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CONVERGENCE OF THE MRV METHOD AT
SINGULAR POINTS 1

Zorana Lužanin2, Tibor Lukić3

Abstract. In this paper we give sufficient conditions for convergence of
the Newton-like method with modification of the right-hand-side vector
(MRV) for a class of singular problems. The rate of convergence is sublin-
ear. Numerical results are included witch agree well with the theoretically
proven results.
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1. Introduction

Consider the system of nonlinear equations

F (x) = 0,(1)

where F ∈ C2 is a nonlinear mapping, F : D ⊂ Rn −→ Rn. The main
purpose of this paper is to implement MRV Method [7] to determine solution
x∗ of F (x) = 0 when the derivative, F ′(x∗) is singular i.e., F ′(x∗) = 0. In
this case, we will say the point x∗ is singular. The Newton iterates, xn+1 =
xn − F ′(xn)−1F (xn), in singular case converge local linear, see [9, 4]. While,
the rate of convergence for chord method xn+1 = xn − F ′(x0)−1F (xn), is only
sublinear, that is limk→∞ ‖xn − x∗‖/‖xn+1 − x∗‖ = 1.

The method with modification of the right-hand-side vector (MRV) for reg-
ular case is introduced in [7]. The essential idea was acceleration of the fixed
Newton method by relaxation parameter and modification of the right-hand-
side vector leading to low linear algebra cost. The MRV method is given by the
following algorithm.

Algorithm. MRV:
Let x0 ∈ Rn and F ′(x0) is a nonsingular matrix be given. For k = 0, 1, 2, . . .

• Step 1. Solve
F ′(x0)sn = (αkH(xn)− I)F (xn),
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where H(xn) = F ′(xn)− F ′(x0), I is the identity matrix and αk is a real
parameter

• Step 2. Define xn+1 = xn + sn,

The algorithm uses the relaxation parameter αn. One possibility is to take
αn = α during the whole process. In a special case, αn = α = 0 would lead
to the chord method. Obviously, the easiest way to choose the parameter is to
assume αn = α. Other possibility is to determine the parameter αn such that
the new iteration becomes as close as possible in ‖ · ‖2 to the Newton iteration.
This choice of αk is called optimal parameter, because it is a solution of the
optimization problem

αopt
k := arg minα∈R‖L(xn + sn)‖22,

with the MRV correction sn and linear model L(xn + d) = F (xn) + F ′(xn)d.
We give some notation, which is fairly standard. We denote by N the null

space of F ′(x∗), and by X the range space of F ′(x∗). Let PN be a projector
onto N parallel to X, and let PX = I − PN .

We assume throughout that F ′(x∗) has a one dimensional null space N and
closed range X such that Rn = N ⊕X. For x ∈ Rn , we define x̃ = x− x∗ and
define θn, ρn and ζn for the nth iterate xn by

θn‖PN x̃n‖ = ‖PX x̃n‖,
ζnPN x̃0 = PN x̃n,

ρn = ‖x̃n‖
(2)

We define operators D(x) and D̄(x) on N by

D(x) = PNF ′′(x∗)(x̃, PN ·),(3)

D̄(x) = PNF ′′(x∗)(PN x̃, PN ·) .(4)

The satisfies guess x0, must be chosen so that F ′(x0) be invertible. A set
which satisfies these requirements can be defined as follows: for ρ and θ positive
define [1, 9] Wρ,θ by

Wρ,θ = {x ∈ Rn |0 < ‖x− x∗‖ ≤ ρ, ‖PX(x− x∗)‖ ≤ θ‖PN (x− x∗)‖}.(5)

We let βm(x) denote any term of order ‖x̃‖m and βX
m(x) (resp βN

m(x)) any
term of order ‖PX x̃‖m (resp ‖PN x̃‖m). Let γq

p(x) denote any term of order ‖x̃‖p

such that PXγq
p(x) = βp+q(x).

The following theorem contains some results that will be needed in what
follows.

Theorem 1.1. [1] Let x0 ∈ Wρ,θ, dim(N)=1. Assume that there is α > 0 so
that for all φ ∈ N

‖F ′′(x∗)(φ, φ)‖ ≥ α‖φ‖2(6)



Convergence of the MRV method at singular points 73

Then for ρ and θ sufficiently small, F ′(x)−1, D(x)−1 exist for all x ∈ Wρ,θ and

F ′(x)−1 = PND(x)−1PN + β0(x)
= PN D̄(x)−1PN + θβ−1(x)
= β−1(x) .

