
Novi Sad J. Math.
Vol. 35, No. 1, 2005, 25-40

CaseBaseGenerator for Intelligent Systems1

Vladimir Kurbalija 2, Mirjana Ivanović2

Abstract. CBG - ”Casebase Generator” is a decision support system
recently developed at Department of Mathematics and Informatics, Uni-
versity of Novi Sad. The technology used for implementing this system is
Case-Based Reasoning (CBR). CBR is relatively new and promising area
of artificial intelligence where every new problem is solved by adapting the
solutions of the previously successfully solved problems. In the past few
years CBR has become a popular technique for knowledge-based systems
in different domains because the experience is included in solving every
new problem. The purpose of this system is to be the main engine of some
future, more specialized systems. ”Case Base Generator” system is partly
described in this paper and some future specialization are analyzed.

Key words and phrases: Intelligent Systems, Databases and Information
Retrieval, Case Based Reasoning.

1. Introduction

During the last two years in the area of CBR at the Department of Math-
ematics and Informatics, several systems have been developed [5], [6]. Current
direction is connected to realization of ”Casebase Generator” - a decision sup-
port system based on CBR. The main attention of the authors was to create
the core system which could be used in several more specific intelligent systems.
”Casebase Generator” was exactly the result of these intentions, and first step
in realization of different decision support systems based on CBR engine.

Case-Based Reasoning, a special area of artificial intelligence, is considered as
a problem solving technology (or technique). This technology is used for solving
problems in domains where experience plays an important role [1],[2],[7],[9].

Generally speaking, case-based reasoning is applied for solving new problems
by adapting solutions that worked for similar problems in the past. The main
supposition here is that similar problems have similar solutions. The basic
scenario for mainly all CBR applications is: In order to find a solution of an
actual problem, one looks for a similar problem in an experience base, takes the
solution from the past and uses it as a starting point to find a solution to the
actual problem.

1Research is supported by the project: ”Development of (intelligent) techniques based on
software agents for application in information retrieval and workflows”, Ministry of science,
Technologies, and Development, Republic of Serbia.(Project No. 1844).

2Department of Mathematics and Informatics, Faculty of Science, University of Novi
Sad, Trg D. Obradovica 4, Novi Sad 21000, Serbia and Montenegro, E-mail: kurba,

mira@im.ns.ac.yu

26 V. Kurbalija, M. Ivanović

In CBR systems experience is stored in form of cases. The case is a recorded
situation where problem was totally or partially solved, and it can be represented
as an ordered pair (problem, solution). The whole experience is stored in case
base, which is a set of cases and each case represents some previous episode
where the problem was successfully solved.

The knowledge of the CBR system is stored in different knowledge contain-
ers. The knowledge container is the structural element, which contains some
quantity of knowledge. The idea of the knowledge container is totally differ-
ent from the traditional module concept in programming. While the module
is responsible for a certain subtask, the knowledge container does not complete
the subtask but contains some knowledge relevant to many tasks. Even small
tasks require the participation of each container. The concept of the knowledge
container is similar to concepts of the nodes and propagation rules in neural
networks.

In case-based reasoning several knowledge containers can be identified:
a) the vocabulary used;
b) the similarity measure;
c) the case base; and
d) the solution transformation.
In principle, each container can carry almost all knowledge available. From

a software engineering point of view there is another advantage of case-based
reasoning - the content of the containers can be changed locally. This means
that manipulations on one container have little consequences on the other ones.
As a consequence, maintenance operations [4], [11] are easier to be performed
then on classical knowledge based systems.

The task of machine learning is to improve a certain performance using some
experience or instructions. In inductive learning, problems and good solutions
are presented to the system. The major desire is to improve a general solution
method in every inductive step. Machine learning methods can be used in order
to improve the knowledge containers of a case-based reasoning system (the case
base, similarity measures and the solution transformation). However, one of the
greatest advantages of the case-based reasoning system is that it can learn even
through the work with users modifying some knowledge containers.

