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Abstract. This paper deals with a new concept introducing notion of
fuzzy set to one mathematical model describing a economic system. A
finite pure exchange economy is considered.
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1. Introduction

Mathematical theory is an invaluable analytical tool in different areas of
economy (see [1], [2],[3], [8]). In [8], the theory of correspondences is used as a
mathematical framework to give an interpretation and solutions in theoretical
economics. In this paper, using the model from [8], a new interpretation within
the framework of the fuzzy theory is presented. The well known simple economic
system - finite pure exchange economy - is considered as an illustration of how
such abstract and complex mathematical theory have become a useful tool of
economic theory. Since the definitions which include fuzzy sets are not restricted
to finite pure exchange economy, it is obvious that this approach can be used to
treat more complicated economic systems such as coalition, production or large
economy.

The language of fuzziness, suitably interpreted, is a very convenient com-
ponent of the rigorous language of theoretical economics. The uncertainties
following from the individual character of agents in pure exchange economy,
can be interpreted using fuzzy random variable. In this paper it is shown how
the mathematical theory of fuzzy random variable can be used for the purpose
of modelling and analyzing an economic system. The economies we deal with
here all stem from the theory of general economic equilibrium. In the theory
of equilibrium analysis it is usual to define an economy or economic model as
a system of sets, as a mapping or as a measure. In this paper, the fuzzy set
approach is used to define basic notions such as the preferences or ”tastes” of
economic agents, and to establish relations and theorems as the consequence of
that approach.

Some interesting papers related to the application of fuzzy set theory in the
theory of economic system are [6], [7], [9].
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2. Preliminaries

This section deals with some well known basic definitions and notions which
will be used in the next section. The definitions and notions of economic system
and fuzzy random variable are used according to [8] and [10].

Throughout this paper we denote by Rk = {(χ1, χ2, · · · , χk), χ1, χ2, · · · , χk ∈
R}, k ≥ 2. Further, Rk

+ = {(χ1, χ2, · · · , χk), χ1, χ2, · · · , χk ∈ R+}, where
R = (−∞,∞) and R+ = [0,∞).

If {An} is a sequence of nonempty subsets of Rk, then

• a point x ∈ Rk is a limit point of {An} if, for every neighborhood U of x,
there exists an n in N such that for all m ≥ n, Am ∩ U 6= ∅,

• a point x ∈ Rk is a cluster point of {An} if, for every neighborhood U of
x and every n in N there is an m ≥ n such that Am ∩ U 6= ∅,

• lim inf An is the set of all limit points of {An},

• lim sup An is the set of all cluster points of {An},

• if lim inf An = lim supAn = A, then A = lim An.

F(Rk) is a set of normal, upper semicontinuous fuzzy sets u : Rk → [0, 1]
with usual topology (see [10], [11]). The α-level set, α ∈ (0, 1], is defined by
uα = {x ∈ Rk : u(x) ≥ α} and u+ = {x ∈ Rk : u(x) > 0}. If the fuzzy set u
is normal and upper semicontinuous, then α-level uα, α ∈ (0, 1], is nonempty
closed set. If (A,A, µ) is a probability space, then the mapping X : A → F(Rk)
such that α-level mapping Xα is measurable according to the measurability of
set valued mapping defined in [4], is fuzzy random variable (see[10],[11]).

The concept of an economic system or an economy may be formalized in
different ways. In this paper we use the concept used in [8]. When the theory is
only concerned with the economic exchange system and process (the markets),
with total independence of what happens in the production sector, then this
is best represented by an economic system without production, called a pure
exchange economy and conceived as a structure

E = ((A,A, µ), X,Rk).

The triple (A,A, µ) is a probability space of agents (consumers) with the
following economic interpretation: A is the set of agents (consumers); A, a σ-
algebra, is the set of all possible coalitions of agents; µ is a probability measure,
an indicator of the totality of agents in each coalition of A. If A is finite, then
E is finite pure exchange economy.

