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THE STRUCTURE OF SPLINE COLLOCATION
MATRIX FOR SINGULARLY PERTURBATION
PROBLEMS WITH TWO SMALL PARAMETERS

Katarina Surla', Ljiljana Teofanov? and Zorica Uzelac?

Abstract. We consider a spline difference scheme on a piecewise uniform
Shishkin mesh for a singularly perturbed boundary value problem with
two parameters. We show that the discrete minimum principle holds for
a suitably chosen collocation points. Furthermore, bounds on the discrete
counterparts of the layer functions are given. Numerical results indicate
uniform convergence.
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1. Introduction

We consider the two-parameter singularly perturbed boundary value prob-
lem

(1) Ly := ey (z) + pa(z)y'(z) = b(x)y(z) = [f(z), z€(0,1),
y(o = Do, y<1) = D1

where a,b and f are sufficiently smooth functions, 0 < e < 1, 0 < p < 1, and
a(x) >a>0, bx)>b>0, xzel=]I0,1].

Under these assumptions the problem (1) has a unique solution which exhibits
exponential boundary layers at * = 0 and x = 1. When the parameter y = 1
problem (1) becomes convection-diffusion problem with the boundary layer of
width O(e) in the neighbourhood of the point = 0. In the case of u = 0 we
have reaction-diffusion problem with boundary layers of width O(v/€) at =0
and = 1. We consider problem (1) and offer a unified treatment for all possible
classes of subproblems.

Numerical method constructed in this paper is based on a difference scheme
obtained using quadratic spline function as an approximation function as in [5].
With the suitably chosen collocation points, we prove that our scheme has the
inverse monotone matrix on the corresponding Shishkin mesh.
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One-dimensional two-parameter problem was recently treated numerically
in [1], [2], [3], [4], [6]- Linss and Roos [2] and O’Riordan at al. [4] derived sharp
estimates for the solution and its derivatives. Based on that information, in
both papers, an error estimate for the simple upwind finite difference scheme
on a properly chosen Shishkin mesh is given. In [1] Linss derived a general
convergence theory for a first order inverse monotone scheme on arbitrary mesh
and applied it on the Shishkin and Bakhvalov-type meshes. Roos and Uzelac
[4] generated a uniformly convergent second order finite difference scheme using
streamline diffusion as basic discretization. Vulanovié [6] considered quasilinear
two-parameter boundary value problem on Shishkin and Bakhvalov meshes and
derived almost third-order scheme in the case of u = ¢'*P, p > 0.

2. Properties of the exact solution and its derivatives

In order to describe the layer structure of the problem (1) we present the
following lemmas from [3].

Throughout the paper M will represent a constant independent of u, € and
of the mesh.

The problem (1) satisfies the continuous minimum principle.

Lemma 1. If g € C?[0,1] such that Lg <0, x € (0,1) and g(0) >0, g(1) >0,
then g(x) > 0, z € [0,1].

Lemma 2. The solution y of the problem (1) satisfies the following bounds

Iyl < max(|y(0)], [y(1)]) + %IIfH.

Lemma 3. The derivatives y®) of the solution of (1) satisfy the following
bounds

k
(k) M e max or k=
Ol < e (H(ﬁ) ) Al 7D, Jor k=1,2,

M 3 )
ly®] < NG (1 + (\2) ) max({[yll, LI, [[£1])-

The solution y has the representation
(2) y=v+wp+wg,

where
Lv = f, v(0),v(1) chosen
Lw;, =0, wr,(0) = y(0) —v(0), wr(l)=0
Lwr =0,  wgr(0) =0, wr(l)=y(1)—v(1).

Here v is the regular component of the solution and satisfy the following bounds
o™ <M, k=0,1,2, [o®] <M.

The singular components wy and wg satisfy the bounds of Lemma 3 and the
sharper bounds of the following lemma.
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Lemma 4. When the solution of (1) is decomposed as in (2) we have

lwr(z)] < Me™ Jwp(z)] < Me™020-2)

where
v/ p2a? + 4eb —pA + /2 A% + 4eb
91:'ua+ ,ua—i—s, 0y = pAT VI +€, A= max |a(z)].

2e 2e 0<z<1
01 and 05 are respective positive roots of the equations

69% —pafy —b=0 and 89% + pAbs —b=0.
The following estimates for #; and 65 are given in [3]:

Moy <M
61 > max @,% , 09> ‘]{/[E Zf o= \/E
Vel e m if u>Mye

3. Discrete problem

In order to obtain discrete counterpart of the problem (1), we first discretize
the domain I as A, ={zp=0< 21 <3< ... <z, =1}

The piecewise uniform mesh is defined as follows. Let our discretization
parameter n be a positive integer divisible with 4. We define two mesh transition
points
1 2 1 2
4’ 6, 47 6,
Then divide [0, 01] and [1 — 09, 1] into n/4 subintervals each, while [01,1 — o9]
divide into n/2 subintervals. The mesh points are given by

o1 = min{ lnn}, o9 = min{ Inn}.

