CONVERGENCE OF THE MRV METHOD AT SINGULAR POINTS ${ }^{1}$

Zorana Lužanin ${ }^{2}$, Tibor Lukić ${ }^{3}$

Abstract

In this paper we give sufficient conditions for convergence of the Newton-like method with modification of the right-hand-side vector (MRV) for a class of singular problems. The rate of convergence is sublinear. Numerical results are included witch agree well with the theoretically proven results.

AMS Mathematics Subject Classification (2000): 65 H 10
Key words and phrases: nonlinear system, singular problems, sublinear convergence, Newton-like method

1. Introduction

Consider the system of nonlinear equations

$$
\begin{equation*}
F(x)=0, \tag{1}
\end{equation*}
$$

where $F \in C^{2}$ is a nonlinear mapping, $F: D \subset R^{n} \longrightarrow R^{n}$. The main purpose of this paper is to implement MRV Method [7] to determine solution x^{*} of $F(x)=0$ when the derivative, $F^{\prime}\left(x^{*}\right)$ is singular i.e., $F^{\prime}\left(x^{*}\right)=0$. In this case, we will say the point x^{*} is singular. The Newton iterates, $x^{n+1}=$ $x^{n}-F^{\prime}\left(x^{n}\right)^{-1} F\left(x^{n}\right)$, in singular case converge local linear, see $[9,4]$. While, the rate of convergence for chord method $x^{n+1}=x^{n}-F^{\prime}\left(x^{0}\right)^{-1} F\left(x^{n}\right)$, is only sublinear, that is $\lim _{k \rightarrow \infty}\left\|x^{n}-x^{*}\right\| /\left\|x^{n+1}-x^{*}\right\|=1$.

The method with modification of the right-hand-side vector (MRV) for regular case is introduced in [7]. The essential idea was acceleration of the fixed Newton method by relaxation parameter and modification of the right-handside vector leading to low linear algebra cost. The MRV method is given by the following algorithm.

Algorithm. MRV:
Let $x^{0} \in R^{n}$ and $F^{\prime}\left(x^{0}\right)$ is a nonsingular matrix be given. For $k=0,1,2, \ldots$

- Step 1. Solve

$$
F^{\prime}\left(x^{0}\right) s^{n}=\left(\alpha_{k} H\left(x^{n}\right)-I\right) F\left(x^{n}\right),
$$

[^0]where $H\left(x^{n}\right)=F^{\prime}\left(x^{n}\right)-F^{\prime}\left(x^{0}\right), I$ is the identity matrix and α_{k} is a real parameter

- Step 2. Define $x^{n+1}=x^{n}+s^{n}$,

The algorithm uses the relaxation parameter α_{n}. One possibility is to take $\alpha_{n}=\alpha$ during the whole process. In a special case, $\alpha_{n}=\alpha=0$ would lead to the chord method. Obviously, the easiest way to choose the parameter is to assume $\alpha_{n}=\alpha$. Other possibility is to determine the parameter α_{n} such that the new iteration becomes as close as possible in $\|\cdot\|_{2}$ to the Newton iteration. This choice of α_{k} is called optimal parameter, because it is a solution of the optimization problem

$$
\alpha_{k}^{o p t}:=\arg \min _{\alpha \in \mathcal{R}}\left\|L\left(x^{n}+s^{n}\right)\right\|_{2}^{2},
$$

with the MRV correction s^{n} and linear model $L\left(x^{n}+d\right)=F\left(x^{n}\right)+F^{\prime}\left(x^{n}\right) d$.
We give some notation, which is fairly standard. We denote by N the null space of $F^{\prime}\left(x^{*}\right)$, and by X the range space of $F^{\prime}\left(x^{*}\right)$. Let P_{N} be a projector onto N parallel to X, and let $P_{X}=I-P_{N}$.