The Euclidean space Rk is called the commodity space so that a point
x = (χ1, χ2, · · · , χk) ∈ Rk is a commodity bundle. Each axis of Rk is given
the task of representing amounts of a specific commodity. In this paper we
confine ourselves to bundles in the nonnegative cone Rk

+ of the space Rk.
The symbol X denotes fuzzy random variable, the measurable fuzzy function

from A to F(Rk) called consumption fuzzy function. The fuzzy set X(a)
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is called the consumption fuzzy set of agent a ∈ A. It represents all the
consumption plans which are a priori possible for a and it may contain positive,
zero or negative components. An χi(a) > 0, i = 1, 2, . . . , k is considered to be
an input to a. An χi(a) < 0, i = 1, 2, . . . , k is considered to be an output of
a. The grade X(a) ∈ [0, 1] represents a preference mapping, i.e. a preference
relation on commodity space purporting the consumer’s tastes.

For two commodity bundles x, y ∈ Rk, x = (χ1, χ2, · · · , χk),
y = (υ1, υ2, · · · , υk), we use the following inequality symbols: x ≥ y to mean
that χi ≥ υi for every i = 1, 2, . . . , k; x > y to mean that x ≥ y and x 6= y; and
x � y to mean that χi > υi for every i = 1, 2, . . . , k.

Next, we make reference to the notion of a price system. We assume that
to every commodity i = 1, 2, . . . , k there is associated a real number πi ≥ 0, its
price. A vector p = (π1, π2, . . . , πk) is called a price system. If the price system
p prevails, then the real number p · x is called the value of the bundle x ∈ Rk.

In this paper we shall always work with nonnegative prices. Every vector of
prices p = (π1, π2, . . . , πk) can be normalized and it is convenient here to let

P = {p ∈ Rk
+ : 0 < πi < 1, i = 1, 2, . . . , k,

k∑
i=1

πi = 1}.

Let P̄ denotes the closure of P and Pn = {p ∈ P : πi ≥ 1
n , i = 1, · · · , k},

n ∈ {k, k + 1, · · ·}.
To complete the consumption sector of an economy, one introduces the func-

tion i : A → Rk
+ which assigns to each agent a ∈ A the agent’s initial endowment

vector i(a) ∈ Rk
+. The function i is called the initial allocation. An agent a

of the economy E is fully characterized by the pair (X(a), i(a)). If an agent a
owns some amount of some commodity, and if the price system p ∈ P prevails,
then the function w(a, p) = p · i(a), called wealth of the agent a, can be used
instead of i(a).

In this paper a finite economy (A is finite) is considered. Then, the sum r of
all initial allocations i(a), r =

∑
a∈A i(a), called the total resources of E , is an

element of Rk
+. The result of the exchange activity in a pure exchange economy

is a redistribution of the total resources r. Each consumer a ∈ A maximizes
his satisfaction level by choosing preferable element (an element with higher
preference grade) from the set X+(a). This leads to exchange of commodities
among the members of E and hence to a redistribution of r - that is, to a new
state of economy described by a new allocation f = (f(a) : a ∈ A). Since
only exchange takes place, it is clear that feasibility requires that the condition
r =

∑
a∈A i(a) =

∑
a∈A f(a) must be satisfied. We call such a f a feasible

allocation.
For every price system p ∈ P̄ and for every a ∈ A, two subsets of Rk are

defined: the budget set b(a, p) = {x ∈ X+(a) : p · x ≤ w(a, p)} and the demand
set d(a, p) = {y ∈ b(p, a) : X(a)(y) ≥ X(a)(x), y 6< x, for all x ∈ b(a, p)}.

A competitive equilibrium for an economy E is a pair (f, p), where f is
a feasible allocation and p is a price system, such that f(a) ∈ d(a, p).
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3. Competitive equilibrium for finite pure exchange econ-
omy

In this section we assume that:

• E = ((A,A, µ), X,Rk) is a finite pure exchange economy,

• for every a ∈ A, the set X+(a) = Rk
+,

• for every a ∈ A, the sets Xα(a) ⊂ Rk
+, α ∈ (0, 1] are convex,

• for every a ∈ A, the fuzzy set X(a) is nondecreasing function, that is, for
every x, y ∈ X+(a), x < y, it follows that X(a)(x) ≤ X(a)(y),

• if the price system p ∈ P prevails, then infx∈X+(a) p · x < w(a, p),

• the total resources r =
∑

a∈A i(a) � 0.

