ON PROBABILISTIC 2-NORMED SPACES

Ioan Golet ${ }^{1}$

Abstract

In [16] K. Menger proposed the probabilistic concept of distance by replacing the number $d(p, q)$, as the distance between points p, q, by a distribution function $F_{p, q}$. This idea led to development of probabilistic analysis [3], [11] [18]. In this paper, generalized probabilistic 2 -normed spaces are studied and topological properties of these spaces are given. As an example, a space of random variables is considered, connections with the generalized deterministic 2 -normed spaces studied in [14] being also given.

AMS Mathematics Subject Classification (2000): 60H10, 46H25
Key words and phrases: probabilistic 2-normed spaces, random 2-norms

1. Introduction

The theory of probabilistic normed spaces was initiated and developed in [19],[15],[17],[12]. This theory is important as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. For more results of probabilistic functional analysis we refer to [1],[3],[11],[18].

The linear 2-normed spaces were first introduced in $[7]$, since these were studied in many papers, we mention [4],[5],[13].

In this paper we start from the results obtained [14] and we introduce a generalization of probabilistic 2-normed spaces studied in a previous paper [9]. Topological properties of these spaces and their connections with deterministic 2-normed spaces are considered. Examples of probabilistic 2-normed spaces are also given.

Let \mathbb{R} denotes the set of real numbers, $\mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}$ and $I=[0,1]$ the closed unit interval. A mapping $F: \mathbb{R} \rightarrow I$ is called a distribution function if it is non decreasing, left-continuous with $\inf F=0$ and $\sup F=1$.
D_{+}denotes the set of all distribution functions for that $F(0)=0$. Let F, G be in D_{+}, then we write $F \leq G$ if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. If $a \in \mathbb{R}_{+}$, then H_{a} will be an element of D_{+}, defined by $H_{a}(t)=0$ if $t \leq a$ and $H_{a}(t)=1$ if $t>a$. It is obvious that $H_{0} \geq F$ for all $F \in D_{+}$. The set D_{+}will be endowed with the natural topology defined by the modified Lévy metric d_{L} [18].

A 2-normed space is a pair $(L,\|\cdot, \cdot\|)([7])$, where L is a linear space of a dimension greater than one and $\|\cdot, \cdot\|$ is a real valued mapping on $L \times L$ such that the following conditions be satisfied:
(1) $\|x, y\|=0$ if and only if x and y are linearly dependent,

[^0](2) $\|x, y\|=\|y, x\|$, for all $x, y \in L$,
(3) $\|\alpha \cdot x, y\|=\mid \alpha\|x, y\|$, whenever $x, y \in L$ and $\alpha \in \mathbb{R}$,
(4) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$, for all $x, y, z \in L$.

A t-norm T is a two-place function $T: I \times I \rightarrow I$ which is associative, commutative, non decreasing in each place and such that $T(a, 1)=a$, for all $a \in[0,1]$. A triangle function τ is a binary operation on D_{+}which is commutative, associative and for which H_{0} is the identity, that is, $\tau\left(F, H_{0}\right)=F$, for every $F \in D_{+}$. The terminology and notations are standard as in [3],[18].

Definition 1. Let L be a linear space of a dimension greater than one, τ a triangle function, and let \mathcal{F} be a mapping from $L \times L$ into D_{+}. If the following conditions are satisfied :
(5) $\quad F_{x, y}=H_{0}$ if x and y are linearly dependent,
(6) $\quad F_{x, y} \neq H_{0}$ if x and y are linearly independent,
(7) $\quad F_{x, y}=F_{y, x}$, for every x, y in L,
(8) $\quad F_{\alpha x, y}(t)=F_{x, y}\left(\frac{t}{|\alpha|}\right)$, for every $t>0, \alpha \neq 0$ and $x, y \in L$,
(9) $\quad F_{x+y, z} \geq \tau\left(F_{x z}, F_{y z}\right)$, whenever $x, y, z \in L$,
then \mathcal{F} is called a probabilistic 2-norm on L and (L, \mathcal{F}, τ) is called a probabilistic 2 -normed space ([9]). If (5)-(9) are satisfied and the probabilistic triangle inequality (13) is formulated under a t-norm T:
$\left(9^{\prime}\right) \quad F_{x+y, z}\left(t_{1}+t_{2}\right) \geq T\left(F_{x z}\left(t_{1}\right), F_{y z}\left(t_{2}\right)\right)$, for all $x, y, z, \in L, t_{1}, t_{2} \in \mathbb{R}_{+}$ then (L, \mathcal{F}, T) is called a random 2 -normed space.

