1} is a proper subset of C1 \H1.

Remark 3. If v, w ∈ H1, then v ·w is defined in H2 iff v ·w is defined in H1 or
v · w ∈ {t, u}+ for some primitive elements t, u ∈ H1, such that (t, u) /∈ D1.
Remark 4. If t, u, v are primitive elements in H1 such that tu, uv /∈ H1, then
(tu) · v /∈ H2 or t · (uv) /∈ H2.

1.2.1. H2 is a partial groupoid with the domain

D2 = D1 ∪ (∪{({t, u}+)2 | t, u are primitive elements in H1&(t, u) /∈ D1}).(3)

and H2
1 ⊂ D2.6 2

Note that the union in (3) need not be disjoint. Some properties of H2 will
be listed bellow.

1.2.2. Each element in H2 has a uniquely determined base and exponent. 2

1.2.3. H2 is a partial biassociative groupoid. 2

Note that H2 is not a partial semigroup, as (ab)c 6= a(bc), although (ab)c,
a(bc) ∈ H2.

1.2.4. If G∈ Bass and λ : B → G is a mapping, then there is a unique partial
homomorphism ϕ2 : H2 → G, such that ϕ1 is the restriction of ϕ2 on the set
H1 .

Proof. Let G ∈ Bass, and λ : B → G be a mapping. Then ϕ1 : H1 → G is a
partial homomorphism defined as in the proof of 1.1.4. If x, y ∈ H2, (x, y) ∈ D2

and x, y ∈ {u, v}+, where u, v are primitive elements in H1, then ϕ2 is defined
in the same way as ϕ1 in 1.1.4. 2

6A ⊂ B iff A ⊆ B and A 6= B.
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1.3. Construction of Hn (n ≥ 3)

Assume that the partial Bass groupoids B = H0,H1, . . . ,Hk are defined and
the following conditions are satisfied:

a) For each i, 0 ≤ i ≤ k, H
2
i ⊂ Di+1.

b) For each G∈ Bass and λ : B → G, there is a chain of partial homo-
morphisms λ = ϕ0 ⊆ ϕ1 ⊆ . . . ⊆ ϕk+1 ⊆ . . ., where ϕk : Hk → G for any
k ≥ 0.

Now, define Hk+1 in the same way as H2:

Hk+1 = Hk ∪ (∪{{t, u}+ | t, u are primitive elements in Hk & (t, u) /∈ Dk}).

1.3.1. Hk+1 is a partial Bass-groupoid with the domain

Dk+1 = Dk ∪ (∪{({t, u}+)2 | t, u are primitive elements in Hk & (t, u) /∈ Dk}).
2

Note that

Dk+1 = H2
k ∪ (∪{({t, u}+)2 | t, u are primitive elements in Hk & (t, u) /∈ Dk}).

1.3.2. (∀k ≥ 0) (H2
k ⊂ Dk+1 and Dk ⊂ H2

k).

Proof. The proof will be given by induction on k for both statements at the
same time.

Recall that H0 = B, D0 = ∅ and D1 = ∪{({x, y}+)2 | x, y ∈ H0, x 6= y}.
Clearly, D0 ⊂ H2

0 , and ((ab), b) ∈ D1, but ((ab), b) /∈ H2
0 , i.e. H2

0 ⊂ D1. Thus
1.3.2 is true for k = 0.

We also give the proof for k = 1, i.e. H2
1 ⊂ D2 and D1 ⊂ H2

1 .
Since H1 = {a, b}+ ∪ {a, c}+ ∪ {b, c}+, it follows that (ab, c) ∈ H2

1 , but
(ab, c) /∈ D1, and thus D1 ⊂ H2

1 . It is easily seen that there are elements
x, y, u ∈ H1 \ H0, such that (x, y) /∈ D1, and u ∈ {x, y}+ (for example: x =
ab, y = ac, u = (ab)2 are in H1 \ H0, (ab, ac) /∈ D1 and (ab)2 ∈ {ab, ac}+).
Then (xy, u) /∈ H2

1 , but (xy, u) ∈ D2, i.e 1.3.2 is true for k = 1.
Suppose that H2

r ⊂ Dr+1, and Dr ⊂ H2
r , for each r ∈ {0, 1, . . . , k}, k > 0.