The main problem in implementing almost every CBR system is to find a
good similarity measure - the measure that can tell in what extent the two prob-
lems are similar. In the functional way similarity can be defined as a function
sim : U×CB → [0, 1] where U refers to the universe of all objects (from a given
domain), while CB refers to the case base (objects which were examined in the
past and saved in the case memory). The higher value of the similarity function
means that these objects are more similar.

The case-based reasoning system has not the only goal of providing solutions
to problems but also of taking care of other tasks occurring when it is used in
practice. The main phases of the case-based reasoning activities [1] are described
in the CBR-cycle (Figure 1).

In the retrieve phase the most similar case (or k most similar cases), to the
problem case, is retrieved, while in the reuse phase some modifications to the

CaseBaseGenerator for Intelligent Systems 27

retrieved case is done in order to provide better solution to the problem (case
adaptation). As the case-based reasoning only suggests solutions, there may be
a need for a correctness proof or an external validation, so that system will stay
consistent in regard to environment. That is the task of the phase revise. In
the retain phase the knowledge, learned from this problem, is integrated in the
system by modifying some knowledge containers.

Figure 1. The CBR-Cycle after Aamodt and Plaza (1994)

The main advantage of this technology is that it can be applied to almost
any domain. CBR system does not try to find rules between parameters of
the problem; it just tries to find similar problems (from the past) and to use
solutions of the similar problems as a solution of an actual problem. So, this
approach is extremely suitable for less examined domains - for domains where
rules and connections between parameters are not known. Furthermore, in the
more examined domains integration of CBR in classical rule-based reasoning
systems brings some efficiency. The second very important advantage is that
CBR approach to learning and problem solving is very similar to human cogni-
tive processes - people take into account and use past experience to make future
decisions.

The rest of the paper is organized as follows. The following section elaborates
necessary concepts for CBG implementation [8], [9], [10]. The system ”CBG” is
described in the third section, while the fourth section describes the application

28 V. Kurbalija, M. Ivanović

of the system in two ”test” domains. Fifth section presents the related work
and concludes the paper.

2. Foundations of CBR

The case-based reasoning was developed in the context and in the neigh-
borhood of problem solving methods, learning methods (Machine Learning,
Statistics, Neural Networks) and retrieval methods (Data Bases, Information
Retrieval) [9]. It has inherited the concepts of ”problem” and ”solution” and
a notion of ”similarity” based on the distance. However, very often the more
general term acceptance instead of similarity is used. Acceptance includes sim-
ilarity, but also other concepts like ”expected usefulness”, ”reminds on” etc.

2.1. Information entities

Information entities are the atomic constituents of cases and queries. We
consider a case as the result of the case completion process. Each step of that
process adds some information entities. The current situation during the elabo-
ration of a task is described by the information entities known at the time point.
The final case, as it later may appear in the case memory, is a completed set of
information entities.

The collected information entities result from the real world (an outcome
of the test, a decision in an intermediate design step, etc). They are not a
direct result of the case-based reasoning process - case-based reasoning is used
to propose the next step (some test, the next design decision etc).

The number of information entities in a case may be variable. It is up to a
human decision at which time point the task is finished.

The information entities, which are later used for retrieval, (which appear
in the case memory) may be only a subset of the information entities collected
during the case completion. These information entities (in the case memory)
serve as the indexes for retrieval. The case memory consists of cases, which
are sets of such information entities. These cases may then point to related
complete descriptions in a collection of ”full cases”.

The information entity is an atomic part of a case or query. E denotes the
set of all information entities in a given domain.

• A case is a set of information entities: c ⊆ E.
• The set of cases (in the case memory) is denoted by C, C ⊆ P (E).
• A query is a set of information entities: q ⊆ E .

In many applications, the information entities are simply attribute-value
pairs. Some examples of information entities are: (price, 1000), (price, 324),
(color, blue), (mass, 54 kg). We say that the first two information entities are
comparable (because they have the same attribute) while the other information
entities are not comparable. This causes a structuring of the set E into dis-
joint sets EA, where EA contains all attribute-value pairs from E for a certain
attribute A.