Remark 1. It is easy to check that every 2 -normed space $(L,\|\cdot, \cdot\|)$ can be made a random 2 -normed space, in a natural way, by setting $F_{x, y}(t)=$ $H_{0}(t-\|x, y\|)$, for every $x, y \in L, t \in \mathbb{R}_{+}$and $T=$ Min .

Proposition 1. If T is a left continuous t-norm and τ_{T} is the triangle function defined by $\tau_{T}(F, G)(t)=\sup _{t_{1}+t_{2}<t} T\left(F\left(t_{1}\right), G\left(t_{2}\right)\right), \quad t>0$, then $\left(L, \mathcal{F}, \tau_{T}\right)$ is a probabilistic 2-normed space iff (L, \mathcal{F}, T) is a random 2-normed space.

Theorem 1. Let (L, \mathcal{F}, T) be a random 2 -normed space under a continuous t-norm T such that $T \geq T_{m}$, where $T_{m}=\max \{S u m-l, 0\}$, then (L, \mathcal{F}, T) becomes a Hausdorff linear topological space with a fundamental system of neighborhoods of the null vector θ given by
$\mathcal{V}_{\Theta}=\{V(t, A): t>0, A \in \mathcal{A}$,$\} , where V(t, A)=\left\{y \in L: F_{y a}(t)>1-t, a \in A\right\}$, and \mathcal{A} is the finite subset family of L.

2. Probabilistic 2-normed spaces

Now, we define a probabilistic 2-norm on a pair of different linear spaces. The results obtained are an extension of those from [9] and a probabilistic generalization of those from [14].

Definition 2. Let L, M be two real linear spaces of dimension greater than one, and let \mathcal{F} be a function defined on the Cartesian product $L \times M$ into D_{+} satisfying the following properties:

$$
\begin{align*}
& F_{\alpha x, y}(t)=F_{x, \alpha y}(t)=F_{x, y}\left(\frac{t}{|\alpha|}\right), \text { for every } t>0, \alpha \in \mathbb{R}-\{0\} \tag{10}\\
& \text { and }(x, y) \in L \times M
\end{align*}
$$

$$
\begin{align*}
& F_{x+y, z} \geq \tau\left(F_{x, z}, F_{y, z}\right), \text { for every } x, y \in L \text { and } z \in M \tag{11}\\
& F_{x, y+z} \geq \tau\left(F_{x, y}, F_{x, z}\right), \text { for every } x \in L \text { and } y, z \in M \tag{12}
\end{align*}
$$

The function \mathcal{F} is called a generalized probabilistic 2 -norm on $L \times M$ and the triple $(L \times M, \mathcal{F}, \tau)$ is called a generalized probabilistic 2-normed space (briefly GP-2-N space).

The triangle inequalities $(11),(12)$ can be formulated using a t-norm T.
$F_{x+y, z}\left(t_{1}+t_{2}\right) \geq T\left(F_{x, z}\left(t_{1}\right), F_{y, z}\left(t_{2}\right)\right)$, for every $t_{1}, t_{2} \in \mathbb{R}_{+}, x \in L$
and $y, z \in M ;$
$F_{x, y+z}\left(t_{1}+t_{2}\right) \geq T\left(F_{x, y}\left(t_{1}\right), F_{x, z}\left(t_{2}\right)\right)$, for every $t_{1}, t_{2} \in \mathbb{R}_{+}, x, y \in L$
and $z \in M$.

If (14), (17) and (18) are satisfied then the triple
$(L \times M, \mathcal{F}, T)$ is called a generalized random 2-normed spaces (briefly GR-2-N space).

Proposition 2. If $(L \times M, \mathcal{F}, T)$ is GR-2-N space then the probabilistic 2-norm \mathcal{F} has the following properties:
$F_{x, \theta}(t)=H_{0}(t)$ for all $t>0$ and $x \in L$, where θ is the null vector in M;
$F_{\theta, y}(t)=H_{0}$, for all $t \in \mathbb{R}_{+}$and $y \in M$, where θ is the null vector in L.

Proof. Indeed, $F_{x, \theta}(t)=F_{x, \alpha \theta}(t)=F_{x, \theta}\left(\frac{t}{|\alpha|}\right)$, for all $\alpha \in \mathbb{R}-\{0\}$. Then

$$
F_{x, \theta}(t)=\lim _{\alpha \rightarrow 0} F_{x, \theta}\left(\frac{t}{|\alpha|}\right)=F_{x, \theta}(\infty)=H_{0}(t)
$$

The GR-2-norm \mathcal{F} induces a topology on each linear spaces L and M, hence we can define the product topology on $L \times M$.