Lemma 3.1. Let a ∈ A, p ∈ P and c > 0. Then d(a, p) = d(a, cp).

Proof. If c > 0, from the equivalence

p · x ≤ p · i(a) = w(a) ⇐⇒ cp · x ≤ cp · i(a) = cw(a)

it follows that b(a, p) = b(a, cp), which implies d(a, p) = d(a, cp). 2

Lemma 3.2. If p ∈ P and x ∈ d(a, p), then p · x = w(a, p) for every a ∈ A.

Proof. If x ∈ d(a, p), then p · x ≤ w(a, p), X(a)(x) ≥ X(a)(y) and x 6< y for all
y ∈ b(a, p). Let us assume that p · x 6= w(a, p), i.e. that p · x < w(a, p). Then
there exists y ∈ b(a, p), x < y, which contradicts the fact that x ∈ d(a, p). 2

Lemma 3.3. Let a ∈ A and p ∈ P . Then the budget set b(a, p) is nonempty,
compact and convex.

Proof. Since X+(a) = Rk
+ and since infx∈X+(a) p · x < w(a, p), the budget set

b(a, p) = {x ∈ Rk
+ : p · x ≤ w(a, p)} is nonempty, bounded, closed and convex.

2

Lemma 3.4. Let a ∈ A and p ∈ P . Then the demand set d(a, p) is nonempty,
compact and convex.
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Proof. From the last lemma, the budget set b(a, p) ∈ Rk
+ is a nonempty, compact

and convex set and X(a) is upper semicontinuous mapping, which means that
X(a) attends its maximum on the set b(a, p). Hence d(a, p) 6= ∅. Further, since
d(a, p) is a closed subset of the compact set b(a, p), it is compact too.

To prove convexity we shall use the fact that the intersection of convex sets
is convex itself. In the last lemma it was proved that b(a, p) is convex. On the
other hand, the set d(a, p) is not empty, meaning that there exists x ∈ Rk

+ which
belongs to d(a, p). Let the grade of x be α, i.e. X(a)(x) = α. The set Xα(a)
is a convex set. The set W = {y ∈ b(a, p) : y 6< x, for all x ∈ b(a, p)} = {y ∈
b(a, p) : p · y = w(a, p)} is convex too. Hence, d(a, p) = Xα(a)

⋂
b(a, p)

⋂
W is

convex set. 2

Lemma 3.5. If the sequence {pn}n∈N converges to any point p ∈ P , then every
sequence {xn}n∈N , xn ∈ d(a, pn), is bounded.

Proof. If p = (π1, π2, · · · , πk), pn = (πn1, πn2, · · · , πnk), then (since limn→∞ pn =
p and 0 < πi < 1), there exist ε > 0 and n0(ε) such that for n > n0

0 < min{πi} − ε ≤ πni ≤ max{πi}+ ε < 1.

Further, if n > n0, for every i ∈ {1, 2, · · · , k}, the next implication holds

xn ∈ d(a, pn) =⇒ xn ∈ b(a, pn) =⇒ pn · xn ≤ pn · i(a) ≤ |pn| · |i(a)| =⇒

ρ · χni < ρ(χn1 + χn2 + · · ·+ χnk) ≤ pn · xn =⇒ χni < ρ−1|pn||i(a)| < M ∈ R,

where ρ = min{πi}−ε and xn = (χn1, χn2, · · · , χnk). It means that the sequence
{xn} is bounded. 2

Lemma 3.6. If limj→∞ pj = p ∈ P and if xj ∈ d(a, pj), limj→∞ xj = x , then
x ∈ d(a, p).

Proof. Since pj · xj ≤ pj · i(a), letting j → ∞, we get p · x ≤ p · i(a), which
means x ∈ b(a, p)

In order to prove that x ∈ d(a, p), we shall show that X(a)(x) ≥ X(a)(y)
and x 6< y for every y ∈ b(a, p).

If i(a) = 0 the case is trivial, so we assume i(a) > 0. If y ∈ b(a, p), then
either p · y < p · i(a) or p · y = p · i(a).