CaseBaseGenerator for Intelligent Systems 29

2.2. Acceptance

We want to use the association of information entities for reminding cases
with the expectation that these cases are useful for a given query. Usefulness of
a case in the case completion process depends on real world circumstances that
are not completely known at the retrieval time. This means that usefulness is
only an aposterior criterion. The retrieval from the case memory will be based
on matching of certain information entities. Usefulness of former cases is not
restricted to those cases that are similar to a given query for all information
entities. Cases may contain information entities that have no counterpart in
the query. It is also possible that some information entities of the query are not
present in the useful case.

Some special desirable properties of acceptance are following:
P1: A case might be acceptable for a query even if there exist some infor-

mation entities that are not comparable.
P2: A case might be unacceptable for a query if there exist an unacceptable

information entity (a fix budget may forbid expensive offers).
P3: The same information entity may have different importance for differ-

ent cases (information entity (sex, male) has different importance in pregnancy
testing and in testing for influenza).

P4: The same information entity may have different importance for different
queries according to the user’s intentions (material have different priorities in
design queries).

P5: Information entities may not be independent of each other.

2.3. Acceptance Functions

In this section, the proposal of the acceptance function which satisfies prop-
erties P1-P5 will be given. Queries have been defined as sets of information
entities. A weighted query is the generalization of this concept.

Weighted query. The weighted query assigns an importance value to each
information entity by a function:

αq : E → R,

where αq(e) denotes the importance of the information entity e for the query q.
High values indicate a high importance; negative values indicate the rejection

of related cases. The value 0 is used as a neutral element (αq(e) = 0, means
that information entity e is unimportant to the query q). Of course, values for
αq(e) can be taken from the set {0, 1}, meaning that ”e is (un)important for
the q”.

Local Acceptance Functions for Attributes. A local acceptance func-
tion σ for the attribute A is defined over the domain dom(A):

σ : dom(A)× dom(A) → R,

such that higher value σ(e, e′) denotes a higher acceptance of the value e (of a
case c) for the value e′ (of a query q).

30 V. Kurbalija, M. Ivanović

By using we can compute the acceptance of the information entity e′ from
the case for a single information entity e of a query. However, a query may
contain several information entities e such that σ(e, e′) is defined for the single
information entity e′. The question is: how these values can be combined to
a single value for e′ which express the resulting acceptance value of e′ for that
query.

Local Accumulation Function. Let Ee = {e1, · · · , en} denote the set of
all information entities to which the information entity e is comparable concern-
ing acceptance (Ee = {e′|σ(e′, e) is defined}). The local accumulation function
πe for e is a function:

πe : R× · · · ×R︸ ︷︷ ︸
n

→ R,

such that πe(a1, · · · , an) denotes the accumulated acceptance in e. The values
ai denote the contributions of the information entities ei ∈ Ee according to their
occurrence in the query q and their local acceptance computed by σ(ei, e). The
contributions are computed by a function:

f : R×R → R,

such that ai = f(αq(ei), σ(ei, e)).
The retrieval of the cases can be considered as a process of reminding. Re-

minding may be of different strength; cases are in competition for retrieval
according to the query. The cases receiving more reminders of more strength
are the winners. The strength (importance, relevance) of reminding for an in-
formation entity e ∈ c is given by a relevance function.

Relevance Function. The relevance between information entities and cases
is described by a relevance function:

ρ : E × C → R.

The relevance ρ(e, c) is considered as a measure for the relevance of information
entity e for the retrieval of a case c. ρ(e, c) is defined if and only if e ∈ c.

The acceptance of a case c for the query q is accumulated from the contri-
butions of the information entities e ∈ c according to their relevancies ρ(e, c).
The contributions of the information entities are computed by their local ac-
cumulation functions πe. The accumulation in the cases is evaluated by Global
accumulation function.

Global Accumulation Function. The global accumulation function πc

has the form:
πc : R× · · · ×R︸ ︷︷ ︸

k

→ R,

for c = {e1, · · · , ek}. The accumulated acceptance of the case c regarding its
constituting information entities is then computed by πc(p1, · · · , pk), where pi

is the contribution of the information entity ei ∈ c. This contribution pi de-
pends on ρ(ei, c) and another real value xi assigned to ei (xi is the accumulated

CaseBaseGenerator for Intelligent Systems 31

local acceptance value computed by πei
(a1, · · · , an)). The contributions pi are

computed by a function:

g : R×R → R,

such that pi = g(xi, ρ(ei, c)).