We will prove that

H2
k+1 ⊂ Dk+2 and Dk+1 ⊂ H2

k+1.

By the inductive hypothesis and the definitions of Hr, Dr, we have that
Hk ⊂ Hk+1 and there are x, y, u ∈ Hk+1 \ Hk, such that (x, y) /∈ Dk (as
Dk ⊂ H2

k) and u ∈ {x, y}+. Then (xy, u) /∈ H2
k+1, but (xy, u) ∈ Dk+2. If

x, y, u ∈ Hk+1 \Hk are different primitive elements such that u /∈ {x, y}+, then
xy, u ∈ Hk+1, (xy, u) ∈ H2

k+1, but (xy, u) /∈ Dk+1. Thus, Dk+1 ⊂ H2
k+1. 2

1.3.3. Each element in Hk+1 has a unique base and exponent. 2

1.3.4. Let G ∈ Bass and λ : B → G be a mapping. Then there is a unique
partial homomorphism ϕk+1 : Hk+1 → G, such that ϕk is the restriction of
ϕk+1 on Hk.
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Proof. Let (x, y) ∈ Dk+1. If (x, y) ∈ Dk+1 ∩H2
k , then ϕk+1(xy) = ϕk(x)ϕk(y).

If (x, y) ∈ Dk+1\H2
k , then x, y ∈ {u, v}+, for some primitive elements u, v ∈ Hk,

such that (u, v) /∈ Dk. Thus, xy = uα1vβ1 . . . uαrvβr , and we define

ϕk+1(xy) = ϕk(u)α1ϕk(v)β1 . . . ϕk(v)βr .

It is clear that ϕk+1 is a partial homomorphism, and ϕk is the restriction of
ϕk+1 on Hk. 2

Theorem 1. If H =
⋃

k≥0Hk, then H is a free biassociative groupoid with the
basis B.

Proof. First, let x, y ∈ H. Then there is a k ∈ N , such that x, y ∈ Hk

and by 1.3.2, (x, y) ∈ Dk+1. Thus x · y ∈ Hk+1 ⊆ H, i.e. H is a groupoid.
Now, we will prove that H∈ Bass. Let x, y ∈ H, i.e. there is a k, such
that(x, y) ∈ Dk. Then 〈x, y〉 is a subgroupoid of H. Let u, v, w ∈ 〈x, y〉. Then
(u, v), (uv,w), (v, w), (u, vw) ∈ Ds, for some s ≥ k. As Hk is a partial Bass-
groupoid for each k, it follows that (uv)w = u(vw) ∈ Hs ⊆ H. Thus, 〈x, y〉 is
a subsemigroup, i.e. H ∈ Bass. Let G ∈ Bass and λ : B → G be a mapping.
Define ϕ : H → G as follows. If (x, y) ∈ Dk, then ϕ(xy) = ϕk(x)ϕk(y). It is
clear that ϕ is a homomorphism, such that ϕ0 = λ is the restriction of ϕ on the
set B . (Note that, by the construction, B generates H.) 2

Remark 5. If we consider the class of ComBass, then Theorem 1 can be re-
stated for ComBass by adding commutativity. The construction of free commu-
tative biassociative groupoid with a given basis B is essentially the same, except
that it is based on a free commutative semigroup generated by two elements a
and b, i.e. {a, b}(+) instead on a free semigroup {a, b}+.

Moreover, the following statements for Hk are also true, for each k ∈ N .

1.3.5. If x, y ∈ Hk, then (x, y) ∈ Dk iff (y, x) ∈ Dk, and 〈x, y〉 is a subsemi-
group of Hk. 2

1.3.6 qbt Hk is a cancellative partial groupoid, i.e.

(x, y), (x, z) ∈ Dk ⇒ (xy = xz ⇒ y = z), and

(x, z), (y, z) ∈ Dk ⇒ (xz = yz ⇒ x = y).