(7)

Moreover, the Newton iterates, xn = xn−1 − F ′(xn−1)−1F (xn−1), n ≥ 1 re-
main in Wρ,θ, converge to x∗, and

lim
n→∞

‖PN (xn+1 − x∗)‖
‖PN (xn − x∗)‖ =

1
2
,(8)

‖PX(xn+1 − x∗)‖ ≤ K‖xn − x∗‖2, for some K > 0, n = 0, 1, . . .(9)

2 Main Result

The following lemmas are used for proving the convergence result.

Lemma 2.1 If x0 ∈ Wρ,θ and xn+1 = xn−F ′(x0)−1(I−αnH(xn))F (xn), then

x̃n+1 = PN x̃n − 1
2
F ′(x0)−1F ′′(x∗)(x̃n, x̃n) + En,(10)

where

En = γ1
0(x0)βX

1 (xn) + γ1
−1(x

0)β3(xn) + τn ,

τn = −αn[γ1
−1(x

0)H(xn)βX
1 (xn) + 1

2γ1
−1(x

0)H(xn)F ′′(x∗)(x̃n, x̃n)

+γ1
−1(x

0)H(xn)β1(x0)βX
1 (xn) + γ1

−1(x
0)H(xn)β3(xn)].

(11)

Proof. Let F̂ = PXF ′(x∗)PX . From the Taylor expansions

F (xn) = F ′(x∗)x̃n + 1
2F ′′(x∗)(x̃n, x̃n) + β3(xn)

= F̂PX x̃n + 1
2F ′′(x∗)(x̃n, x̃n) + β3(xn)

and
F ′(x0)PX x̃n = F̂PX x̃n + F ′′(x∗)(x̃0, PX x̃n) + β2(x0)βX

1 (xn)

= F̂PX x̃n + β1(x0)βX
1 (xn).

We obtain

F (xn) = F ′(x0)PX x̃n +
1
2
F ′′(x∗)(x̃n, x̃n) + β1(x0)βX

1 (xn) + β3(xn).
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As PXF ′(x0)−1 = β0(x0) and F ′(x0)−1 = γ1
−1(x

0) we obtain

F ′(x0)−1(I − αnH(xn))F (xn) = PX x̃n + 1
2F ′(x0)−1F ′′(x∗)(x̃n, x̃n)

−αnF ′(x0)−1H(xn)PX x̃n + F ′(x0)−1β3(xn)

+F ′(x0)−1β1(x0)βX
1 (xn)

− 1
2αnF ′(x0)−1H(xn)F ′′(x∗)(x̃n, x̃n)

−αnF ′(x0)−1H(xn)β3(xn)

−αnF ′(x0)−1H(xn)β1(x0)βX
1 (xn)

= PX x̃n + 1
2F ′(x0)−1F ′′(x∗)(x̃n, x̃n) + En.

As xn+1 = xn − F ′(x0)−1(I − αnH(xn))F (xn) we have

x̃n+1 = (I − PX)x̃n − 1
2
F ′(x0)−1F ′′(x∗)(x̃n, x̃n) + En.

This completes the proof. 2

Let κ∗ = ‖PXF ′(x0)−1F ′′(x∗)(·, ·)‖ and κ = 2(κ∗ + 1). In [1, 3, 9] it was
shown that if x0 ∈ Wρ,θ and x1 = x0 − F ′(x0)−1F (x0), then

(i) there is K0 > 0 so that

‖PX x̃1‖ ≤ K0‖PX x̃0‖ρ0,

(ii) ‖PX x̃1‖ ≤ κ‖PN x̃0‖2,
(iii) ρ1 ≤ ρ0,

(iv) ‖PX x̃1‖ ≤ 2κ‖PN x̃1‖2,
(v) there is c > 0, so that

( 1
2 − cθ0)‖PN x̃0‖ ≤ ‖PN x̃1‖ ≤ ( 1

2 + cθ0)‖PN x̃0‖.

(12)

A consequence of (i) and (v) is

θ1 ≤
(

1
2
− cθ0

)−1

K0ρ0θ0 < θ0(13)

for ρ0 and θ0 sufficiently small.
The following sequence of lemmas give the estimates for the higher MRV

iterates.