4011 ; n
n Z§4

zi=4 o1+ 2(i-2)(1-01—02), 2<i<3
. 3ny\4 3 :

1—oy+4 (i — )22, T <i<n,

The solution y(x) of the problem (1) is approximated with the quadratic spline
u(x) € C*(I) on each subinterval I; = [z;,7;11], i =0,1,...., N — 1:

’ (I 7:E1')2 "

(3) u(z) = u; + (z — z;)u; + 5 uy.
Then we have
h12+1 "
(4) Uit = hi + hipaui + =g,
(5) wiyy = up 4 higauy]

where h; = x; — x;_1,u; = u(x;). For the collocation points we use the points

Si=ar;+(1—a)ziy1, 0<a<1l, i=0,..,n—1
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The collocation equations have the form

(6) e (&) + paléd (&) — b(&)ul&;) = f(&),
2

(7) w(&) =u; + (1 — a)hipru) + (1 — a)z%ugl

(8) u/(fi) — qu + (1 _ Ol)hi_t,_lu;/

for i = 0,..n — 1, where uv”(&;) = /. From (4)-(8) we obtain the system of
equations

) Loui = Ryui—1+ Réu; + Rfuipr = ¢ fe , +q* fer,
uo = Po, Unp = P1,

where fe, = f(&) and

- h; Aia v hi4y
By =1+ QCi—lbgi_l * Ci_1h;’ R = h; Gy’
h; Aih; Aiq
S LU -
Bi=—ltocte " 6 ey
-_ hz’ + h‘L
L ToA TN

1

Ci= (26 + higa g, (~1+ 20) — be.a(1 — a)h?,)
i1

(1 — a)Q h2

2 7+1-

For the standard collocation method we have a = % But the discrete ana-
logue does not satisfy the discrete minimum principle, i.e. the matrix of the
system (9) is not an inverse monotone matrix.

In order to obtain the inverse monotone matrix we introduce the parameter
a which moves the collocation points so that

A; =€+ pag, (1 — a)hipr — b,

Rf >0, R; >0, Rf<O.

Since R; = 26‘?_ i:11h~ and C;_1 < 0 for a < % we determine « from the condition

Si—1 = —2¢+2pag, ,ah;+be, hia® <0.

hi i :
From R; = T gl > 0 we obtain
Qi =5 — 2:uafihi+1 + b&,h?—i-l(l - 20[) <0,
and finally, « is determined to satisfy the inequality

(10) S; < min(0, 2uag, hiv1 — [|bl|hZ,1), <i<n.

The following theorem holds.
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Theorem 1. (Discrete Minimum Principle) Let us determine the parameter «
in the system (9) to satisfy (10) for i > % and o = % otherwise. If W is any
mesh function with properties L,W <0, Wy >0, W,, > 0, then W > 0.

Proof. Using the inverse monotonicity of the matrix the proof follows imme-
diately. O

We use the discrete decomposition of the solution U,
U=V 4+ W+ Wg,

where
L,V = f($2)7 V(O) = U(O)7 V(l) = U(1)>

LnWL = O, WL(O) = ’LUL(O), WL(l) = 0,
LnWR = 0, WR(O) = 0, WR(l) = wR(l).

We will prove the following bounds on the discrete counterparts of the sin-
gular components wy, and wg.

Theorem 2. (The Estimates) Let o be determened as in Theorem 1 and let
a(z) = a = const,b(x) = b = const. Let Ophj 1 > 1, then we have

J
Wi (z;)| < M H (L+60rhi)™" =41, Yro=M

(Wr(x;)| <M J] (1 +0rhi)™" =¢rj, Yro=M
i=j+1
where parameters 0y, and Or are defined to be the positive roots of the equations
(11) 2e0% — pafy, —b=0, 2e0% + uAdp —b=0.
Proof. We start with Wp,. Consider the function
Ppj=tr; £ Wi(z)).

Then we have
Lo®rj = Mir j11(6 +~v+ R 07 hjhji1)

where b b
§=R" R—‘r RC _ 1961 1Y€ 0
+ + 7201'_1 —&—Tci <0,
Y =0r(R hj+ R hjs1 + Rhj1).
From

hihji hihji1 hihjii(1—a)? o?h?
=0, | iy, Ly DT b, I be.
e <2cj1 R TAR 20, e T e
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€ poch; p(1 — a)hy >
_ — a¢. , + —————=ag,
Cj_l Oj_l S Cj ©
and (11) we have
h'bg; e Hag,; ah;
< 9 0¢; 1 h 2]7,' _ o j—1 J
T ( 20, Mot — 5 Cj-1
L pog (L= )R hiapa) | hinbe  bhiy
C; 2054 Cji-1 205
Further hib hib bh
L@y < My oyq |28 906 j“]
Lj < Mip i1 |:2Cj—1 20 2C;51
o, ( hje e pahjag_,  pohjag;  pahjig thafi)
hit1Cj Cja Cim Ci 201 C
+m(2ua§. ahj +be, ,a*h?)|.
20, G100 g1

