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ON PROBABILISTIC 2-NORMED SPACES

Ioan Goleţ1

Abstract. In [16] K. Menger proposed the probabilistic concept of
distance by replacing the number d(p, q), as the distance between points
p, q, by a distribution function Fp,q. This idea led to development of
probabilistic analysis [3], [11] [18]. In this paper, generalized probabilistic
2-normed spaces are studied and topological properties of these spaces
are given. As an example, a space of random variables is considered,
connections with the generalized deterministic 2-normed spaces studied
in [14] being also given.
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1. Introduction

The theory of probabilistic normed spaces was initiated and developed in
[19],[15],[17],[12].This theory is important as a generalization of deterministic re-
sults of linear normed spaces and also in the study of random operator equations.
For more results of probabilistic functional analysis we refer to [1],[3],[11],[18].

The linear 2-normed spaces were first introduced in [7], since these were
studied in many papers, we mention [4],[5],[13].

In this paper we start from the results obtained [14] and we introduce a
generalization of probabilistic 2-normed spaces studied in a previous paper [9].
Topological properties of these spaces and their connections with deterministic
2-normed spaces are considered. Examples of probabilistic 2-normed spaces are
also given.

Let R denotes the set of real numbers, R+ = {x ∈ R : x ≥ 0} and I = [0, 1]
the closed unit interval. A mapping F : R → I is called a distribution function
if it is non decreasing, left-continuous with inf F = 0 and supF = 1.

D+ denotes the set of all distribution functions for that F (0) = 0. Let F,G
be in D+, then we write F ≤ G if F (t) ≤ G(t) for all t ∈ R . If a ∈ R+, then
Ha will be an element of D+, defined by Ha(t) = 0 if t ≤ a and Ha(t) = 1 if
t > a . It is obvious that H0 ≥ F for all F ∈ D+. The set D+ will be endowed
with the natural topology defined by the modified Lévy metric dL [18].

A 2-normed space is a pair (L, ||·, ·||) ([7]), where L is a linear space of a
dimension greater than one and ||·, ·|| is a real valued mapping on L × L such
that the following conditions be satisfied:
(1) ||x, y|| = 0 if and only if x and y are linearly dependent,
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(2) ||x, y|| = ||y, x||, for all x, y ∈ L,
(3) ||α · x, y|| = |α||x, y||, whenever x, y ∈ L and α ∈ R,
(4) ||x + y, z|| ≤ ||x, z||+ ||y, z||, for all x, y, z ∈ L.

A t-norm T is a two-place function T : I × I → I which is associative,
commutative, non decreasing in each place and such that T (a, 1) = a, for all
a ∈ [0, 1]. A triangle function τ is a binary operation on D+ which is commu-
tative, associative and for which H0 is the identity, that is, τ(F,H0)) = F , for
every F ∈ D+. The terminology and notations are standard as in [3],[18].

Definition 1. Let L be a linear space of a dimension greater than one, τ a
triangle function , and let F be a mapping from L×L into D+. If the following
conditions are satisfied :

(5) Fx,y = H0 if x and y are linearly dependent,
(6) Fx,y 6= H0 if x and y are linearly independent,
(7) Fx,y = Fy,x, for every x, y in L,
(8) Fαx,y(t) = Fx,y( t

|α| ), for every t > 0, α 6= 0 and x, y ∈ L,
(9) Fx+y,z ≥ τ(Fxz, Fyz), whenever x, y, z ∈ L ,

then F is called a probabilistic 2-norm on L and (L,F , τ) is called a probabilis-
tic 2-normed space ([9]). If (5)-(9) are satisfied and the probabilistic triangle
inequality (13) is formulated under a t-norm T :

(9′) Fx+y,z(t1 + t2) ≥ T (Fxz(t1), Fyz(t2)), for all x, y, z,∈ L, t1, t2 ∈ R+

then (L,F , T ) is called a random 2-normed space.
Remark 1. It is easy to check that every 2-normed space (L, ||·, ·||) can

be made a random 2-normed space, in a natural way, by setting Fx,y(t) =
H0(t− ||x, y||), for every x, y ∈ L, t ∈ R+ and T = Min .