Lemma 2.2 Assume x0 ∈ Wρ,θ, n ≥ 0 and αn| < α′. Assume that for 1 ≤ k ≤
n

‖PX x̃k‖ ≤ 2κ‖PN x̃k‖2(14)

and
‖PN x̃k‖ ≤ ‖PN x̃0‖(15)

then for sufficiently small ρ and θ

‖PX x̃n+1‖ ≤ κ‖PN x̃n‖2 .(16)
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Proof. If n = 1 (14) and (15) are results of Newton’s method [1, 3]. For n > 1
we apply PX to both sides of (10),

PX x̃n+1 = PXPN x̃n − 1
2PXF ′(x0)−1F ′′(x∗)(x̃n, x̃n) + PXEn

= − 1
2PXF ′(x0)−1F ′′(x∗)(x̃n, x̃n) + PXEn.

From (14), for k = n we have,

‖x̃n‖ ≤ ‖PN x̃n + PX x̃n‖ ≤ ‖PN x̃n‖+ ‖PX x̃n‖
≤ ‖PN x̃n‖(1 + 2κ‖PN x̃n‖) ≤ ‖PN x̃n‖(1 + 2κ‖PN x̃0‖),

(17)

and there is c′1 > 0 so that

‖PXγ1
0(x0)βX

1 (xn)‖= β1(x0) · βX
1 (xn) = ‖x̃0‖‖PX x̃n‖

≤ ‖x̃0‖2c′1κ‖PN x̃n‖2 = 2c′1κρ0 · ‖PN x̃n‖2.
(18)

By (11) we have

‖PXτn‖ ≤ |αn|[‖PXγ1
−1(x

0)H(xn)βX
1 (xn)‖

+ 1
2‖PXγ1

−1(x
0)H(xn)F ′′(x∗)(x̃n, x̃n)‖

+‖PXγ1
−1(x

0)H(xn)β1(x0)βX
1 (xn)‖+ ‖PXγ1

−1(x
0)H(xn)β3(xn)‖]

≤ ‖αnH(xn)‖ [ ‖PXγ1
−1(x

0)‖‖βX
1 (xn)‖

+ 1
2‖PXγ1

−1(x
0)‖‖F ′′(x∗)(x̃n, x̃n)‖

+‖PXγ1
−1(x

0)‖‖β1(x0)βX
1 (xn)‖+ ‖PXγ1

−1(x
0)β3(xn)‖ ].

Since H is continuous function and sequence {αn} is bounded , there exists
δ > 0 such that that ‖αnH(xn)‖ < δ. By definition of κ∗ and by assumption
(14) we have

‖PXτn‖ ≤ δ [ ‖PX x̃n‖+ κ∗‖x̃n‖2 + ‖PXγ1
0(x0)‖‖PX x̃n‖+ ‖β3(xn)‖ ]

≤ δ‖PN x̃n‖2 [ 2κ + κ∗(1 + 2κ‖PX x̃0‖)2 + 2κρ0

+‖PN x̃n‖(1 + 2κ‖PN x̃0‖)3 ],

and there exist constants c2 > 0 and c′2 > 0 so that

‖PXτn‖ ≤ ‖PN x̃n‖2 · [c′2 + ‖PN x̃n‖c2 ](19)

By inequalities (19), (18) and (17) we obtain

‖PXEn‖ ≤ 2c′1κρ0 · ‖PN x̃n‖2 + ‖x̃n‖3 + ‖PN x̃n‖2 · [ c′2 + c2‖PN x̃n‖ ]

≤ ‖PN x̃n‖2 · [ 2c′1κρ0 + ‖PN x̃n‖(1 + 2κ‖PN x̃0‖)3 + c′2 + c2‖PN x̃n‖ ]

≤ ‖PN x̃n‖2 · [ 2κc1ρ0 + c3‖PN x̃n‖ ],
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for some constants c1 > 0 and c3 > 0. By ‖PN x̃n‖ ≤ (1− θ0)−1ρ0 and by (15),
we have

‖PXEn‖ ≤ ‖PN x̃n‖2(2κc1ρ0 + c3(1− θ0)−1ρ0)

= ‖PN x̃n‖2ρ0(2κc1 + (1− θ0)−1c3).
(20)

By definition of κ∗,

‖PXF ′(x0)−1F ′′(x∗)(x̃n, x̃n)‖ ≤ κ∗‖x̃n‖2

≤ κ∗‖PN x̃n‖2(1 + 2κ‖PN x̃0‖)2

≤ κ∗‖PN x̃n‖2(1 + 2κρ0(1− θ0)−1)2.