We assume throughout that $F^{\prime}\left(x^{*}\right)$ has a one dimensional null space N and closed range X such that $R^{n}=N \oplus X$. For $x \in R^{n}$, we define $\widetilde{x}=x-x^{*}$ and define θ_{n}, ρ_{n} and ζ_{n} for the $n^{t h}$ iterate x^{n} by

$$
\begin{gather*}
\theta_{n}\left\|P_{N} \widetilde{x}^{n}\right\|=\left\|P_{X} \widetilde{x}^{n}\right\|, \\
\zeta_{n} P_{N} \widetilde{x}^{0}=P_{N} \widetilde{x}^{n}, \tag{2}\\
\rho_{n}=\left\|\widetilde{x}^{n}\right\|
\end{gather*}
$$

We define operators $D(x)$ and $\bar{D}(x)$ on N by

$$
\begin{equation*}
D(x)=P_{N} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}, P_{N} \cdot\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{D}(x)=P_{N} F^{\prime \prime}\left(x^{*}\right)\left(P_{N} \widetilde{x}, P_{N} \cdot\right) \tag{4}
\end{equation*}
$$

The satisfies guess x^{0}, must be chosen so that $F^{\prime}\left(x^{0}\right)$ be invertible. A set which satisfies these requirements can be defined as follows: for ρ and θ positive define $[1,9] W_{\rho, \theta}$ by
(5) $W_{\rho, \theta}=\left\{x \in R^{n} \mid 0<\left\|x-x^{*}\right\| \leq \rho,\left\|P_{X}\left(x-x^{*}\right)\right\| \leq \theta\left\|P_{N}\left(x-x^{*}\right)\right\|\right\}$.

We let $\beta_{m}(x)$ denote any term of order $\|\widetilde{x}\|^{m}$ and $\beta_{m}^{X}(x)\left(\operatorname{resp} \beta_{m}^{N}(x)\right)$ any term of order $\left\|P_{X} \widetilde{x}\right\|^{m}\left(\operatorname{resp}\left\|P_{N} \widetilde{x}\right\|^{m}\right)$. Let $\gamma_{p}^{q}(x)$ denote any term of order $\|\widetilde{x}\|^{p}$ such that $P_{X} \gamma_{p}^{q}(x)=\beta_{p+q}(x)$.

The following theorem contains some results that will be needed in what follows.

Theorem 1.1. [1] Let $x^{0} \in W_{\rho, \theta}, \operatorname{dim}(N)=1$. Assume that there is $\alpha>0$ so that for all $\phi \in N$

$$
\begin{equation*}
\left\|F^{\prime \prime}\left(x^{*}\right)(\phi, \phi)\right\| \geq \alpha\|\phi\|^{2} \tag{6}
\end{equation*}
$$

Then for ρ and θ sufficiently small, $F^{\prime}(x)^{-1}, D(x)^{-1}$ exist for all $x \in W_{\rho, \theta}$ and

$$
\begin{align*}
F^{\prime}(x)^{-1} & =P_{N} D(x)^{-1} P_{N}+\beta_{0}(x) \\
& =P_{N} \bar{D}(x)^{-1} P_{N}+\theta \beta_{-1}(x) \tag{7}\\
& =\beta_{-1}(x) .
\end{align*}
$$

Moreover, the Newton iterates, $x^{n}=x^{n-1}-F^{\prime}\left(x^{n-1}\right)^{-1} F\left(x^{n-1}\right), \quad n \geq 1$ remain in $W_{\rho, \theta}$, converge to x^{*}, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|P_{N}\left(x^{n+1}-x^{*}\right)\right\|}{\left\|P_{N}\left(x^{n}-x^{*}\right)\right\|}=\frac{1}{2} \tag{8}
\end{equation*}
$$

(9) $\quad\left\|P_{X}\left(x^{n+1}-x^{*}\right)\right\| \leq K\left\|x^{n}-x^{*}\right\|^{2}, \quad$ for some $K>0, n=0,1, \ldots$

2 Main Result

The following lemmas are used for proving the convergence result.

Lemma 2.1 If $x^{0} \in W_{\rho, \theta}$ and $x^{n+1}=x^{n}-F^{\prime}\left(x^{0}\right)^{-1}\left(I-\alpha_{n} H\left(x^{n}\right)\right) F\left(x^{n}\right)$, then

$$
\begin{equation*}
\widetilde{x}^{n+1}=P_{N} \widetilde{x}^{n}-\frac{1}{2} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+E_{n} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
E_{n}= & \gamma_{0}^{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)+\gamma_{-1}^{1}\left(x^{0}\right) \beta_{3}\left(x^{n}\right)+\tau_{n} \\
\tau_{n}= & -\alpha_{n}\left[\gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{1}^{X}\left(x^{n}\right)+\frac{1}{2} \gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)\right. \tag{11}\\
& \left.+\gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)+\gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{3}\left(x^{n}\right)\right] .
\end{align*}
$$