Let \mathcal{A} be the family of all finite and non-empty subsets of the linear space $M, A \in \mathcal{A}, \varepsilon>0$ and $\lambda \in(0,1)$. By a neighborhood of zero in the linear space L we mean a subset of L defined by

$$
V(\varepsilon, \lambda, A)=\left\{x \in L: F_{x, a}(\varepsilon)>1-\lambda, a \in A\right\}
$$

If \mathcal{B} is the family of all finite and non-empty subsets of the linear space L and $B \in \mathcal{B}$, then by a neighborhood of zero in the linear space M we mean a subset of M defined by

$$
W(\varepsilon, \lambda, A)=\left\{x \in M: F_{b, x}(\varepsilon)>1-\lambda, b \in \mathcal{B}\right\}
$$

Theorem 2. Let $(L \times M, \mathcal{F}, T)$ be a GR-2-N space under a continuous t-norm $T, T \geqslant T_{m}$, where $T_{m}=\operatorname{Max}(\operatorname{Sum}-1,0)$. Then:
a) The family

$$
\mathcal{V}_{M}=\{V(\varepsilon, \lambda, A): \varepsilon>0, \lambda \in(0,1), A \in \mathcal{A}\}
$$

is a base system of neighborhoods of zero in the linear space L.
b) The family

$$
\mathcal{W}_{L}=\{W(\varepsilon, \lambda, A): \varepsilon>0, \lambda \in(0,1), B \in \mathcal{B}\}
$$

is a base for a system of neighborhoods of zero in the linear space M.
Proof. First, we will prove the statement (a). Let $V\left(\varepsilon_{k}, \lambda_{k}, A_{k}\right), k=1,2$ be in \mathcal{V}_{M}. We consider $A=A_{1} \cup A_{2}, \varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}, \lambda=\min \left\{\lambda_{1}, \lambda_{2}\right\}$, then $V(\varepsilon, \lambda, A) \subset V\left(\varepsilon_{1}, \lambda_{1}, A_{1}\right) \cap V\left(\varepsilon_{2}, \lambda_{2}, A_{2}\right)$.

Let $\alpha \in \mathbb{R}$ such that $0 \leq|\alpha| \leq 1$ and $x \in \alpha V(\varepsilon, \lambda, A)$, then $x=\alpha y$, where $y \in V(\varepsilon, \lambda, A)$. For every $a \in A$ we have

$$
F_{x, a}(\varepsilon)=F_{\alpha y, a}(\varepsilon)=F_{y, a}\left(\frac{\varepsilon}{|\alpha|}\right) \geq F_{y, a}(\varepsilon)>1-\lambda .
$$

This shows us that $x \in V(\varepsilon, \lambda, A)$, hence $\alpha V(\varepsilon, \lambda, A) \subset V(\varepsilon, \lambda, A)$.
Now, let us show that, for every $V \subset \mathcal{V}_{M}$ and $x \in L$ there exists $\beta \in \mathbb{R}, \beta \neq 0$ such that $\beta x \in V$. If $V \in \mathcal{V}_{M}$ then there exists $\varepsilon>0, \lambda \in(0,1)$ and $A \in \mathcal{A}$ such that $V=V(\varepsilon, \lambda, A)$. Let x be arbitrarily fixed in L and $\alpha \in \mathbb{R}, \alpha \neq 0$, then $F_{\alpha x, a}(\varepsilon)=F_{x, a}\left(\frac{\varepsilon}{|\alpha|}\right)$. Since $\lim _{|\alpha| \rightarrow 0} F_{x, a}\left(\frac{\varepsilon}{|\alpha|}\right)=1$ it follows that, for every $a \in A$ there exists $\alpha(a) \in \mathbb{R}$ such that $F_{x, a}\left(\frac{\varepsilon}{|\alpha(a)|}\right)>1-\lambda$. If we choose $\beta=\min \{|\alpha(a)|: a \in A\}$, then we have

$$
F_{\beta x, a}(\varepsilon)=F_{x, a}\left(\frac{\varepsilon}{\beta}\right) \geq F_{x, a}\left(\frac{\varepsilon}{|\alpha(a)|}\right)>1-\lambda,
$$

for all $a \in A$, hence $\beta x \in V$.
Let us prove that, for any $V \in \mathcal{V}_{M}$, there exists $V_{0} \in \mathcal{V}_{M}$ such that $V_{0}+V_{0} \subset$ V.