Proposition 1. If T is a left continuous t-norm and τT is the triangle func-
tion defined by τT (F,G)(t) = sup

t1+t2<t
T (F (t1), G(t2)), t > 0 , then (L,F , τT ) is

a probabilistic 2-normed space iff (L,F , T ) is a random 2-normed space.
Theorem 1. Let (L,F , T ) be a random 2-normed space under a continuous

t-norm T such that T ≥ Tm, where Tm = max{Sum− l, 0}, then
(L,F , T ) becomes a Hausdorff linear topological space with a fundamental sys-
tem of neighborhoods of the null vector θ given by
VΘ = {V (t, A) : t > 0, A ∈ A, }, where V (t, A) = {y ∈ L : Fya(t) > 1−t, a ∈ A},
and A is the finite subset family of L.

2. Probabilistic 2-normed spaces

Now, we define a probabilistic 2-norm on a pair of different linear spaces.
The results obtained are an extension of those from [9] and a probabilistic
generalization of those from [14].

Definition 2. Let L,M be two real linear spaces of dimension greater than
one, and let F be a function defined on the Cartesian product L×M into D+

satisfying the following properties:

(10) Fαx,y(t) = Fx,αy(t) = Fx,y( t
|α| ), for every t > 0, α ∈ R− {0}

and (x, y) ∈ L×M
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(11) Fx+y,z ≥ τ(Fx,z, Fy,z), for every x, y ∈ L and z ∈ M .
(12) Fx,y+z ≥ τ(Fx,y, Fx,z), for every x ∈ L and y, z ∈ M .

The function F is called a generalized probabilistic 2-norm on L×M and the
triple (L×M,F , τ) is called a generalized probabilistic 2-normed space (briefly
GP-2-N space).

The triangle inequalities (11), (12) can be formulated using a t-norm T .

(13) Fx+y,z(t1 + t2) ≥ T (Fx,z(t1), Fy,z(t2)), for every t1, t2 ∈ R+, x ∈ L
and y, z ∈ M ;

(14) Fx,y+z(t1 + t2) ≥ T (Fx,y(t1), Fx,z(t2)), for every t1, t2 ∈ R+, x, y ∈ L
and z ∈ M .

If (14), (17) and (18) are satisfied then the triple
(L×M,F , T ) is called a generalized random 2-normed spaces (briefly GR-2-N
space).

Proposition 2. If (L × M,F , T ) is GR-2-N space then the probabilistic
2-norm F has the following properties :

(15) Fx,θ(t) = H0(t) for all t > 0 and x ∈ L, where θ is
the null vector in M ;

(16) Fθ,y(t) = H0, for all t ∈ R+ and y ∈ M , where θ is
the null vector in L.

Proof. Indeed, Fx,θ(t) = Fx,αθ(t) = Fx,θ( t
|α| ), for all α ∈ R− {0}. Then

Fx,θ(t) = lim
α→0

Fx,θ(
t

|α|
) = Fx,θ(∞) = H0(t)

2

The GR-2-norm F induces a topology on each linear spaces L and M , hence
we can define the product topology on L×M .

Let A be the family of all finite and non-empty subsets of the linear space
M , A ∈ A, ε > 0 and λ ∈ (0, 1). By a neighborhood of zero in the linear space
L we mean a subset of L defined by

V (ε, λ,A) = {x ∈ L : Fx,a(ε) > 1− λ, a ∈ A}

If B is the family of all finite and non-empty subsets of the linear space L
and B ∈ B, then by a neighborhood of zero in the linear space M we mean a
subset of M defined by

W (ε, λ,A) = {x ∈ M : Fb,x(ε) > 1− λ, b ∈ B}

Theorem 2. Let (L × M,F , T ) be a GR-2-N space under a continuous
t-norm T , T > Tm, where Tm = Max(Sum− 1, 0). Then:

a) The family

VM = {V (ε, λ,A) : ε > 0, λ ∈ (0, 1), A ∈ A}
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is a base system of neighborhoods of zero in the linear space L.
b) The family

WL = {W (ε, λ,A) : ε > 0, λ ∈ (0, 1), B ∈ B}

is a base for a system of neighborhoods of zero in the linear space M .
Proof. First, we will prove the statement (a). Let V (εk, λk, Ak), k = 1, 2

be in VM . We consider A = A1 ∪ A2, ε = min{ε1, ε2}, λ = min{λ1, λ2}, then
V (ε, λ,A) ⊂ V (ε1, λ1, A1) ∩ V (ε2, λ2, A2).