Proof. Let $\hat{F}=P_{X} F^{\prime}\left(x^{*}\right) P_{X}$. From the Taylor expansions

$$
\begin{aligned}
F\left(x^{n}\right) & =F^{\prime}\left(x^{*}\right) \widetilde{x}^{n}+\frac{1}{2} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+\beta_{3}\left(x^{n}\right) \\
& =\hat{F} P_{X} \widetilde{x}^{n}+\frac{1}{2} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+\beta_{3}\left(x^{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
F^{\prime}\left(x^{0}\right) P_{X} \widetilde{x}^{n} & =\hat{F} P_{X} \widetilde{x}^{n}+F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{0}, P_{X} \widetilde{x}^{n}\right)+\beta_{2}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right) \\
& =\hat{F} P_{X} \widetilde{x}^{n}+\beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)
\end{aligned}
$$

We obtain

$$
F\left(x^{n}\right)=F^{\prime}\left(x^{0}\right) P_{X} \widetilde{x}^{n}+\frac{1}{2} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+\beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)+\beta_{3}\left(x^{n}\right) .
$$

As $P_{X} F^{\prime}\left(x^{0}\right)^{-1}=\beta_{0}\left(x^{0}\right)$ and $F^{\prime}\left(x^{0}\right)^{-1}=\gamma_{-1}^{1}\left(x^{0}\right)$ we obtain

$$
\begin{aligned}
F^{\prime}\left(x^{0}\right)^{-1}\left(I-\alpha_{n} H\left(x^{n}\right)\right) F\left(x^{n}\right)= & P_{X} \widetilde{x}^{n}+\frac{1}{2} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right) \\
& -\alpha_{n} F^{\prime}\left(x^{0}\right)^{-1} H\left(x^{n}\right) P_{X} \widetilde{x}^{n}+F^{\prime}\left(x^{0}\right)^{-1} \beta_{3}\left(x^{n}\right) \\
& +F^{\prime}\left(x^{0}\right)^{-1} \beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right) \\
& -\frac{1}{2} \alpha_{n} F^{\prime}\left(x^{0}\right)^{-1} H\left(x^{n}\right) F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right) \\
& -\alpha_{n} F^{\prime}\left(x_{0}\right)^{-1} H\left(x^{n}\right) \beta_{3}\left(x^{n}\right) \\
& -\alpha_{n} F^{\prime}\left(x^{0}\right)^{-1} H\left(x^{n}\right) \beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right) \\
= & P_{X} \widetilde{x}^{n}+\frac{1}{2} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+E_{n} .
\end{aligned}
$$

As $x^{n+1}=x^{n}-F^{\prime}\left(x^{0}\right)^{-1}\left(I-\alpha_{n} H\left(x^{n}\right)\right) F\left(x^{n}\right)$ we have

$$
\widetilde{x}^{n+1}=\left(I-P_{X}\right) \widetilde{x}^{n}-\frac{1}{2} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+E_{n}
$$

This completes the proof.
Let $\kappa^{*}=\left\|P_{X} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)(\cdot, \cdot)\right\|$ and $\kappa=2\left(\kappa^{*}+1\right)$. In [1, 3, 9] it was shown that if $x^{0} \in W_{\rho, \theta}$ and $x^{1}=x^{0}-F^{\prime}\left(x^{0}\right)^{-1} F\left(x^{0}\right)$, then
(i) there is $K_{0}>0$ so that

$$
\left\|P_{X} \widetilde{x}^{1}\right\| \leq K_{0}\left\|P_{X} \widetilde{x}^{0}\right\| \rho_{0}
$$

(ii) $\left\|P_{X} \widetilde{x}^{1}\right\| \leq \kappa\left\|P_{N} \widetilde{x}^{0}\right\|^{2}$,
(iii) $\rho_{1} \leq \rho_{0}$,
(iv) $\left\|P_{X} \widetilde{x}^{1}\right\| \leq 2 \kappa\left\|P_{N} \widetilde{x}^{1}\right\|^{2}$,
(v) there is $c>0$, so that

$$
\left(\frac{1}{2}-c \theta_{0}\right)\left\|P_{N} \widetilde{x}^{0}\right\| \leq\left\|P_{N} \widetilde{x}^{1}\right\| \leq\left(\frac{1}{2}+c \theta_{0}\right)\left\|P_{N} \widetilde{x}^{0}\right\| .
$$

A consequence of (i) and (v) is

$$
\begin{equation*}
\theta_{1} \leq\left(\frac{1}{2}-c \theta_{0}\right)^{-1} K_{0} \rho_{0} \theta_{0}<\theta_{0} \tag{13}
\end{equation*}
$$

for ρ_{0} and θ_{0} sufficiently small.
The following sequence of lemmas give the estimates for the higher MRV iterates.