Global Acceptance function. Acceptance between weighted queries and
cases is expressed by an Global acceptance function:

acc : RE × P (E) → R.

The acceptance acc(αq, c) of a case c for a weighted query q can now be accu-
mulated by using the introduced functions:

acc(αq, c)) = πc(p1, · · · , pk),

where c = {e1, · · · , ek} and the values pi are contributions of the information
entities ei from the case c.

If, for example, f and g are considered as products and πc and πe as sums
then Global acceptance function looks like this:

acc(αq, c) =
∑

e′∈c

ρ(e′, c)
∑

e∈Ee′

σ(e, e′) · αq(e)

Here, the properties P1,...,P4 are satisfied, but for satisfaction of the prop-
erty P5, the appropriate selection of the functions f ,g,πc andπeis needed.

2.4. A possible Implementation - Case Retrieval Net

Case Retrieval Net (CRN) is a special memory structure that has been de-
veloped especially for being employed in large case bases. CRNs are able to
deal with vague and ambiguous terms, they support the concept of information
completion and can handle case bases of reasonable size efficiently.

CRN is a net structure with information entity node for each information
entity and case node for each case. An example of CRN is shown on Figure
2. There exists an ”acceptance” arc from the information entity nodes e to the
information entity node e′ if σ(e, e′) is defined, and it exists an ”relevance” arc
from the information entity node e to the case node c if ρ(e, c) is defined. The
arcs in the net are weighted by the values σ(e, e′) and ρ(e, c) respectively.

32 V. Kurbalija, M. Ivanović

Figure 2. Part of Case Retrieval Net

In practice, it may be impossible to include all information entities. Usually,
it is sufficient to build a net from the information entities which occur in the
cases from the case base only.

Acceptance values are computed by a spreading activation process in the
net as follows: Information entity nodes are initially activated by αq(e). The
computation is performed by propagating along the acceptance arcs to further
information entity nodes, and from these nodes over relevance arcs to case nodes.
The functions f/πeand g/πcare responsible for the accumulation of activities
in the information entity nodes and in the case nodes respectively. The final
activation at the case nodes denote the acceptance value of the case for the
weighted query.

3. ”CBG” - Implementation Issues

Since summer, 2000 a small group at the Department of Mathematics and
Informatics in Novi Sad is doing a research in the area of CBR. During that
research one natural demand came out: it would be very useful to have some
basic, core system (framework) that can produce decision support systems in
different domains. ”CBG” (Casebase Generator) was the direct result of these
intentions.

”CBG” system was completely implemented in Java - JDK 1.3. Java pro-
gramming language was chosen mainly because it support all concepts of object-
oriented technology, but also because it’s main characteristic - platform indepen-
dence. The system was realized as an application, but the small modifications
are necessary in order to make an applet or servlet. Of course, javax.swing
components are used for creating a graphical user interface (GUI).

The main advantage of this system is that it is domain independent. The
input for the system is the description of the database and the database from

CaseBaseGenerator for Intelligent Systems 33

any domain. On the basis of those data, system creates Case Retrieval Net
(CRN) and it is capable to solve new problems (as a matter of fact to propose
solutions) from a domain of the input database.

As already mentioned the system read the data from two input files. In the
first input file (which is called the ”Case Pattern File”) the description of the
database or better to say the description of the case is stored. Case pattern file
contains the information about the structure of every case. There, the list of the
attributes, containing the name and the type of the attribute is listed. The type
of the attribute can be: int, float or string. Boolean type can be simulated, for
example, with the string type where only two values (”Yes”/”No”) are allowed.
The number of the attributes is arbitrary, but all the attributes in the correct
order must be listed.

