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DIFFERENT STRUCTURES IN Osc*M AND ITS
SUBSPACES

Jovanka Nikié¢!

Abstract. The theory of Osc* M was introduced by R. Miron and Gh.
Atanasiu in [3], [4]. R. Miron in [5], [6] gave the comprehensive theory of
higher order geometry and its application. In [1] the subspaces of Miron’s
Osc®M was introduced and in [2] special adapted basis was constructed.

Using the above results we examine different structures in the subspaces
of Osc*M 2
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1. Special adapted basis in T(Osc* M) and T*(Osc" M)

Here Osc? M will be defined as a C* manifold in which the transformations
of the form (1.1) are allowed. It is formed as a tangent space of higher order of
the base manifold M.

Let E = Osc*M be a (k + 1)n-dimensional C*° manifold. In some local
chart (U, ¢) some point u € E has the coordinates

@y ) = 0y ) = (),
where 2% = ¢ and
a,be,dye,...=1,2,....n, A BC,D,...=0,1,2,... k.
The following abbreviations:
0 0 0
Ona = ——, A=1,2...k 0,=04,=— =
A 8yAa 0 oxa 8y0a

will be used.
If in some other chart (U’,¢’) the point w € E has the coordinates

’

(z,yte’ y2' . yF"), then in UNU’ the allowable coordinate transformations
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are given by:
(1) 2@ =2 (zh, 2%, "),
la’ _ a’ la __ 0a’\, la
v = (0 )y = (Goay™ )y ",
y2a _ (aanla )yla + (alayla )y2a7 e
yka’ _ (aoay(kfl)a)yla + (alay(kgfl)a)yQa 4ot (a(k_l)ay(kfl)a)yka'

The natural basis B of T(E) is

(2) B = {004,045 - -, O0ka}-
The natural basis B* of T*(E) is

(3) B* = {dy°, dy'?, ..., dy*}.
The special adapted basis

(4) B* = {6y%0, 8y, 6y, ... 5yt

of T*(E) is given by [2]

(5) 5y0a — dl‘a — dyOa
1 1
6y1a — dyla + Moléld Ob’
1 0
2 2 2
sy = <2> dy** + (1> Mg dy'® + (0) Mgy dy™,
i = (G)ar+ (D) + () aagpan + (7).
4 4
4a — d 4a Mlad 3b
oy <4> v 5 | Mobdy
4 4
v (o)t ())aagpan + (o) M.
k k
ka _ ka la,j, (k—1)b
oy (k) dy™* + (k B 1)MOb dy +
k 2, (b k
+ <k2>MSf Dagy=Db 4y (O)Mé“é‘dy%-

{0y, syte, ... 6y*} form the adapted basis B* of T*(FE). In the special
adapted bases B* (1.5) and B (1.7) the J structure has a simpler form.

Theorem 1.1. The necessary and sufficient conditions that dy® are trans-
formed as d-tensor field, i.e.

!’
Oz

5Aa

5 Aa ,
Y Oza Y

A=0,1,....k
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are the following equations

’ 1 ’ ’ ’
(6) Mygodoay™ = <O> ML 9oy + ony™”
MZaa o’ . 2 M2b'6 0oc’ 2 Mlb'a 1c 2 6 2b’
0b 00ay = o) Mo Sovy + 1 )Mo Govy + o ) OBy
a / 3 ’ o 3 ’ <
Mgb 80ay0b = <0> Mgg, 60by0 + (1) Mgg 80by1 +
3 / ’ 3 /
+ Molcb’ 80b?JZC + aObySb [
2 3
’ k ’ ’ k _ / ’
MO0 y™ = <O> MES dopy® + (1)Mé§ DY oyt
R\ ape=2 5 2c!
+ {, My =7 Oopy™ +... +

k‘ ’ 1) k ’
+ (k _ 1) Mg Bopy ™1 + (k) T

The special adapted basis B = {doq, 014, - - -, Oka} Of T(E) is given by [2]

0 1 2
) s = ()b = (o) Viton — () 0 -
3\ . k
= (5) it~ () ¥t
1 2
(8) 61(1 = <1> 610, - (1) N(}gaQb -
3 k -
_ <1>N3383b e — (1)]\]55 Ubakb,...,

9) Oka

(B

Theorem 1.2. The elements of the natural basis of T(E) : {OoasP1ay- -, Okat
and special adapted basis B : {8oa,01as---,0ka} of T(E) and the coefficients
ME? of B* are connected by

0o = 0Opa + Molgtﬁb + Mggé% 4+t M(ﬁ)(skb,
ala - 51‘1 + (%) M(}}z)(sz +-+ (’I) Més_l)b(skb,

(10) & = S et ()M,
aka = 6kra~

There are also the conditions when the special adapted bases B and B* are
dual to each other, further when the elements of B and B* are transforming as
tensors.
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The proof of Theorems 1.1 and 1.2 can be found in [2].

