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ON PROBABILISTIC 2-NORMED SPACES
Ioan Golet!

Abstract. In [16] K. Menger proposed the probabilistic concept of
distance by replacing the number d(p, q), as the distance between points
p,q, by a distribution function Fjp,. This idea led to development of
probabilistic analysis [3], [11] [18]. In this paper, generalized probabilistic
2-normed spaces are studied and topological properties of these spaces
are given. As an example, a space of random variables is considered,
connections with the generalized deterministic 2-normed spaces studied
in [14] being also given.
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1. Introduction

The theory of probabilistic normed spaces was initiated and developed in
[19],[15],[17],[12].This theory is important as a generalization of deterministic re-
sults of linear normed spaces and also in the study of random operator equations.
For more results of probabilistic functional analysis we refer to [1],[3],[11],[18].

The linear 2-normed spaces were first introduced in [7], since these were
studied in many papers, we mention [4],[5],[13].

In this paper we start from the results obtained [14] and we introduce a
generalization of probabilistic 2-normed spaces studied in a previous paper [9)].
Topological properties of these spaces and their connections with deterministic
2-normed spaces are considered. Examples of probabilistic 2-normed spaces are
also given.

Let R denotes the set of real numbers, Ry = {z € R: 2 > 0} and I = [0, 1]
the closed unit interval. A mapping F' : R — [ is called a distribution function
if it is non decreasing, left-continuous with inf /' = 0 and sup F' = 1.

D, denotes the set of all distribution functions for that F'(0) = 0. Let F,G
be in D, then we write F < G if F(t) < G(t) for all t € R . If a € Ry, then
H, will be an element of D, defined by Ho(t) = 0if t < a and H,(t) =1 if
t > a . It is obvious that Hy > F for all F' € D. The set D, will be endowed
with the natural topology defined by the modified Lévy metric dy, [18].

A 2-normed space is a pair (L,]|-,-]|) ([7]), where L is a linear space of a
dimension greater than one and ||-, || is a real valued mapping on L x L such
that the following conditions be satisfied:

(1) ||z, y|| = 0 if and only if 2 and y are linearly dependent,
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(2) Il ol = g, 2|, for all &,y € L,
(3) la - z,y|| = |||z, y||, whenever z,y € L and o € R,
(4) |z + vy, 2|| < ||z, 2| + ||y, 2||, for all z,y,z € L.

A t-norm T is a two-place function T' : I x I — I which is associative,
commutative, non decreasing in each place and such that T(a,1) = a, for all
a € [0,1]. A triangle function 7 is a binary operation on D, which is commu-
tative, associative and for which Hy is the identity, that is, 7(F, Hyp)) = F, for
every F' € D,. The terminology and notations are standard as in [3],[18].

Definition 1. Let L be a linear space of a dimension greater than one, 7 a
triangle function , and let F be a mapping from L x L into D. If the following
conditions are satisfied :

(6)  Fp, = Hy if z and y are linearly dependent,

(6) F,, # Hy if x and y are linearly independent,

(1)  Fpy=Fy,,, forevery z,yin L,

(8)  Fawy(t)= F“/(th)’ for every t > 0,a # 0 and z,y € L,
(9)  Fiyy > 7(Fys, Fy,), whenever x,y,z € L,

then F is called a probabilistic 2-norm on L and (L, F, ) is called a probabilis-
tic 2-normed space ([9]). If (5)-(9) are satisfied and the probabilistic triangle
inequality (13) is formulated under a t-norm T :

(9" Fz+y,2(t1 +t2) > T(sz(tl),FyZ(tQ)), for all z,y,2,€ L,t1,12 € Ry
then (L, F,T) is called a random 2-normed space.

Remark 1. It is easy to check that every 2-normed space (L, ||-,||) can
be made a random 2-normed space, in a natural way, by setting Fj ,(t) =
Hy(t — ||z, y||), for every z,y € L, t € Ry and T = Min .

Proposition 1. If T is a left continuous t-norm and 77 is the triangle func-
tion defined by 7 (F,G)(t) = sup T(F(t1),G(t2)), t >0, then (L, F,7r) is

t1+t2<t

a probabilistic 2-normed space iff (L, F,T) is a random 2-normed space.
Theorem 1. Let (L, F,T) be a random 2-normed space under a continuous

t-norm T such that T' > T,,, where T;,, = max{Sum — [,0}, then

(L, F,T) becomes a Hausdorff linear topological space with a fundamental sys-

tem of neighborhoods of the null vector 6 given by

Vo ={V(t,A):t>0,Ac A}, where V(t,A) ={y € L: F,,(t) > 1—t,a € A},

and A is the finite subset family of L.

2. Probabilistic 2-normed spaces

Now, we define a probabilistic 2-norm on a pair of different linear spaces.
The results obtained are an extension of those from [9] and a probabilistic
generalization of those from [14].
Definition 2. Let L, M be two real linear spaces of dimension greater than
one, and let F be a function defined on the Cartesian product L x M into Dy
satisfying the following properties:

(10) Fozy(t) = Fpay(t) = F’"y(\f%l)’ for every t > 0,0 € R — {0}
and (z,y) € Lx M
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(11) Foyy:.>7(Fyp ., Fy.), for every xz,y € L and z € M.
(12) Foytz>7(Fpy, Fy z), for every x € L and y,z € M.