From inequality p · y < p · i(a), for an n big enough we get pn · y < pn · i(a),
which means that y ∈ b(a, pn). Since xn ∈ d(a, pn), it is clear that X(a)(xn) ≥
X(a)(y) = α. Knowing that α-cuts of fuzzy sets X(a) are closed sets and
xn ∈ Xα(a), we obtain that x ∈ Xα(a). Therefore X(a)(x) ≥ X(a)(y).

If p·y = p·i(a) 6= 0, then there exists a sequence {yn} : yn < y, limn→∞ yn =
y. Then p·yn < p·i(a). But for that kind of elements yn (as it was shown in previ-
ous case) X(a)(x) ≥ X(a)(yn). If one would have β = X(a)(x) < X(a)(y) = α,
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since Xα(a) is closed, then, for some n ∈ N , yn ∈ Xα(a). It would im-
ply β = X(a)(x) < α ≤ X(a)(yn), which would contradict the inequality
X(a)(x) ≥ X(a)(yn). So, X(a)(x) ≥ X(a)(y).

In order to prove that x 6< y for all y ∈ b(a, p), we suppose opposite, i.e.
that there exists y ∈ b(a, p), x < y. Then the next implication holds

x < y ⇒ p · x < p · y ≤ p · i(a) = w(a, p) ⇒

⇒ ∃n ∈ N : pn · xn < pn · i(a) = w(a, pn) ⇒ xn 6∈ d(a, pn),

which contradicts the fact that xn ∈ d(a, pn). Hence, x 6< y for all y ∈ b(a, p).
It completes the proof that x ∈ d(a, p). 2

Lemma 3.7. The set valued mapping d(a, ·) is upper semicontinuous for every
p ∈ P .

Proof. Mapping d(a, ·) : P → 2Rk\∅ is upper semicontinuous if lim sup d(a, pn) ⊂
d(a, p) for any p ∈ P and any sequence {pn} converging toward p in P .

In order to prove upper semicontinuity of d(a, ·), we shall show that for
every sequence {pn}n∈N converging to any point p ∈ P and for every sequence
{xn}n∈N , xn ∈ d(a, pn), there exists a convergent subsequence {xj}j∈N ⊂
{xn}n∈N , such that limj→∞ xj = x ∈ d(a, p).

According to Lemma 3.5, the sequence {xn} is bounded, hence there exists
a convergent subsequence {xj} ⊂ {xn}, limj→∞ xj = x, and by Lemma 3.6,
x ∈ d(a, p). 2

Lemma 3.8. Let P , P̄ , Pn are sets described in Preliminaries. Then

1. Pk ⊂ Pk+1 ⊂ Pk+2 ⊂ · · ·

2. ∪∞n=kPn = P ⊂ limn→∞ Pn = P̄

3. Pn is nonempty, compact, convex set for every n ∈ {k, k + 1, · · ·}.

Proof. The proof for 1, 2. and 3. is obvious, so it is omitted. 2

Lemma 3.9. Let Pn is a set described in Preliminaries. Then

1. there exists a bounded set Sn ⊂ Rk such that for all p ∈ Pn∑
a∈A

{x− i(a) : x ∈ d(a, p)} ⊂ Sn,

2. if p ∈ Pn, then p · y = 0 for every y ∈
∑

a∈A{x− i(a) : x ∈ d(a, p)}.
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Proof. We shall prove 1, i.e. we shall prove the uniform boundedness of the
set of sets

∑
a∈A{x − i(a) : x ∈ d(a, p)}, p ∈ Pn. Let us suppose opposite,

i.e. that for every ball L(0,m) ⊂ Rk, m ∈ N , there exists pm ∈ Pn such that∑
a∈A{x − i(a) : x ∈ d(a, pm)} 6⊂ L(0,m). Since the set A of agents is finite,

for some a ∈ A there exists a sequence {xi}, xi ∈ d(a, pi), {pi} ⊂ {pm}, such
that limm→∞ ‖xi‖ = ∞. Since the related sequence {pi} ⊂ Pn is bounded,
there exists a convergent subsequence {pj} ⊂ {pi}, limj→∞ pj = p ∈ Pn ⊂ P .
As it was proved in Lemma 3.5, for every sequence {pj}j∈N converging to any
point p ∈ P and for every sequence {xj}j∈N , xj ∈ d(a, pj), the sequence {xj} is
bounded. But {xj} ⊂ {xn} and this contradicts the fact that limn→∞ ‖xn‖ =
∞, which means that the supposition is not correct