2. The J structure

Definition 2.1. The k-tangent structure J is an F(E)-linear mapping
J X (E) = x(E)
defined by
(1) JOo; = Oi, JO1i = 2094, ..., J00i = (@ +1)0as1yir-**» JO—1)i = kOhi,
JOi = 0.

Its representation in the basis B = {9y, 014, - - ., Opi } is

00 0 0 0
10 0 0 0
02 0 0 0
(2) J=10 0 3 0 0
(000 ... k O]

The k-structure J determined by Definition 2.1 is the same as J used in [5],
[6], but there it is represented in different basis of the tangent space.
For the k-tangent structure J the relation

(3) Jk+1 =0

is valid. In the natural bases B and B* of T(E) and T*(FE) it can be written in
the form

00 0 00 dy%?
10 0 0 0 dyle
(4) T = [Ooadha.. Op] | 0 2 0 00 |g|dy | =
00 3 00 :
k0 dyka

O1a @ dy®® + 205 ® dy'® + 303, ® dy>* + -+ + ke ® dy*=?

Theorem 2.1. The k-tangent structure J defined by Definition (2.1) the ele-
ments of the basis B = {Joa, 014, - - -,0ka} determined by (1.7) transform in the
following way

(5) Jooa = O1ay JO1a = 2024, JOna = (A+1)0(at1)q>- - -

J(S(k—l)a = kaka» JOpa = 0.
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Theorem 2.2. The k-tangent structure J given by (2.1) satisfies the relations
(6) dy®®J = 0,dy'J = dy®®, dy**J = 2dy'?, ..., dy**J = kdyF— P,
Theorem 2.3. For the k-tangent structure J given by (2.1) we have

(1) 6y T =0,0y""T =6y, 5y T = 20y", ... oyF0T = koylF1P

where {5y, 5y, ... 5y} is the special adapted basis B* of T(E) determined
by (1.5).

Theorem 2.4. The structure J in the adapted basis B = {04,014, --0ka}
and
B* = {6y%, 5y, ... 5y} is given by

(8)  J =014 ® Y% + 2054 ® 6y % + 3034 @ 6y + ... ke @ oy,
The proof of Theorems 2.1-2.4 can be found in [2].
3. f(2t+1,—1)-structure in Osc*M and the structure on the
hypersurface

In the special adapted basis B = {004,014 --,0ka} of T(E), the vectors
{b0a} span the n-dimensional space Ty (F), and the vectors {814,024, -, 0ka}
the k - n-dimensional Ty (F) and,

T(E) = Ty(E) + Ty (E).

On the space T'(E) ® T'(E), a metric tensor G is defined such that T'(E) can be
decomposed into two orthogonal parts Ty (E) and Ty (E), where

G = goa 000y @ 6y + gaa proy** @ 0yP’, A=1,2,... k.

Definition 3.1. Let E = OscfM be an m = (k+1)n-dimensional differentiable
manifold of class C*°, and let there be given a tensor field f # 0 of the type
(1,1) and of class C*° such that

(1) AL =0, AL f£0 for 1<i<t,

where t is a fized integer greater than 1. Let rank f = r be constant. We call
such a structure an f(2t + 1, —1)-structure or an f-structure of the rank r and
of degree 2t + 1.

Theorem 3.1. For a tensor field f, f # 0 satisfying (2.1), the operators
2) m=1- % 1=f*

are the complementary projection operators where I denotes the identity operator
applied to the tangent space at a point of the manifold.
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Proof. We have
l+m=7,12=1m?>=m ml=lm=0

by virtue of (3.1), which proves the theorem. a

Let L and M be the complementary distributions corresponding to the op-
erators 1 and m, respectively. If rank f = r is constant and dim L = r, then
dim M =m —r.

Theorem 3.2. For f satisfying (3.1) and 1, m, defined by (3.2), we have

umne:
b) mf = fm =0,
®) (c) f*m =0,

(d) (m+ 1) = I.

Theorem 3.3. Suppose that there is a projection operator m on E and that
there exists a tensor field f such that (3.3b) and (3.3d) are satisfied, then f
satisfies (3.1).

Proposition 3.1. Let an f-structure of the rank r and degree 2t + 1 be given
on E, then 21 =1 and f**m = 0, i.e. f* acts on L as an almost product
structure operator and on M as a null operator.

We shall assume that E is a Oscf M space of dimension m = (k + 1)n, and
that rank f =r =k -n. Then dimL =k -n,dimM =n and M = Ty(E),L =
Ty (E).