If $V=V(\varepsilon, \lambda, A)$ and $x \in V(\varepsilon, \lambda, A)$, then there exists $\eta>0$ such that $F_{x, a}(\varepsilon)>1-\eta>1-\lambda$, for every $a \in A$. If $V_{0}=V\left(\frac{\varepsilon}{2}, \frac{\eta}{2}, A\right)$ and $x, y \in V_{0}, a \in A$ by triangle inequality we have
$F_{x+y, a}(\varepsilon) \geq T\left(F_{x, a}\left(\frac{\varepsilon}{2}\right), F_{y, a}\left(\frac{\varepsilon}{2}\right)\right) \geq T\left(1-\frac{\eta}{2}, 1-\frac{\eta}{2}\right) \geq T_{m}\left(1-\frac{\eta}{2}, 1-\frac{\eta}{2}\right)>1-\eta>1-\lambda$.
The above inequalities show us that $V_{0}+V_{0} \subset V$.
In what follows we show that $V \in \mathcal{V}_{M}$ and $\alpha \in \mathbb{R}, \alpha \neq 0$ implies $\alpha V \in \mathcal{V}_{M}$.
Let us remark that $\alpha V=\alpha V(\varepsilon, \lambda, A)=\left\{\alpha x: F_{x, a}(\varepsilon)>1-\lambda, a \in A\right)$ and $F_{x, a}(\varepsilon)>1-\lambda \Leftrightarrow F_{x, a}\left(\frac{|\alpha| \varepsilon}{|\alpha|}\right)=F_{\alpha x, a}(|\alpha| \varepsilon)>1-\lambda$. This shows that $\alpha V=$ $V(|\alpha| \varepsilon, \lambda, A)$, hence $\alpha V \in \mathcal{V}_{M}$.

The above statements show us that \mathcal{V}_{M} is a base for a system neighborhoods of the origin. The topology generated by this system on the linear space L is named \mathcal{F}_{M}-topology on L.

The proof of the statement (b) is similar and we omitted it.
We now consider the following example of GR-2-N space having as base spaces sets of random variables with values in a Banach algebra.

The study of Banach algebra-valued random variables is of great importance in the theory of random equations because many of the Banach spaces encountered are also algebras.

Let $(X,\|\cdot\|)$ be a separable Banach space which is also an algebra. Let (Ω, \mathcal{K}, P) be a complete probability measure space and let (X, \mathcal{B}) be the measurable space, where \mathcal{B} is the σ-algebra of Borel subsets of the separable Banach algebra $(X,\|\cdot\|)$. We denote by E the linear space of all random variables defined on (Ω, \mathcal{K}, P) with values in (X, \mathcal{B}).

Since, in a Banach algebra, the operation of multiplication is continuous, the product of two X-valued random variables $x(\omega) y(\omega)$ is a well-defined X-valued random variable.

For all $x, y \in E, t \in \mathbb{R}$, and $t>0$ we define
(17) $\mathcal{F}_{x, y}(t)=F_{x, y}(t)=P(\{\omega \in \Omega:\|x(\omega) y(\omega)\|<t\})$

Theorem 3. Let L, M be two linear subspaces of E. Then the triple $\left(L \times M, \mathcal{F}, T_{m}\right)$ is a generalized random 2-normed space.

Proof. We have to show that conditions of Definition 2 are satisfied.
$F_{\alpha x, y}(t)=P(\{\omega \in \Omega:\|\alpha x(\omega) y(\omega)\|<t\})=P(\{\omega \in \Omega: \mid \alpha\|x(\omega) y(\omega)\|<$ $t\})=P\left(\left\{\omega \in \Omega:\|x(\omega) y(\omega)\|<\frac{t}{|\alpha|}\right\}\right)=F_{x, y}\left(\frac{t}{|\alpha|}\right)$. Similarly, one shows that $F_{x, \alpha y}(t)=F_{x, y}\left(\frac{t}{|\alpha|}\right)$. So, the condition (10) is satisfied.