Lemma 2.2 Assume $x^{0} \in W_{\rho, \theta}, n \geq 0$ and $\alpha_{n} \mid<\alpha^{\prime}$. Assume that for $1 \leq k \leq$ n

$$
\begin{equation*}
\left\|P_{X} \widetilde{x}^{k}\right\| \leq 2 \kappa\left\|P_{N} \widetilde{x}^{k}\right\|^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{N} \widetilde{x}^{k}\right\| \leq\left\|P_{N} \widetilde{x}^{0}\right\| \tag{15}
\end{equation*}
$$

then for sufficiently small ρ and θ

$$
\begin{equation*}
\left\|P_{X} \widetilde{x}^{n+1}\right\| \leq \kappa\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \tag{16}
\end{equation*}
$$

Proof. If $n=1$ (14) and (15) are results of Newton's method [1, 3]. For $n>1$ we apply P_{X} to both sides of (10),

$$
\begin{aligned}
P_{X} \widetilde{x}^{n+1} & =P_{X} P_{N} \widetilde{x}^{n}-\frac{1}{2} P_{X} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+P_{X} E_{n} \\
& =-\frac{1}{2} P_{X} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)+P_{X} E_{n}
\end{aligned}
$$

From (14), for $k=n$ we have,

$$
\begin{align*}
\left\|\widetilde{x}^{n}\right\| & \leq\left\|P_{N} \widetilde{x}^{n}+P_{X} \widetilde{x}^{n}\right\| \leq\left\|P_{N} \widetilde{x}^{n}\right\|+\left\|P_{X} \widetilde{x}^{n}\right\| \\
& \leq\left\|P_{N} \widetilde{x}^{n}\right\|\left(1+2 \kappa\left\|P_{N} \widetilde{x}^{n}\right\|\right) \leq\left\|P_{N} \widetilde{x}^{n}\right\|\left(1+2 \kappa\left\|P_{N} \widetilde{x}^{0}\right\|\right), \tag{17}
\end{align*}
$$

and there is $c_{1}^{\prime}>0$ so that

$$
\begin{align*}
\left\|P_{X} \gamma_{0}^{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)\right\| & =\beta_{1}\left(x^{0}\right) \cdot \beta_{1}^{X}\left(x^{n}\right)=\left\|\widetilde{x}^{0}\right\|\left\|P_{X} \widetilde{x}^{n}\right\| \\
& \leq\left\|\widetilde{x}^{0}\right\| 2 c_{1}^{\prime} \kappa\left\|P_{N} \widetilde{x}^{n}\right\|^{2}=2 c_{1}^{\prime} \kappa \rho_{0} \cdot\left\|P_{N} \widetilde{x}^{n}\right\|^{2} . \tag{18}
\end{align*}
$$

By (11) we have

$$
\begin{aligned}
\left\|P_{X} \tau_{n}\right\| \leq & \left|\alpha_{n}\right|\left[\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{1}^{X}\left(x^{n}\right)\right\|\right. \\
& +\frac{1}{2}\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)\right\| \\
& \left.+\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)\right\|+\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right) H\left(x^{n}\right) \beta_{3}\left(x^{n}\right)\right\|\right] \\
\leq & \left\|\alpha_{n} H\left(x^{n}\right)\right\|\left[\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right)\right\|\left\|\beta_{1}^{X}\left(x^{n}\right)\right\|\right. \\
& +\frac{1}{2}\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right)\right\|\left\|F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)\right\| \\
& \left.+\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right)\right\|\left\|\beta_{1}\left(x^{0}\right) \beta_{1}^{X}\left(x^{n}\right)\right\|+\left\|P_{X} \gamma_{-1}^{1}\left(x^{0}\right) \beta_{3}\left(x^{n}\right)\right\|\right] .
\end{aligned}
$$