If we denote by h the projection morphism of T'(F) to Ty (F), we can con-
struct the mapping a which is defined in [10] by

a(X,Y) = %[E(IX, 1Y)] + h(mX,mY)], VX,Y € T(E),

where h = Gh, is a pseudo-Riemannian structure on T(E), such that a(X,Y) =
0,vX € M,
Y el

If we put g(X,Y) = £ [a(X,Y) +a(fX, fY) + -+ a(f271X, f271Y)], it
is easy to see that ¢(X,Y)=0,VX € M,Y € L.

Also, using (3.2) and Theorem 3.2 we get g(fX,fY) = x[a(fX, fY) +
a(f?X, f2Y) + - +a(X,Y)] = g(X,Y). Thus f is an isometry with respect
to g.

In [9] and [10] an adapted frame form f(2¢ 4 1, —1)-structure is chosen and
matrices of tensors g;; and f} are given with respect to this adapted frame.
According to the results in [9] and [10] we have for the E = Osc* M the following
theorem

Theorem 3.4. A necessary and sufficient condition for a space E of dimension
(k4 1)n to admit a tensor field f # 0 of type (1,1) and of rank k - n, such that

F22541 20, s that
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i)r=k-2p=k-n, ii)2p=25-2F=s5-t, s € N, t =2F,
iii) the group of the tangent bundle of the manifold be reduced to the group

g(%ﬁ)xg( 2p )x...xg(%)xprngxOm,r.

k-1

Theorem 3.5. Denote —f* by ¢. The structure ¢ satisfies the condition ¢> —
¢ =0, i.e ¢ is an (3, —1)-structure.

Theorem 3.6. The structure ¢ is an almost paracontact Riemannian structure
if rank f=m — 1.

Proof. Let
"0 o -
0
0 0 0
m=71— f*= B , &=+, w=1(0,0,...,0,1)
0 0 0
0 0 1
L 1_

M is an 1-dimensional distribution.
Multiplying the corresponding matrices, it is clear that m = £ ® p,

P=I-m=I—-£(@pu, ¢£=0, pup=0, p&)=1, uX)=gEX)

and g(¢X, Y ) = g(X,Y) — u(X) - u(Y), which prove the Theorem. i

Theorem 3.7. Let E be a Osc*M manifold with ¢(3,—1)-structure of rank
r=mn-k and let N~ be a hypersurface in E. If the dimension of T(N™1), N
F(T(N™L)),, is constant, say s, for all u € N™t, then N™~! possesses a
natural F (3, —1)-structure of rank s.

Proof. Let C be a transversal defined on N~ ! ie. C € T(E), but C ¢
T(N™ 1), for all u € N™~1. Let B be a differential of the imbedding of N™~!
in E. Then B is a map of T(N™~!) into Tr(E), where Tr(E) denotes the
restriction of T(E), the tangent bundle of E to N™~!. Then we can find a
locally 1-form C* defined on N™~! such that:

B'B=1I, BB'=1-C*®C, C*B=B"'C=0, C*(C)=1.
Let F be defined locally on T(N™~1) by F = B~'¢B. Then:

F2X B '¢BB'¢BX = B '¢(I — C* ® C)¢(BX)

= B '¢*(BX)-C*¢(BX)B '¢C.
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If C is in distribution F, then ¢C = 0; so we have that

(F3 - F)X B™'¢BB™'¢*BX — B~'¢BX
= B '¢(I-C*®C)¢*BX — B~'¢BX

= B Y((¢*-¢)BX) =0
for all X. On the other hand, suppose that C' is in distribution L. Then:

(F? - F)X (B~'¢B)B~'¢*(BX)
— (B7'¢b)C*(¢BX)B'¢C — B™'¢BX
B7Y(¢* — $)BX — C*(¢*BX)B~'¢C

C*(¢BX)B™1¢*C + C*(¢BX)C*(¢C)B~1¢C =0

since ¢2C' = C on L and C*B = B~'C = 0, and since we can choose C* so that
C*(¢pC) = 0. Also C*(¢*BX) = C*(BX + (¢* — 1)BX) = 0. a

Theorem 3.8. If (¢,&, ) is an almost paracontact structure on E, then N™~1
possesses a natural F(3,—1)-structure if & is tangent to N1, The hypersur-
face N™™=1 possesses a natural almost product structure if & is not tangent to

Nm=L

Proof. When ¢ is not tangent to N™ 1, ¢ can be chosen for a pseudonormal.
Then we have from Theorem 3.7 that T(N™~1) N f(T(N™71)) = T(N™1),
and rank F = dimN™~! = m — 1. The almost paracontact structure F has a
maximal rank, i.e. F' is an almost product structure. O
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