Since frhj11 > 1 and a < % and we obtain

hibe, . hbe,  bhiiy
12 Ln@ <M . J7Si—1 J7Si Jj+
( ) L,j > Q)Z}L,Jle |:2Cj_1 + 20] QCj—l
hje 5 phjae,  pah;i 07 hjs1
9 i€ i, _ pah; Lty 22|
s (thOj G a0 a0 ) e, et

Now for a(x) = const and b(z) = const, we have

hjbEj—l + H%hj-i-l
2054 2054

(13) an)L,j S M'(/)L,j+1 ( bgleth?) < 0.

Using the discrete minimum principle we obtain the results. The same idea
applies to Wg. O

Remark 1. Note that the condition 0h;11 > 1 is not restrictive. In the case
when this condition is not satisfied the standard scheme can be applied.
4. Numerical results

We test the performance of our method applied to the boundary value prob-
lem

ey (@) + py'(x) —y(x) =1, 2€(0,1)
y(0) =y(1)=0
The exact solution is given with
— N/ 12 e V2 £
e = % = 1 ptVi2+4e (1-2) e% —1 —prviPrae
e 2 + ———c¢€ 2 -1

A== Ve

e ~ - e # -1
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The error is measured in the discrete maximum norm

EZ, = max |y(z:) - wil,

and order of convergence is calculated using

mn

n €,
pe, = log .
e, 2 Eg271
yn

N
e 32 | 64 | 128 | 256 | 12 | 10m
272 | 4.15(-5) | 1.04(-5) | 2.59(-6) | 6.49(-7) | 1.62(-7) | 4.05(-8)
271 1 2.26(-4) | 5.65(-5) | 1.41(-5) | 3.53(-6) | 8.82(-7) | 2.20(-7)
276 1 1.37(-3) | 3.40(-4) | 8.49(-5) | 2.12(-5) | 5.31(-6) | 1.33(-6)
278 | 1.22(-2) | 2.92(-3) | 7.37(-4) | 1.84(-4) | 4.59(-5) | 1.15(-5)
27101 7.89(-2) | 2.89(-2) | 8.84(-3) | 2.19(-3) | 5.50(-4) | 1.36(-4)
2712 1 9.55(-2) | 3.44(-2) | 1.05(-2) | 3.43(-3) | 1.08(-3) | 3.31(-4)
2711 1.02(-1) | 3.67(-2) | 1.12(-2) | 3.64(-3) | 1.14(-3) | 3.52(-4)
2716 1 1.04(-1) | 3.74(-2) | 1.14(-2) | 3.71(-3) | 1.16(-3) | 3.58(-4)
Table 1. Errors for =274
N

e | 32 ] 64 | 128 ] 256 | 512

272 12.00[ 199 [2.00]200][ 2

2=% 1200 [ 1.99 | 2.00 [ 2.00 | 2.

276 1200 [ 2.00 | 1.99 | 2.00 | 2.00

278 12.07 [ 1.98 | 2.00 | 2.00 | 2.00

210 1145 [ 1.71 | 2.01 | 2.00 | 2.00

27121147 [ 1.71 | 1.62 | 1.67 | 1.70

2~ 1147 [ 1.71 [ 1.62 | 1.67 | 1.70

2716 1148 [ 1.71 | 1.62 | 1.67 | 1.70

Table 2. Estimated convergence orders for y = 274

47
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N
e | 128 [ 256 | 512 | 1024 | 2048
272 [251(-6) | 6.27(-7) | 1.57(-7) | 3.92(-8) | 9.80(-9)
2=% 1 1.04(-5) | 2.61(-6) | 6.52(-7) | 1.63(-7) | 4.07(-8)
270 [ 3.10(-5) | 7.74(-6) | 1.93(-6) | 4.84(-7) | 1.21(-7)
278 | 1.25(-4) | 3.11(-4) | 7.78(-6) | 1.94(-6) | 4.86(-7)
2710 1 521(-4) | 1.29(-4) | 3.23(-5) | 8.08(-6) | 2.02(-6)
27121 2.30(-3) | 5.61(-4) | 1.40(-4) | 3.48(-5) | 8.71(-6)
271 12.30(-2) | 1.10(-3) | 3.47(-4) | 1.07(-4) | 3.23(-5)

Table 3. Errors for p = 2719

N

e | 128 [ 256 | 512 | 1024
2.00 [ 2.00 | 2. | 2.00
2.00 | 2.00 | 1.99 | 2.00

2
1

=6 12.00 [ 2.00 | 2.00] 1.99
8 12.00 [ 2.00 | 2.00 | 1.99

21017200 | 2.00 | 2.00 | 1.99
21212031 2.00 [ 2.00 | 1.99
21T 167167170 1.72

Table 4. Estimated convergence orders for p = 2710
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