The second file (which is called the ”Case Base File”) contains the list of all
already solved cases. Every case is described with the values of its attributes
and with the final solution of that case. The values of the attributes must be
sorted in the correct way according to the order of the attributes listed in the
case pattern file. The final solution of the case is always listed at the end of the
case (after values of all attributes). Type of the solution can also be : int, float
or string and it is determined dynamically, when all cases are parsed. At this
moment it is assumed that the case base file is textual file where every case is
listed in one line, and the values of the attributes and solution are separated
with commas.

Together with the reading of the case base file, system creates case retrieval
net. The basic structure of CRN is given in the figure 3. Two main parts of
the CRN are array of attributes and list of solutions. The array of attributes is
created using case pattern file, while the list of the solutions is created from case
base file - solution is the last value from every case. Every attribute consists of
its name and the list of values. Every value for every attribute represents one
information entity because the information entity is an ordered pair (attribute,
value). Every value (or information entity) contains the list of arcs to the
solution nodes. The arc is given with its weight and a pointer to the solution
node; just the arcs whose weights are different from zero are saved. Weights
of the arcs between the the information entity node e to the solution node c
represents the value of the function ρ(e, c). These weights are calculated as a
number of cases (from the case base file) that contain the information entity e

34 V. Kurbalija, M. Ivanović

and whose solution is c.

Figure 3. Structure of CRN

After creating the CRN the system expects from the user to enter the current
problem (query). Since the query and the case have the same structure (a set
of the information entities) the user has to enter the values of some (or all)
attributes in a form. In order to better describe the problem, the user should
enter all known values of the attributes although it is not necessary. The form
contains one more field for every attribute - importance. The importance is the
value from the interval (0,1), and describes how much is the user sure in the
validity of the value of the attribute he is entering. Value 1 means that he is
100sure that the data are valid, while the value 0 means that he doesn’t know
the value of that attribute at all. The value of importance corresponds to the
previously described value of the weighted query.

After entering the query, the system searches for the possible solution in
the following way: The information entities (attribute, value) that occur in the
query are initially activated with the value of importance (weighted query). The
activation is propagating trough the arcs to the solution nodes, by multiplying
the value of the activation of the information entity node and the weight of

CaseBaseGenerator for Intelligent Systems 35

the corresponding arc. Final activation of the solution nodes is calculated by
summing all gained activations.

4. Application of the System

The application of the system will be shown on two simple test domains:
a domain for determination species of the animals when some features of the
animals are given, and a domain for diagnosis of breast cancer. Databases for
these domains and also some others are freely available at [3].

4.1. Classification of the Animals

The structure of a case is described in case pattern file ”default.key”, and it
is given in the Listing 1. All attributes except NumberofLegs are of string type,
but all of these attributes except AnimalName are in fact of Boolean type which
is simulated with string type with just two values: ”Yes” or ”No”.

AnimalName,string
HasHair,string
HasFeathers,string
LaysEggs,string
GivesMilk,string
CanFly,string
LivesinWater,string
Predator,string
HasTeeth,string
HasABackbone,string
BreathesWithLungs,string
IsVenomous,string
HasFins,string
NumberofLegs,int
HasTail,string
IsDomestic,string
IsCatSized,string

Listing 1. Structure of a case

The cases are given in the case base file ”default.cbr”. Part of this file is
given in Listing 2. Every case is given in new line and a case base consists
of 102 cases. The values of the attributes must be given in the correct order
according to the case pattern file. Last value in the description of the case is
always the solution of the case. These values are determined dynamically and
in this domain can be: Amphibian, Anthropoid, Bird, Fish, Insect, Mammal or
Snake.