Let α ∈ R such that 0 ≤ |α| ≤ 1 and x ∈ αV (ε, λ, A), then x = αy, where
y ∈ V (ε, λ,A). For every a ∈ A we have

Fx,a(ε) = Fαy,a(ε) = Fy,a(
ε

|α|
) ≥ Fy,a(ε) > 1− λ.

This shows us that x ∈ V (ε, λ,A), hence αV (ε, λ, A) ⊂ V (ε, λ,A).
Now, let us show that, for every V ⊂ VM and x ∈ L there exists β ∈ R, β 6= 0

such that βx ∈ V . If V ∈ VM then there exists ε > 0, λ ∈ (0, 1) and A ∈ A
such that V = V (ε, λ,A). Let x be arbitrarily fixed in L and α ∈ R, α 6= 0,
then Fαx,a(ε) = Fx,a( ε

|α| ). Since lim
|α|→0

Fx,a( ε
|α| ) = 1 it follows that, for every

a ∈ A there exists α(a) ∈ R such that Fx,a( ε
|α(a)| ) > 1 − λ. If we choose

β = min{|α(a)| : a ∈ A}, then we have

Fβx,a(ε) = Fx,a(
ε

β
) ≥ Fx,a(

ε

|α(a)|
) > 1− λ,

for all a ∈ A, hence βx ∈ V .
Let us prove that, for any V ∈ VM , there exists V0 ∈ VM such that V0 +V0 ⊂

V .
If V = V (ε, λ,A) and x ∈ V (ε, λ,A), then there exists η > 0 such that

Fx,a(ε) > 1−η > 1−λ, for every a ∈ A. If V0 = V ( ε
2 , η

2 , A) and x, y ∈ V0, a ∈ A
by triangle inequality we have

Fx+y,a(ε) ≥ T (Fx,a(
ε

2
), Fy,a(

ε

2
)) ≥ T (1−η

2
, 1−η

2
) ≥ Tm(1−η

2
, 1−η

2
) > 1−η > 1−λ.

The above inequalities show us that V0 + V0 ⊂ V.
In what follows we show that V ∈ VM and α ∈ R, α 6= 0 implies αV ∈ VM .
Let us remark that αV = αV (ε, λ,A) = {αx : Fx,a(ε) > 1 − λ, a ∈ A) and

Fx,a(ε) > 1 − λ ⇔ Fx,a( |α|ε|α| ) = Fαx,a(|α|ε) > 1 − λ. This shows that αV =
V (|α|ε, λ,A), hence αV ∈ VM .

The above statements show us that VM is a base for a system neighborhoods
of the origin. The topology generated by this system on the linear space L is
named FM -topology on L.

The proof of the statement (b) is similar and we omitted it. 2

We now consider the following example of GR-2-N space having as base
spaces sets of random variables with values in a Banach algebra.
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The study of Banach algebra-valued random variables is of great importance
in the theory of random equations because many of the Banach spaces encoun-
tered are also algebras.

Let (X, ‖.‖) be a separable Banach space which is also an algebra. Let
(Ω,K, P ) be a complete probability measure space and let (X,B) be the mea-
surable space, where B is the σ-algebra of Borel subsets of the separable Banach
algebra (X, ||.||). We denote by E the linear space of all random variables de-
fined on (Ω,K, P ) with values in (X,B).

Since, in a Banach algebra, the operation of multiplication is continuous, the
product of two X-valued random variables x(ω)y(ω) is a well-defined X-valued
random variable.

For all x, y ∈ E, t ∈ R, and t > 0 we define

(17) Fx,y(t) = Fx,y(t) = P ({ω ∈ Ω : ||x(ω)y(ω)|| < t})

Theorem 3. Let L, M be two linear subspaces of E. Then the triple
(L×M,F , Tm) is a generalized random 2-normed space.