The function F is called a generalized probabilistic 2-norm on L x M and the
triple (L x M, F, ) is called a generalized probabilistic 2-normed space (briefly
GP-2-N space).

The triangle inequalities (11), (12) can be formulated using a t-norm 7'

(13) Fw+y,z(t1 + t2) > T<Fac,z(t1)7Fy,z(t2))? for every t17t2 € R+,l‘ €L
and y,z € M,

(14) Fpyrz(ts +t2) > T(Fyy(t), Fr 2(t2)), for every t1,t2 € Ry, 2,y € L
and z € M.

If (14), (17) and (18) are satisfied then the triple
(L x M,F,T) is called a generalized random 2-normed spaces (briefly GR-2-N
space).

Proposition 2. If (L x M,F,T) is GR-2-N space then the probabilistic
2-norm F has the following properties :

(15) Fpo(t) = Ho(t) for all ¢ > 0 and = € L, where 6 is
the null vector in M;
(16) Fy,(t) = Hy, for all t € Ry and y € M, where 6 is
the null vector in L.
Proof. Indeed, F, o(t) = Fy a9(t) = Fy 9(:%), for all « € R — {0}. Then

o]

. t
Fio(t) = lim Fyp(7—7) = Fip(00) = Ho(?)

|

O

The GR-2-norm F induces a topology on each linear spaces L and M, hence
we can define the product topology on L x M.

Let A be the family of all finite and non-empty subsets of the linear space
M, Ae A e>0and A€ (0,1). By a neighborhood of zero in the linear space
L we mean a subset of L defined by

Ve, MA)={z € L:F,q(e) >1—-Xac A}

If B is the family of all finite and non-empty subsets of the linear space L
and B € B, then by a neighborhood of zero in the linear space M we mean a
subset of M defined by

Wi, A)={xeM:F,,(c) >1—-\be B}

Theorem 2. Let (L x M,F,T) be a GR-2-N space under a continuous
t-norm T, T > T,,,, where T, = Max(Sum — 1,0). Then:
a) The family

Vu={V(e,\A):e>0, A€(0,1),A e A}
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is a base system of neighborhoods of zero in the linear space L.
b) The family

W ={W(,\A):e>0, A€ (0,1),B € B}

is a base for a system of neighborhoods of zero in the linear space M.

Proof. First, we will prove the statement (a). Let V(eg, g, Ax), k = 1,2
be in V. We consider A = A; U Ao, ¢ = min{eq,e2}, A = min{A1, A2}, then
V(<€7 A, A) C V(El, A, Al) N V(EQ, Ao, Ag)

Let o € R such that 0 < |a| < 1 and = € aV (g, A, A), then x = ay, where
y € V(e,\, A). For every a € A we have

Fra(€) = Faya(e) = Fy,a(ﬁ) > F,a(e) > 1- A\

This shows us that z € V (e, A\, A), hence oV (e, A\, A) C V(e, A, A).

Now, let us show that, for every V' C Vs and x € L thereexists 8 € R, 8 # 0
such that Sz € V. If V' € V), then there exists ¢ > 0, A € (0,1) and A € A
such that V' = V (e, A\, A). Let x be arbitrarily fixed in L and a € R, o # 0,

then Foyo(e) = an(ﬁ) Since ‘hlm an(ﬁ) = 1 it follows that, for every
) a|—0
a € A there exists a(a) € R such that F, .(—==v) > 1 — A If we choose

loc(a)]
8 = min{|a(a)| : a € A}, then we have

€ €
Fﬁx,a(a) = Fx,a(g) > Fx,a( aia
for all @ € A, hence Bz € V.

Let us prove that, for any V' € V;, there exists V) € Vjs such that Vy+V, C
V.

IfV =V(e,\A) and © € V(e, A\, A), then there exists n > 0 such that
Fra(e) >1—n>1=\foreveryac A If Vo =V (5,5,A) and z,y € Vp,ac A
by triangle inequality we have

€

Fx-&-y,a(e) > T(Fx,a(i

n n

€ n n
F,o(=)) > T(1 O
) Fra(5)) 2 T 1]

——,1-=)>T,(1
: 1 1-0) > Tl

The above inequalities show us that Vy + V5 C V.

In what follows we show that V € Vj; and a € R, a # 0 implies aV € Vy,.

Let us remark that oV = aV(e,\,A) = {ax : Fyq(c) > 1—X,a € A) and
Foole) >1 -2 & Fma(%) = Fazo(Jale) > 1 — A This shows that oV =
V(Jale, A, A), hence aV € V).

The above statements show us that V), is a base for a system neighborhoods
of the origin. The topology generated by this system on the linear space L is
named Fjs-topology on L.