Since H is continuous function and sequence $\left\{\alpha_{n}\right\}$ is bounded, there exists $\delta>0$ such that that $\left\|\alpha_{n} H\left(x^{n}\right)\right\|<\delta$. By definition of κ^{*} and by assumption (14) we have

$$
\begin{aligned}
\left\|P_{X} \tau_{n}\right\| \leq & \delta\left[\left\|P_{X} \widetilde{x}^{n}\right\|+\kappa^{*}\left\|\widetilde{x}^{n}\right\|^{2}+\left\|P_{X} \gamma_{0}^{1}\left(x_{0}\right)\right\|\left\|P_{X} \widetilde{x}^{n}\right\|+\left\|\beta_{3}\left(x^{n}\right)\right\|\right] \\
\leq & \delta\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left[2 \kappa+\kappa^{*}\left(1+2 \kappa\left\|P_{X} \widetilde{x}^{0}\right\|\right)^{2}+2 \kappa \rho_{0}\right. \\
& \left.+\left\|P_{N} \widetilde{x}^{n}\right\|\left(1+2 \kappa\left\|P_{N} \widetilde{x}^{0}\right\|\right)^{3}\right],
\end{aligned}
$$

and there exist constants $c_{2}>0$ and $c_{2}^{\prime}>0$ so that

$$
\begin{equation*}
\left\|P_{X} \tau_{n}\right\| \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \cdot\left[c_{2}^{\prime}+\left\|P_{N} \widetilde{x}^{n}\right\| c_{2}\right] \tag{19}
\end{equation*}
$$

By inequalities (19), (18) and (17) we obtain

$$
\begin{aligned}
\left\|P_{X} E_{n}\right\| & \leq 2 c_{1}^{\prime} \kappa \rho_{0} \cdot\left\|P_{N} \widetilde{x}^{n}\right\|^{2}+\left\|\widetilde{x}^{n}\right\|^{3}+\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \cdot\left[c_{2}^{\prime}+c_{2}\left\|P_{N} \widetilde{x}^{n}\right\|\right] \\
& \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \cdot\left[2 c_{1}^{\prime} \kappa \rho_{0}+\left\|P_{N} \widetilde{x}^{n}\right\|\left(1+2 \kappa\left\|P_{N} \widetilde{x}^{0}\right\|\right)^{3}+c_{2}^{\prime}+c_{2}\left\|P_{N} \widetilde{x}^{n}\right\|\right] \\
& \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \cdot\left[2 \kappa c_{1} \rho_{0}+c_{3}\left\|P_{N} \widetilde{x}^{n}\right\|\right]
\end{aligned}
$$

for some constants $c_{1}>0$ and $c_{3}>0$. By $\left\|P_{N} \widetilde{x}^{n}\right\| \leq\left(1-\theta_{0}\right)^{-1} \rho_{0}$ and by (15), we have

$$
\begin{align*}
\left\|P_{X} E_{n}\right\| & \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left(2 \kappa c_{1} \rho_{0}+c_{3}\left(1-\theta_{0}\right)^{-1} \rho_{0}\right) \\
& =\left\|P_{N} \widetilde{x}^{n}\right\|^{2} \rho_{0}\left(2 \kappa c_{1}+\left(1-\theta_{0}\right)^{-1} c_{3}\right) \tag{20}
\end{align*}
$$

By definition of κ^{*},

$$
\begin{align*}
\left\|P_{X} F^{\prime}\left(x^{0}\right)^{-1} F^{\prime \prime}\left(x^{*}\right)\left(\widetilde{x}^{n}, \widetilde{x}^{n}\right)\right\| & \leq \kappa^{*}\left\|\widetilde{x}^{n}\right\|^{2} \\
& \leq \kappa^{*}\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left(1+2 \kappa\left\|P_{N} \widetilde{x}^{0}\right\|\right)^{2} \tag{21}\\
& \leq \kappa^{*}\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left(1+2 \kappa \rho_{0}\left(1-\theta_{0}\right)^{-1}\right)^{2}
\end{align*}
$$

By (20) and (21) we have

$$
\left\|P_{X} \widetilde{x}^{n+1}\right\| \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left[\frac{1}{2} \kappa^{*}\left(1+2 \kappa \rho_{0}\left(1-\theta_{0}\right)^{-1}\right)^{2}+2 \kappa c_{1} \rho_{0}+c_{3}\left(1-\theta_{0}\right)^{-1} \rho_{0}\right]
$$

if ρ and θ are sufficiently small, we obtain

$$
\left\|P_{X} \widetilde{x}^{n+1}\right\| \leq\left\|P_{N} \widetilde{x}^{n}\right\|^{2}\left[\kappa^{*}+2\right] \leq \kappa\left\|P_{N} \widetilde{x}^{n}\right\|^{2}
$$

which completes the proof.