To prove 2, let y ∈
∑

a∈A{x− i(a) : x ∈ d(a, p)}. Then y =
∑

a∈A(xa− i(a)),
xa ∈ d(a, p). Further,

p · y = p ·
∑
a∈A

(xa − i(a)) =
∑
a∈A

(p · xa − p · i(a)) =
∑
a∈A

(w(a)− w(a)) = 0

2

Lemma 3.10. Let P , P̄ , are sets described in Preliminaries. Let {pm} ⊂ P
and limm→∞ pm = p ∈ P̄ \ P . If p · i(a) > 0, then

lim
m→∞

inf{‖x‖ ∈ R : x ∈ d(a, pm)} = ∞.

Proof. To prove the lemma, we suppose opposite, i.e. that limm→∞ inf{‖x‖ ∈
R : x ∈ d(a, pm)} ∈ R. Then there exists a bounded set S ⊂ R such that
d(a, pm) ∩ S 6= ∅ for infinitely many m’s and there exists a bounded sequence
{xm}m∈N , xm ∈ d(a, pm)∩S. Therefore, there exists a convergent subsequence
{xn} ⊂ {xm} converging to some x ∈ Rk. Since pn·xn ≤ pn·i(a), letting n →∞,
we get p · x ≤ p · i(a), which means x ∈ b(a, p)

In order to prove that x ∈ d(a, p), we shall show that X(a)(x) ≥ X(a)(y)
and x 6< y for every y ∈ b(a, p).

Since i(a) > 0 and since y ∈ b(a, p), then either p·y < p·i(a) or p·y = p·i(a).
From inequality p · y < p · i(a), for an n big enough we get pn · y < pn · i(a),

which means that y ∈ b(a, pn). Since xn ∈ d(a, pn), it is clear that X(a)(xn) ≥
X(a)(y) = α. Knowing that α-cuts of fuzzy sets X(a) are closed sets and
xn ∈ Xα(a), we obtain that x ∈ Xα(a). Therefore X(a)(x) ≥ X(a)(y).

If p·y = p·i(a) 6= 0, then there exists a sequence {yn} : yn < y, limn→∞ yn =
y. Then p · yn < p · i(a). But for that kind of elements yn (as it was shown
in the previous case) X(a)(x) ≥ X(a)(yn). If one would have β = X(a)(x) <
X(a)(y) = α, since Xα(a) is closed, then, for some n ∈ N , yn ∈ Xα(a). It
would imply β = X(a)(x) < α ≤ X(a)(yn), which would contradict the in-
equality X(a)(x) ≥ X(a)(yn). So, X(a)(x) ≥ X(a)(y).

In order to prove that x 6< y for all y ∈ b(a, p), we suppose the opposite, i.e.
that there exists y ∈ b(a, p), x < y. Then the next implication holds

x < y ⇒ p · x < p · y ≤ p · i(a) = w(a, p) ⇒
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⇒ ∃n ∈ N : pn · xn < pn · i(a) = w(a, pn) ⇒ xn 6∈ d(a, pn),

which contradicts the fact that xn ∈ d(a, pn). Hence, x 6< y for all y ∈ b(a, p).
It completes the proof that x ∈ d(a, p).