For each $x, y \in L, z \in M$, and $t_{1}, t_{2} \in \mathbb{R}_{+}-\{0\}$ we define the sets:

$$
\begin{gathered}
A=\left\{\omega \in \Omega:\|x(\omega) z(\omega)\|<t_{1}\right\}, \quad B=\left\{\omega \in \Omega:\|y(\omega) z(\omega)\|<t_{2}\right\}, \\
C=\left\{\omega \in \Omega:\|[x(\omega)+y(\omega)] z(\omega)\|<t_{1}+t_{2}\right\}
\end{gathered}
$$

From the triangle inequality of the norm $\|$.$\| it follows that A \cup B \subset C$. By properties of the measure of probability P we have

$$
P(C) \geq P(A \cap B) \geq P(A)+P(B)-P(A \cap B) \geq P(A)+P(B)-1
$$

Taking into account (17) $P(A)=F_{x z}\left(t_{1}\right) \quad P(B)=F_{y, z}\left(t_{1}\right)$ and $P(C)=$ $F_{x+y, z}\left(t_{1}+t_{2}\right)$, hence, the inequality (13) is satisfied. Similarly, one proves the inequality (14).

Theorem 4. Let L, M be two linear spaces over the field \mathbb{R} of real numbers, let $T=$ Min and let us consider the mappings :
$f: L \times M \longrightarrow[0, \infty), \quad \mathcal{F}: L \times M \longrightarrow D_{+}$such that

$$
\mathcal{F}_{x, y}(t)=F_{x, y}(t)= \begin{cases}H_{0}(t) & \text { if } \quad t \leq 0 \\ \min \left\{\frac{t}{f(x, y)}, 1\right\} & \text { if } \quad t>0\end{cases}
$$

when we adopt the convention $\frac{x}{0}>1$. Then :
a) $(L \times M, f)$ is a generalized 2-normed space if and only if $(L \times M, \mathcal{F}, T)$ is a generalized random 2-normed space.
b) Topologies generated by f and \mathcal{F} on L and on M, respectively, are equivalent.

Proof. First, let suppose that f is a generalized 2-norm. If $(x, y) \in L \times M$, $t>0$ and $\alpha \in \mathbb{R}-\{0\}$ then:

$$
\begin{aligned}
F_{\alpha x, y}(t)=\min \left\{\frac{t}{f(\alpha x, y)}, 1\right\} & =\min \left\{\frac{t}{|\alpha| f(x, y)}, 1\right\}=\min \left\{\frac{\frac{t}{|\alpha|}}{f(x, y)}, 1\right\}= \\
& =F_{x y}\left(\frac{t}{|\alpha|}\right)
\end{aligned}
$$

Similarly, one proves that $F_{x, \alpha y}(t)=F_{x y}\left(\frac{t}{|\alpha|}\right)$.
Let us prove the random triangle inequality (14). We suppose that there exists $t_{1}, t_{2}>0, x \in L$ and $y, z \in M$ such as

$$
F_{x, y+z}\left(t_{1}+t_{2}\right)<T\left(F_{x, y}\left(t_{1}\right), F_{x, z}\left(t_{2}\right)\right)=\min \left\{\frac{t_{1}}{f(x, y)}, \frac{t_{2}}{f(x, z)}, 1\right\}
$$

then it follows

$$
\frac{t_{1}+t_{2}}{f(x, y+z)}<\frac{t_{1}}{f(x, y)} ; \quad \frac{t_{1}+t_{2}}{f(x, y+z)}<\frac{t_{2}}{f(x, z)}
$$

Hence $\left(t_{1}+t_{2}\right) f(x, y)<t_{1} f(x, y+z) ; \quad\left(t_{1}+t_{2}\right) f(x, z)<t_{2} f(x, y+z)$. By addition it follows

$$
\left(t_{1}+t_{2}\right)(f(x, y)+f(x, z))<\left(t_{1}+t_{2}\right) f(x, y+z)
$$

This implies that

$$
f(x, y)+f(x, z)<f(x, y+z)
$$

which is contrary to the fact that f is a generalized 2 -norm. Consequently,

$$
F_{x, y+z}\left(t_{1}+t_{2}\right) \geq \min \left\{F_{x, y}\left(t_{1}\right), F_{x, z}\left(t_{2}\right)\right\} \quad(\forall) x \in L, y, z \in M, t_{1}, t_{2} \in \mathbb{R}_{+}
$$

So, the triangle inequality (14) is verified. Similarly, one proves that the triangle inequality (13) is verified.