Lemma 2.3 [4] Let $x^{0} \in W_{\rho, \theta}$. Assume that, for $1 \leq k \leq n$ that (14) and (15) holds for $x^{n} \in W_{\rho, \theta}$ and

$$
\begin{equation*}
0 \leq \zeta_{k-1}\left(1-\frac{3}{4} \zeta_{k-1}\right) \leq \zeta_{k} \leq \zeta_{k-1}\left(1-\frac{1}{4} \zeta_{k-1}\right) \tag{22}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq \zeta_{n}\left(1-\frac{3}{4} \zeta_{n}\right) \leq \zeta_{n+1} \leq \zeta_{n}\left(1-\frac{1}{4} \zeta_{n}\right) \tag{23}
\end{equation*}
$$

The next Lemma unites the previous two.
Lemma 2.4 [4] Let $x^{0} \in W_{\rho, \theta}$ and ρ and θ sufficiently small, then for $k \geq 1$ hold
a) $\rho_{k}=\left\|\widetilde{x}^{k}\right\| \leq \rho_{0}$,
b) $\theta_{k} \leq 2 \kappa\left(1-\theta_{0}\right)^{-1} \rho_{0} \zeta_{k}<\theta$,
c) $0 \leq \zeta_{k-1}\left(1-\frac{3}{4} \zeta_{k-1}\right) \leq \zeta_{k} \leq \zeta_{k-1}\left(1-\frac{1}{4} \zeta_{k-1}\right)$,
d) $\left\|P_{X} \widetilde{x}^{k}\right\| \leq 2 \kappa\left\|P_{N} \widetilde{x}^{k}\right\|^{2}$,
e) $\quad\left\|P_{X} \widetilde{x}^{k}\right\| \leq \kappa\left\|P_{N} \widetilde{x}^{k-1}\right\|^{2}$.

Now, we are able to give a Theorem about sublinear convergence of the MRV Method.

Theorem 2.5. Let F be twice Lipschitz continuously differentiable in a neighborhood of x^{*} and let $x^{0} \in W_{\rho, \theta}$ and $\operatorname{dim}(N)=1$. If exist $\alpha>0$ so that $\phi \in N$

$$
\left\|F^{\prime \prime}\left(x^{*}\right)(\phi, \phi)\right\| \geq \alpha\|\phi\|^{2},
$$

then for ρ and θ sufficiently small and $\left|\alpha_{n}\right|<\alpha^{\prime}$, the MRV iteration

$$
x^{n+1}=x^{n}-F^{\prime}\left(x^{0}\right)^{-1}\left(I-\alpha_{n} H\left(x^{n}\right)\right) F\left(x^{n}\right),
$$

where $\left|\alpha_{n}\right|<\bar{\alpha}$ for some $\bar{\alpha}>0$, remain in $W_{\rho, \theta}$, converge to x^{*} and for $n \geq 1$ holds

$$
\begin{equation*}
0 \leq \zeta_{n}\left(1-\frac{3}{4} \zeta_{n}\right) \leq \zeta_{n+1} \leq \zeta_{n}\left(1-\frac{1}{4} \zeta_{n}\right) \tag{25}
\end{equation*}
$$

(26) $\left(1+\frac{3 n}{4}\right)^{-1}\left\|P_{N}\left(x^{0}-x^{*}\right)\right\| \leq\left\|P_{N}\left(x^{n}-x^{*}\right)\right\| \leq\left\|P_{N}\left(x^{0}-x^{*}\right)\right\|\left(1+\frac{n}{4}\right)^{-1}$,

$$
\begin{equation*}
\left\|P_{X}\left(x^{n}-x^{*}\right)\right\| \leq K\left\|x^{n-1}-x^{*}\right\|^{2} \quad \text { for some } K>0 . \tag{27}
\end{equation*}
$$