.....
hamster,Yes,No,No,Yes,No,No,No,Yes,Yes,Yes,No,No,4,Yes,Yes,No,Mammal
hawk,No,Yes,Yes,No,Yes,No,Yes,No,Yes,Yes,No,No,2,Yes,No,No,Bird
herring,No,No,Yes,No,No,Yes,Yes,Yes,Yes,No,No,Yes,0,Yes,No,No,Fish

36 V. Kurbalija, M. Ivanović

honeybee,Yes,No,Yes,No,Yes,No,No,No,No,Yes,Yes,No,6,No,Yes,No,Insect
housefly,Yes,No,Yes,No,Yes,No,No,No,No,Yes,No,No,6,No,No,No,Insect
kiwi,No,Yes,Yes,No,No,No,Yes,No,Yes,Yes,No,No,2,Yes,No,No,Bird
lark,No,Yes,Yes,No,Yes,No,No,No,Yes,Yes,No,No,2,Yes,No,No,Bird
leopard,Yes,No,No,Yes,No,No,Yes,Yes,Yes,Yes,No,No,4,Yes,No,Yes,Mammal
lion,Yes,No,No,Yes,No,No,Yes,Yes,Yes,Yes,No,No,4,Yes,No,Yes,Mammal
lobster,No,No,Yes,No,No,Yes,Yes,No,No,No,No,No,6,No,No,No,Anthropod
mongoose,Yes,No,No,Yes,No,No,Yes,Yes,Yes,Yes,No,No,4,Yes,No,Yes,Mammal
moth,Yes,No,Yes,No,Yes,No,No,No,No,Yes,No,No,6,No,No,No,Insect
newt,No,No,Yes,No,No,Yes,Yes,Yes,Yes,Yes,No,No,4,Yes,No,No,Amphibian
octopus,No,No,Yes,No,No,Yes,Yes,No,No,No,No,No,8,No,No,Yes,Anthropod
pitviper,No,No,Yes,No,No,No,Yes,Yes,Yes,Yes,Yes,No,0,Yes,No,No,Snake
.....

Listing 2. A part of a case base file.

In the Figure 4, the main window of the system is shown. The system
expects that user enters the paths of the case pattern and case base file.

Figure 4. The main window of the ”CBG”

If the paths are good, after clicking on the ”Load Files” button, these two
files are loaded and the case retrieval net is created. Also, the dynamically
created form will appear in the middle of the window. This situation is shown

CaseBaseGenerator for Intelligent Systems 37

in the Figure 5.

Figure 5. ”CBG” after loading files

After loading files and creating CRN, the system expects from the user to en-
ter current problem - to enter the known values of the attributes. If some values
are not known then the user should enter the zero value in the corresponding
importance field. When the entering the data into the form is finished, the
process of the spreading activation is started by clicking on the ”Solve” button.
In the right part of the window the solution is shown after finishing the process.
There all possible solutions and their activations are shown as in Figure 6. The
solution with the highest number is the ”suggested solution”. For this exam-
ple it is most possible that the ”problem animal” is Mammal, since it has the
highest activation.

Figure 6. ”CBG” after solving the problem.

Of course, some new ”problem animal” can be entered in the form. The
system always suggests some solution, but the quality of the solution depends

38 V. Kurbalija, M. Ivanović

on the quality of the input data.

4.2. Diagnosis of Breast Cancer

The structure of a case is described in case pattern file ”cancer.key”, and it
is given in the Listing 3. All attributes are of integer type and they represent
some medical checkups.

IDNumber, int
ClumpThickness,int
UniformityofCellSize,int
UniformityofCellShape, int
MarginalAdhesion,int
SingleEpithelialCellSize,int
BareNucleoli,int
BlandChromatin,int
NormalNucleoli,int
Mitoses,int

Listing 3. Structure of a case

The cases are given in the case base file ”cancer.cbr”. Part of this file is given
in Listing 4. Every case is given in new line and a case base consists of 700 cases.
As already mentioned, the values of the attributes must be given in the correct
order according to the case pattern file. Last value in the description of the case
represents the solution of the case. These values are determined dynamically
and in this domain can be: 2 or 4, with the meaning 2-for benign cancer and
4-for malignant cancer.