On the other hand, since p ∈ P̄ \ P , it follows that b(a, p) is an unbounded
set. But if x ∈ d(a, p) then x 6< y for all y ∈ b(a, p), which means that the set
d(a, p) is empty. This contradicts the existence of the limit x ∈ d(a, p), x ∈ Rk

. It means that the supposition that limm→∞ inf{‖x‖ ∈ R : x ∈ d(a, pm)} ∈ R
is not correct. 2

For the set Sn, n ∈ {k, k + 1, . . .}, from Lemma 3.9, part 1, we can choose
compact set Sn. Then the convex hull of S (denoted by coSn), is the convex,
compact set with the same properties. The set valued mapping Fn : coSn → 2Pn

is defined by
Fn(x) = {p ∈ Pn : p · x = max

q∈Pn

q · x}

Lemma 3.11. The mapping Fn described in the preceding paragraph has the
next properties:

1. For every x ∈ coSn, Fn(x) ⊂ Pn is nonempty,compact, convex set.

2. Fn has a closed graph.

Proof. Since Pn is a compact set and since scalar product is a continuous
operation, it attends maximum on Pn, which means that Fn(x) 6= ∅. Fn(x) is
a closed subset of the compact set Pn, thus it is compact. To prove convexity,
consider a, b ∈ Fn(x). From the definition of Fn, we get a·x = maxq∈Pn

q ·x = m
and b ·x = maxq∈Pn

q ·x = m. Then (λa+(1−λ)b) ·x = λa ·x+(1−λ)b ·x = m,
i.e. (λa + (1− λ)b ∈ Fn(x).

In order to prove 2, we have to show that, if (xi, pi) ∈ gr F , limi→∞ xi = x,
limi→∞ pi = p, then p ∈ Fn(x). If (xi, pi) ∈ gr F , then xi · q ≤ xi · pi for every
q ∈ Pn. From continuity of scalar product, letting i →∞, for every q ∈ Pn we
have limi→∞(xi ·q ≤ xi ·pi) =⇒ x ·q ≤ x ·p. So, we have proved that p ∈ Fn(x).
2

Lemma 3.12. Let Hn : coSn×Pn → 2co Sn×Pn be a set valued mapping defined
by

Fn(x)×
∑
a∈A

{x− i(a) : x ∈ d(a, p)} = Hn(x, p).

Then Hn has a fixed point, i.e. there exists (xn, pn) ∈ coSn × Pn such that
(xn, pn) ∈ Hn(xn, pn).

Proof. Since coSn×Pn is a nonempty, compact, convex subset of R2k and since
Hn is a set valued mapping with convex images in 2co Sn×Pn which has a closed
graph, Kakutani’s fixed point theorem can be applied. 2



Fuzzy random variable in mathematical economics 111

Theorem 3.1. Let E be a finite pure exchange economy. Then E has a com-
petitive equilibrium (f, p), where p ∈ P .

Proof. Let (xn, pn), n ∈ {k, k + 1, . . .}, be the fixed point from the last lemma.
Then xn ∈

∑
a∈A{x − i(a) : x ∈ d(a, pn)}, pn ∈ Pn and pn ∈ Fn(xn) = {p ∈

Pn : p · xn = maxq∈Pn q · xn}. Obviously, invoking Lemma 3.9 (2), we get
q · xn ≤ pn · xn = 0 for every q ∈ Pn.

Since the sequence {pn} ⊂ P , it is bounded with convergent subsequence
{pm} ⊂ {pn}, limm→∞ pm = p. On the other hand, concerning Lemma 3.8. (1),
there exists q ∈ Pk ⊂ Pn, n ∈ N , such that q · xn ≤ 0 for all n ≥ k. Hence,
the sequence {xn} is bounded. Let {xj} ⊂ {xm} be a convergent subsequence
and limj→∞ xj = x. Observe next that p ∈ P̄ , but p 6∈ P̄ \ P (by Lemma
3.10) would imply divergence of the sequence {xj}). Since {xj} is convergent
subsequence, p ∈ P . By the method used in Lemma 3.6, we can show that
x ∈

∑
a∈A{x−i(a) : x ∈ d(a, p)} and, according Lemma 3.9 (2), we get p ·x = 0.

From the inequality q ·xj ≤ 0 for every q ∈ Pj , letting j →∞ and from Lemma
3.8. (2), we have q · x ≤ 0 for every q ∈ P̄ . Therefore x ≤ 0. Finally, from
p ·x = 0, noting that all components of p are positive, we conclude x = 0. Since
0 ∈

∑
a∈A{x− i(a) : x ∈ d(a, p)}, there exists a feasible allocation f(a) ∈ d(a, p)

so
∑

a∈A f(a) =
∑

a∈A i(a), what we had to prove. 2
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