Proof. H1 is a cancellative groupoid. Let the statement be true for all Hr, r ≤ k,
and let (x, y), (x, z) ∈ Dk+1 \H2

k and xy = xz. Then x, y ∈ {u, v}+, for some
primitive elements u, v ∈ Hk such that (u, v) /∈ Dk and xy = xz ∈ {u, v}+. As
{u, v}+ is a free semigroup generated by {u, v}, it is a cancellative semigroup,
and thus y = z. 2
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2. Construction of Free Commutative Idempotent Biasso-
ciative Groupoids

We will consider here the class of commutative idempotent biassociative
groupoids (ComIdBass) defined in Section 0. Clearly, if G ∈ ComIdBass,
then G ∈ Bass and G is commutative and idempotent groupoid. Considering
Proposition 0.5, we obtain that:

G ∈ ComIdBass ⇐⇒ (∀x, y ∈ G)〈x, y〉 = {x, y, xy},

where xy = yx.
Let us note that the following is valid:

Proposition 2.1 If a, b are different objects, then the groupoid H = ({a, b,
ab}; ·) defined by

· a b ab
a a ab ab
b ab b ab
ab ab ab ab

is a free semilattice with the basis {a, b}. 2

We will consider the case |B| = 3. The case |B| > 3 will not be considered,
as the construction of a free ComIdBass-groupoid with the basis B, is essentially
the same as in the case |B| = 3.

Let B = {a, b, c}, a 6= b 6= c 6= a. We will construct a chain H0,H1, . . . ,
Hk, . . . of partial ComIdBass-groupoids by induction on k.

Define H0 = B and a partial order ≤0 by: a <0 b <0 c. H0 is a partial
ComIdBass groupoid with the domain D0 = ∅. Put H1 = H0 ∪ {ab, ac, bc},
and define ≤1 to be the lexicographic order on H1 generated by ≤0. Then
H1 = (H1, ·) is a partial ComIdBass groupoid with the domain

D1 = {(x, y) | x, y ∈ H0} = H2
0 .

Suppose that Hk and ≤k are defined such that Hk is a partial ComIdBass-
groupoid. Define

Hk+1 = Hk ∪ {x(yz) | x, yz ∈ Hk, x <k yz, x 6= y, x 6= z, x 6= yz}(4)

and ≤k+1 to be the lexicographic order on Hk+1 generated by ≤k.

Proposition 2.2. Hk is a partial ComIdBass-groupoid, for any k ∈ N , with
the domain Dk = {(x, y) | x, y ∈ Hk−1} = H2

k−1.

Proof. H0 and H1 are partial ComIdBass groupoids. Assume that Hk is a
partial ComIdBass groupoid, and consider Hk+1 defined by (4).

If u, v ∈ Hk+1, (u, v) ∈ Dk+1, then {u, v, uv} ⊆ Hk+1. Thus Hk+1 is a
partial ComIdBass-groupoid. 2
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Proposition 2.3. (a) Hk ⊂ Hk+1, (b) Dk+1 ⊂ H2
k+1. 2

Proposition 2.4. If G ∈ ComIdBass and λ : B → G, then for each k ≥
0, there is a partial homomorphism ϕk+1 : Hk+1 → G, such that ϕk is the
restriction of ϕk+1 on Hk and ϕ0 = λ. 2

Theorem 2. Let H = ∪{Hk | k ≥ 0}. Then H = (H, ·) is a free ComIdBass-
groupoid with the basis B.

Proof. In the same way as in Theorem 1, one can prove that H ∈ ComIdBass,
it is generated by B and if G∈ ComIdBass and λ : B → G is a mapping, then
ϕ = ∪k≥0 ϕk : H → G is the homomorphic extension of λ. 2

Remark 6. For the construction of a free object in the variety IdBass with a
basis B, a theorem similar to Theorem 2 can be used. Then the construction is
essentially the same as for ComIdBass, except for that here the free idempotent
semigroup {a, b, ab, ba, aba, bab} generated by {a, b} is used, instead of a free
commutative idempotent semigroup {a, b, ab} generated by {a, b}.
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