Proof. (24)(a) and (24)(b) imply that $x^{n} \in W_{\rho, \theta}$ for all $n \geq 0$. Estimate (24)(c) gives (25) and inequality (24)(e) gives (27). The second part of inequality (24)(c) by $[5,8]$ guarantees $\zeta_{n} \leq\left(1-\frac{n}{4}\right)^{-1}$. By the same way the first part of inequality $(24)(\mathrm{c})$ guarantees $\zeta_{n} \geq\left(1+\frac{3 n}{4}\right)^{-1}$, which together proof the convergence estimate (26).

3. Numerical Results

Consider the nonlinear mapping

$$
F(x)=\left[\begin{array}{c}
x_{1}+x_{1} x_{2}+x_{2}^{2} \tag{28}\\
x_{1}^{2}-2 x_{1}+x_{2}^{2}
\end{array}\right]
$$

on R^{2}. F has a root at $x^{*}=[0,0]^{T}$ and $F^{\prime}\left(x^{*}\right)$ has one-dimensional null space $N=\operatorname{span}(\phi)$, where $\phi=[0,1]^{T}$. It is easy to see $F^{\prime \prime}\left(x^{*}\right)(\phi, \phi)=\phi^{T} F^{\prime \prime}\left(x^{*}\right) \phi=$ $[2,2]^{T}$. The last equality implies that the assumption (6) for $\alpha=1>0$ holds.

The numerical results given by MRV method are shown in Table 1. The convergence is sublinear.

n	x_{1}	x_{2}	$\frac{\left\\|P_{X}\left(x^{n}-x^{*}\right)\right\\|}{\left\\|x^{n-1}-x^{*}\right\\|^{2}}$
0	0.05	0.1	
1	0.00017985611510790	0.060791366906474	0.0143885
2	0.000473269935359905	0.033471103604271	0.128062
3	0.00028703685232103	0.0232246812657045	0.25616
4	0.00015720724249627	0.0180412794200752	0.291412
5	0.000099789131768687	0.0141246527661112	0.30656
6	0.000062906915799622	0.0115597478405662	0.315298
7	0.000043033228138149	0.0095823314193569	0.322029
8	0.000029737613468795	0.0081419789994001	0.323858

Table 1.

Figure 1: Behavior of the MRV iterates in the set $W_{\rho, \theta}$.
Figure 1 shows that the convergence acceleration in X-direction is faster than the acceleration in N-direction. It agrees with the result of Theorem 2.5.

References

[1] Decker, D. W., Kelley, C. T., Newton's Method at singular points I. SIAM, J. Numer. Anal. v. 17 (1980), 66-70.
[2] Decker, D. W., Kelley, C. T., Newton's Method at singular points II. SIAM, J. Numer. Anal. v. 17 (1980), 465-471.
[3] Decker, D. W., Kelley, C. T., Convergence accelartion for Newton's Method at singular points. SIAM, J. Numer. Anal. v. 19 (1982), 219-229.
[4] Decker, D. W., Kelley, C. T., Sublinear Convergence of the Chord Method at Singular Points. Numerische Mathematik (1983), 147-154.
[5] Dunn, J. C., Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM, J. Control and Optimization, Vol. 17 (1979), 187-211.
[6] Kelley, C. T., Suresh, R., A new acceleration method for Newton's method at Singular Points. SIAM, J. Numer. Anal. v. 20 (1983), 1001-1009.
[7] Krejić, N., Lužanin, Z., Newton-like method with modification of the right-handside vector. Mathematics of computation Vol. 71, Nr. 237 (2002), 237-250.
[8] Polya, G., Szego, G., Problems and theorems in analysis, Vol. 1. Springer 1972.
[9] Reddien, G. W., Newton's method for singular problems. SIAM, J. Num. Anal. (1978),993-986.

Received by the editors September 12, 2004

[^0]: ${ }^{1}$ Supported by Grant No. 1840 of the Ministry of Science, Technologies and Development of the Republic of Serbia.
 ${ }^{2}$ Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, zorana@im.ns.ac.yu
 ${ }^{3}$ Faculty of Engineering, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia and Montenegro, e-mail: tibor@uns.ns.ac.yu