Proof. We have to show that conditions of Definition 2 are satisfied.
Fαx,y(t) = P ({ω ∈ Ω : ||αx(ω)y(ω)|| < t}) = P ({ω ∈ Ω : |α|||x(ω)y(ω)|| <
t}) = P ({ω ∈ Ω : ||x(ω)y(ω)|| < t

|α|}) = Fx,y( t
|α| ). Similarly, one shows that

Fx,αy(t) = Fx,y( t
|α| ). So, the condition (10) is satisfied. 2

For each x, y ∈ L, z ∈ M , and t1, t2 ∈ R+ − {0} we define the sets:

A = {ω ∈ Ω : ||x(ω)z(ω)|| < t1}, B = {ω ∈ Ω : ||y(ω)z(ω)|| < t2},

C = {ω ∈ Ω : ||[x(ω) + y(ω)]z(ω)|| < t1 + t2}
From the triangle inequality of the norm ||.|| it follows that A ∪B ⊂ C. By

properties of the measure of probability P we have

P (C) ≥ P (A ∩B) ≥ P (A) + P (B)− P (A ∩B) ≥ P (A) + P (B)− 1

Taking into account (17) P (A) = Fxz(t1) P (B) = Fy,z(t1) and P (C) =
Fx+y,z(t1 + t2), hence, the inequality (13) is satisfied. Similarly, one proves the
inequality (14). 2

Theorem 4. Let L,M be two linear spaces over the field R of real numbers,
let T = Min and let us consider the mappings :

f : L×M −→ [0,∞), F : L×M −→ D+ such that

Fx,y(t) = Fx,y(t) =
{

H0(t) if t ≤ 0
min{ t

f(x,y) , 1} if t > 0,

when we adopt the convention x
0 > 1. Then :

a) (L×M,f) is a generalized 2-normed space if and only if (L×M,F , T ) is
a generalized random 2-normed space.

b) Topologies generated by f and F on L and on M, respectively, are equiv-
alent.



100 I. Goleţ

Proof. First, let suppose that f is a generalized 2-norm. If (x, y) ∈ L×M ,
t > 0 and α ∈ R− {0} then:

Fαx,y(t) = min{ t

f(αx, y)
, 1} = min{ t

|α|f(x, y)
, 1} = min{

t
|α|

f(x, y)
, 1} =

= Fxy(
t

|α|
).

Similarly, one proves that Fx,αy(t) = Fxy( t
|α| ).

Let us prove the random triangle inequality (14). We suppose that there
exists t1, t2 > 0, x ∈ L and y, z ∈ M such as

Fx,y+z(t1 + t2) < T (Fx,y(t1), Fx,z(t2)) = min
{

t1
f(x, y)

,
t2

f(x, z)
, 1

}
,

then it follows

t1 + t2
f(x, y + z)

<
t1

f(x, y)
;

t1 + t2
f(x, y + z)

<
t2

f(x, z)
.

Hence (t1 + t2)f(x, y) < t1f(x, y + z); (t1 + t2)f(x, z) < t2f(x, y + z). By
addition it follows

(t1 + t2)(f(x, y) + f(x, z)) < (t1 + t2)f(x, y + z).

This implies that

f(x, y) + f(x, z) < f(x, y + z)

which is contrary to the fact that f is a generalized 2-norm. Consequently,

Fx,y+z(t1 + t2) ≥ min{Fx,y(t1), Fx,z(t2)} (∀)x ∈ L, y, z ∈ M, t1, t2 ∈ R+.

So, the triangle inequality (14) is verified. Similarly, one proves that the triangle
inequality (13) is verified.

Conversely, let F be a random 2-norm defined on L×M . Since Fαx,y(t) =
Fx,y( t

|α| ) then

min
{

t

f(αx, y)
, 1

}
= min

{
t
|α|

f(x, y)
, 1

}
= min

{
t

|α|f(x, y)
, 1

}
By the arbitrariness of t it follows that f(αx, y) = |α|f(x, y). Let us suppose

that there exist x ∈ L, y, z ∈ M such that f(x, y + z) > f(x, y) + f(x, z). If we
take t1 > f(x, y), t2 > f(x, z) such as f(x, y + z) > t1 + t2 > f(x, y)+ f(x, z),
we have Fx,y(t1) = Fx,z(t2) = 1 and Fx,y+z(t1+t2) < 1, which is a contradiction
with the triangle inequality (14). Therefore

f(x, y + z) ≤ f(x, y) + f(x, z)
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for every x ∈ L, y, z ∈ M. So, f is a generalized 2-norm. This completes the
proof of the point (a) .

The second statement (b) follows by taking into account that the following
inequalities are equivalent :

Fx,a(ε) > 1− ε ⇔ min
{

ε

f(x, a)
, 1

}
> 1− ε ⇔ f(x, a) <

ε

1− ε
.

2
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[9] Goleţ, i., Random 2-normed spaces. Sem. on Probab. Theory Appl. Univ. of
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