(21)

By (20) and (21) we have

‖PX x̃n+1‖ ≤ ‖PN x̃n‖2
[
1
2
κ∗(1 + 2κρ0(1− θ0)−1)2 + 2κc1ρ0 + c3(1− θ0)−1ρ0

]

if ρ and θ are sufficiently small, we obtain

‖PX x̃n+1‖ ≤ ‖PN x̃n‖2[κ∗ + 2] ≤ κ‖PN x̃n‖2

which completes the proof. 2

Lemma 2.3 [4] Let x0 ∈ Wρ,θ. Assume that, for 1 ≤ k ≤ n that (14) and (15)
holds for xn ∈ Wρ,θ and

0 ≤ ζk−1(1− 3
4
ζk−1) ≤ ζk ≤ ζk−1(1− 1

4
ζk−1),(22)

then
0 ≤ ζn(1− 3

4
ζn) ≤ ζn+1 ≤ ζn(1− 1

4
ζn).(23)

The next Lemma unites the previous two.

Lemma 2.4 [4] Let x0 ∈ Wρ,θ and ρ and θ sufficiently small, then for k ≥ 1
hold

a) ρk = ‖x̃k‖ ≤ ρ0,

b) θk ≤ 2κ(1− θ0)−1ρ0ζk < θ,

c) 0 ≤ ζk−1(1− 3
4ζk−1) ≤ ζk ≤ ζk−1(1− 1

4ζk−1),

d) ‖PX x̃k‖ ≤ 2κ‖PN x̃k‖2,
e) ‖PX x̃k‖ ≤ κ‖PN x̃k−1‖2.

(24)

Now, we are able to give a Theorem about sublinear convergence of the MRV
Method.
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Theorem 2.5. Let F be twice Lipschitz continuously differentiable in a neigh-
borhood of x∗ and let x0 ∈ Wρ,θ and dim(N)=1. If exist α > 0 so that φ ∈ N

‖F ′′(x∗)(φ, φ)‖ ≥ α‖φ‖2,
then for ρ and θ sufficiently small and |αn| < α′, the MRV iteration

xn+1 = xn − F ′(x0)−1(I − αnH(xn))F (xn),

where |αn| < α for some α > 0, remain in Wρ,θ, converge to x∗ and for n ≥ 1
holds

0 ≤ ζn(1− 3
4
ζn) ≤ ζn+1 ≤ ζn(1− 1

4
ζn),(25)

(
1 +

3n

4

)−1

‖PN (x0−x∗)‖ ≤ ‖PN (xn−x∗)‖ ≤ ‖PN (x0−x∗)‖
(
1 +

n

4

)−1

,(26)

‖PX(xn − x∗)‖ ≤ K‖xn−1 − x∗‖2 for some K > 0.(27)

Proof. (24)(a) and (24)(b) imply that xn ∈ Wρ,θ for all n ≥ 0. Estimate
(24)(c) gives (25) and inequality (24)(e) gives (27). The second part of inequality
(24)(c) by [5, 8] guarantees ζn ≤ (

1− n
4

)−1. By the same way the first part
of inequality (24)(c) guarantees ζn ≥ (

1 + 3n
4

)−1, which together proof the
convergence estimate (26). 2

3. Numerical Results

Consider the nonlinear mapping

F (x) =
[

x1 + x1x2 + x2
2

x2
1 − 2x1 + x2

2

]
(28)

on R2. F has a root at x∗ = [0, 0]T and F ′(x∗) has one-dimensional null space
N = span (φ), where φ = [0, 1]T . It is easy to see F ′′(x∗)(φ, φ) = φT F ′′(x∗)φ =
[2, 2]T . The last equality implies that the assumption (6) for α = 1 > 0 holds.

The numerical results given by MRV method are shown in Table 1. The
convergence is sublinear.

n x1 x2
‖PX(xn − x∗)‖
‖xn−1 − x∗‖2

0 0.05 0.1

1 0.00017985611510790 0.060791366906474 0.0143885

2 0.000473269935359905 0.033471103604271 0.128062

3 0.00028703685232103 0.0232246812657045 0.25616

4 0.00015720724249627 0.0180412794200752 0.291412

5 0.000099789131768687 0.0141246527661112 0.30656

6 0.000062906915799622 0.0115597478405662 0.315298

7 0.000043033228138149 0.0095823314193569 0.322029

8 0.000029737613468795 0.0081419789994001 0.323858

Table 1.
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MRV method N

X

Figure 1: Behavior of the MRV iterates in the set Wρ,θ.

Figure 1 shows that the convergence acceleration in X-direction is faster
than the acceleration in N -direction. It agrees with the result of Theorem 2.5.
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