1160476,2,1,1,1,2,1,3,1,1,2
1164066,1,1,1,1,2,1,3,1,1,2
1165297,2,1,1,2,2,1,1,1,1,2
1165790,5,1,1,1,2,1,3,1,1,2
1165926,9,6,9,2,10,6,2,9,10,4
1166630,7,5,6,10,5,10,7,9,4,4
1166654,10,3,5,1,10,5,3,10,2,4
1167439,2,3,4,4,2,5,2,5,1,4
1167471,4,1,2,1,2,1,3,1,1,2
1168359,8,2,3,1,6,3,7,1,1,4
1168736,10,10,10,10,10,1,8,8,8,4
1169049,7,3,4,4,3,3,3,2,7,4
1170419,10,10,10,8,2,10,4,1,1,4

Listing 4. A part of a case base file.

The final solution (after loading the files, creating the CRN and setting up
the query) is shown on the figure 7. In this example the solution 2 gained more

CaseBaseGenerator for Intelligent Systems 39

activation so the suggested solution is benign cancer.

Figure 7. ”CBG” after solving the problem.

5. Conclusions and Related Work

Case-based reasoning is a reasoning method that facilitates knowledge man-
agement in which knowledge is a case base acquired by a learning process.
Case-based reasoning can be used for solving problems in many practical do-
mains such as: mechanical engineering, medicine, business administration etc.
Furthermore, for each domain, various task types can be implemented. Some
of them are: classification, diagnosis, configuration, planning, decision support
etc.

Also, for every task type all the domains are possible. That is the exactly
the case with ”CBG”. ”CBG” is the framework suitable for building different
decision support systems from any domain. Currently we are trying to define
concrete application of CBG together with the Institute of Neurology, Novi Sad.
The final goal of this cooperation will be to build the decision support system
that will help medical experts in determination of the Multiple sclerosis disease
[5]. The quality of the system will depend on the quality of the case base that
will provide colleagues from the Institute of neurology from their patient files
of this disease during last 10 years.

References

[1] Aamodt, A., Plaza, E., Case-Based Reasoning: Foundational Issues, Method-
ological Variations and System Approaches. AI Commutations (1994), 39-58.

[2] Budimac Z., Kurbalija V.. Case-Based Reasoning - A Short Overview, Proceed-
ings of Second International conference on Informatics and Information Technol-
ogy ”Molika 2001”, Molika, Macedonia, December 20-23, 2001, 222-234.

[3] Case-Based Reasoning at AIAI, http://www.aiai.ed.ac.uk/project/cbr/

40 V. Kurbalija, M. Ivanović

[4] Iglezakis, I., The Conflict Graph for Maintaining Case-Based Reasoning Systems.
4th International Conference on Case-Based Reasoning (ICCBR 2001), Vancou-
ver, Canada, July/August 2001, 263-276.

[5] Ivanović M., Kurbalija V., Budimac Z., Semnic M., Role of Case-Based Reason-
ing in Neurology Decision Support, Proceedings of the Fifth Joint Conference
on Knowledge-Based Software Engineering ”JCKBSE 2002”, Maribor, Slovenia,
September 11-13, 2002, 255-264.

[6] Kurbalija, V., On Similarity of Curves - project report. Humboldt University, AI
Lab, Berlin, 2003.

[7] Kurbalija V., Ivanović M., Case-Based Reasoning - A Powerfull Artificial Intel-
ligence Approach. Journal of Electrical Engineering 12/s, Slovak Centre of IEE,
Vol. 53 (2002) 20-24. (Proceedings of Conference of Applied Mathematics for un-
dergraduate and graduate students ”SCAM 2002”, Bratislava, Slovak Republic,
April 19-20, 2002).

[8] Lenz M., Case Retrieval Nets Applied to Large Case Bases. Draft, Lenz’s home-
page.

[9] Lenz M., Bartsh-Sporl B., Burkhard HD., Wess S., Case-Based Reasoning Tech-
nology: From Foundations to Aplications. Springer Verlag, October 1998.

[10] Lenz M., Burkhard H.D., Bruckner S., Applying Case Retrieval Nets to Diagnos-
tic Tasks in Technical Domains. Lenz’s home-page.

[11] Reinartz, T., Iglezakis, I., Roth-Bergofer, T., On Quality Measures for Case Base
Maintenance. 5th European Workshop (EWCBR 2000), Trento, Italy, September
2000, 247-260,

Received by the editors December 29, 2003