Conversely, let \mathcal{F} be a random 2-norm defined on $L \times M$. Since $F_{\alpha x, y}(t)=$ $F_{x, y}\left(\frac{t}{|\alpha|}\right)$ then

$$
\min \left\{\frac{t}{f(\alpha x, y)}, 1\right\}=\min \left\{\frac{\frac{t}{|\alpha|}}{f(x, y)}, 1\right\}=\min \left\{\frac{t}{|\alpha| f(x, y)}, 1\right\}
$$

By the arbitrariness of t it follows that $f(\alpha x, y)=|\alpha| f(x, y)$. Let us suppose that there exist $x \in L, y, z \in M$ such that $f(x, y+z)>f(x, y)+f(x, z)$. If we take $t_{1}>f(x, y), \quad t_{2}>f(x, z)$ such as $f(x, y+z)>t_{1}+t_{2}>f(x, y)+f(x, z)$, we have $F_{x, y}\left(t_{1}\right)=F_{x, z}\left(t_{2}\right)=1$ and $F_{x, y+z}\left(t_{1}+t_{2}\right)<1$, which is a contradiction with the triangle inequality (14). Therefore

$$
f(x, y+z) \leq f(x, y)+f(x, z)
$$

for every $x \in L, y, z \in M$. So, f is a generalized 2-norm. This completes the proof of the point (a).

The second statement (b) follows by taking into account that the following inequalities are equivalent:

$$
F_{x, a}(\varepsilon)>1-\varepsilon \Leftrightarrow \min \left\{\frac{\varepsilon}{f(x, a)}, 1\right\}>1-\varepsilon \Leftrightarrow f(x, a)<\frac{\varepsilon}{1-\varepsilon} .
$$

References

[1] Bharucha-Reid, A.T., Random integral equations. New York, London: Academic Press 1972.
[2] Chang, S-s., Huang, N-j., Fixed point theorems for set-valued mappings in 2metric spaces. Math. Japonica, 6 (1989), 877-883.
[3] Constantin, Gh., Istrăţescu, Ioana, Elements of Probabilistic Analysis. Kluwer Academic Publishers 1989.
[4] Diminie, C., White, A.G., Non expansive mappings in linear 2-normed space. Math. Japonica 21 (1976), 197-200.
[5] Ehred, R., Linear 2-normed spaces. PhD. St. Louis University, 1969.
[6] Gähler, S., 2-metrische Räume und ihr topologische structure. Math. Nachr. 26 (1963), 115-148.
[7] Gähler, S., Lineare 2-nomierte Raume. Math. Nachr. 28, (1964), 1-43.
[8] Goleţ, I., Probabilistic 2-metric spaces. Sem. on Probab. Theory Appl. Univ. of Timişoara 83 (1987), 1-15.
[9] Goleţ, i., Random 2-normed spaces. Sem. on Probab. Theory Appl. Univ. of Timişoara 84 (1988), 1-18.
[10] Goleţ, I., Fixed point theorems for multivalued mapping in probabilistic 2-metric Spaces. An. Şt. Univ. Ovidius Constanţa 3 (1995), 44-51.
[11] Hadžić, O., Pap, E., Fixed point theory in probabilistic metric spaces. Dordrecht: Kluver Academic Publishers 2001.
[12] Hicks, T.L., Random normed linear structures. Math. Japonica 3 (1996), 483-486.
[13] Iseki, K., On non-expansive mappings in strictly convex linear 2-normed space. Math. Sem. Notes Kobe University 3 (1975), 125-129.
[14] Lewandowska, Z., Linear operator on generalized 2-normed spaces. Bull. Math. Sc. Roumanie, 42 (1999), 353-368.
[15] Matveichuk, M.S., Random norm and characteristic probabilistics on orthoprojections associated with factors. Probabilistic Methods and Cybernetics Kazan University 9 (1971), 73-77.
[16] Menger, K., Statistical metrics. Proc. Nat. Acad. Sci., USA, 28 (1942), 535-537.
[17] Mushtari, D.Kh., On the linearity of isometric mappings of random spaces. Kazan Gos. Univ. Ucen. Zap. 128 (1968), 86-90.
[18] Schweizer, B., Sklar, A., Probabilistic metric spaces. New York, Amsterdam, Oxford: North Holland 1983.
[19] Sherstnev, A.N., Random normed spaces. Problems of completeness. Kazan Gos. Univ. Ucen. Zap. 122 (1962), 3-20.

Received by the editors March 22, 2004

[^0]: ${ }^{1}$ Politehnica University of Timişoara, Dept. of Mathematics P-ţa Regina Maria, No. 1, R-1900 Timişoara, Romania, e-mail:igolet@etv.utt.ro