The proof of the statement (b) is similar and we omitted it. a

We now consider the following example of GR-2-N space having as base
spaces sets of random variables with values in a Banach algebra.

) > 1-n>1-A.
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The study of Banach algebra-valued random variables is of great importance
in the theory of random equations because many of the Banach spaces encoun-
tered are also algebras.

Let (X, ].||) be a separable Banach space which is also an algebra. Let
(2, K, P) be a complete probability measure space and let (X, B) be the mea-
surable space, where B is the o-algebra of Borel subsets of the separable Banach
algebra (X, ||.||). We denote by E the linear space of all random variables de-
fined on (Q, K, P) with values in (X, B).

Since, in a Banach algebra, the operation of multiplication is continuous, the
product of two X-valued random variables z(w)y(w) is a well-defined X-valued
random variable.

For all z,y € E, t € R, and t > 0 we define

(17) Foy(t) = Foy(t) = Pw € Q: [lz(w)y(w)]| < t})

Theorem 3. Let L, M be two linear subspaces of E. Then the triple
(L x M,F,T,,) is a generalized random 2-normed space.

Proof. We have to show that conditions of Definition 2 are satisfied.
Fouy(t) = P({w € Q: [laz(w)y(w)l| < t}) = Pw € Q@ |af|lz(w)y(w)]| <
t}) = P{w € Q: ||lz(w)y(w)|] < ﬁ}) = FLy(lfT‘) Similarly, one shows that
Fpay(t) = ny(ﬁ) So, the condition (10) is satisfied. O

For each x,y € L,z € M , and t1,t2 € Ry — {0} we define the sets:
A={weQ:|z(w)zw)]| <t1}, B={weQ:|ly(w)z(w)|| <t2},

C={weQ:|lz(w) +yW)zW)| <t +t2}

From the triangle inequality of the norm |[|.|| it follows that AU B C C. By
properties of the measure of probability P we have

P(C) > P(ANB) > P(A) + P(B) — P(AN B) > P(A) + P(B) — 1

Taking into account (17) P(A) = F,,(t1) P(B) = F, ,(t1) and P(C) =
Fyty »(t1 +t2), hence, the inequality (13) is satisfied. Similarly, one proves the
inequality (14). a

Theorem 4. Let L, M be two linear spaces over the field R of real numbers,
let T = Min and let us consider the mappings :
f:LxM—[0,00), F:LxM— Dj such that

Ho(t) if +<0
Foy(t) = Fuy(t) = { min{ i, 1} if >0,

when we adopt the convention § > 1. Then :

a) (L x M, f) is a generalized 2-normed space if and only if (L x M, F,T) is
a generalized random 2-normed space.

b) Topologies generated by f and F on L and on M, respectively, are equiv-
alent.
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Proof. First, let suppose that f is a generalized 2-norm. If (z,y) € L x M,
t>0and o € R — {0} then:

= min # = min # = min ﬁ =
Fowy(t) = {f(ax,y)71} {|a|f(x,y)’1} {f(:l:,y)71}

Similarly, one proves that Fi ay(t) = Fuy ().

Tal
Let us prove the random triangle inequality (14). We suppose that there
exists t1,to > 0, x € L and y,z € M such as

Fyyra(ts + t2) < T(Fyy (1), Fo..(t2)) = min {f(i}y) % 1} ,
then it follows
htty _ bbb
fl@y+2)  flay) fley+z) o fz,2)

Hence (t1 + t2)f(z,y) < t1f(x,y + 2); (b + t2)f(2,2) < t2f(x,y + 2). By
addition it follows

(i +8)(f(z,y) + fz,2)) < (L +t2) f(2,y + 2).

This implies that
fl,y) + fla,2) < flz,y +2)
which is contrary to the fact that f is a generalized 2-norm. Consequently,
Fpyiz(ti +t2) > min{F, ,(t1), Fr 2 (t2)} (V) € L,y,z € M,t1,ts € Ry.

So, the triangle inequality (14) is verified. Similarly, one proves that the triangle
inequality (13) is verified.

Conversely, let F be a random 2-norm defined on L x M. Since Fyy 4(t) =
F”/(ﬁ) then

mm{ﬂafm,l}:min{%,l}:min{w,l}

By the arbitrariness of ¢ it follows that f(az,y) = |a|f(z,y). Let us suppose
that there exist © € L,y,z € M such that f(z,y + z) > f(x,y) + f(z, z). If we
take t1 > f(x,y), ta> f(x,2)suchas f(z,y+2)>t1+t2 > fla,y)+ f(x, 2),
we have Fy ,(t1) = F, »(t2) = 1 and F 1, (t1+t2) < 1, which is a contradiction
with the triangle inequality (14). Therefore

floy+2) < fla,y) + fz,2)
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for every © € L,y,z € M. So, f is a generalized 2-norm. This completes the
proof of the point (a) .

The second statement (b) follows by taking into account that the following
inequalities are equivalent :

€

Fz7a(€)>1—€<:)min{ ,1}>1—6(:>f(a:,a)<

1—¢

_c
f(z,a)
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