DIFFERENT STRUCTURES IN $O s c^{k} M$ AND ITS SUBSPACES

Jovanka Nikić ${ }^{1}$

Abstract

The theory of $O s c^{k} M$ was introduced by R. Miron and Gh. Atanasiu in [3], [4]. R. Miron in [5], [6] gave the comprehensive theory of higher order geometry and its application. In [1] the subspaces of Miron's $O s c^{k} M$ was introduced and in [2] special adapted basis was constructed. Using the above results we examine different structures in the subspaces of $O s c^{k} M$. ${ }^{2}$

AMS Mathematics Subject Classification (2000): 53B40, 53C60, 53C15, 53C55, 58A20, 58D10 Key words and phrases: Subspaces of $O s c^{k} M$, special adapted basis, the J structure.

1. Special adapted basis in $T\left(O s c^{k} M\right)$ and $T^{*}\left(O s c^{k} M\right)$

Here $O s c^{k} M$ will be defined as a C^{∞} manifold in which the transformations of the form (1.1) are allowed. It is formed as a tangent space of higher order of the base manifold M.

Let $E=O s c^{k} M$ be a $(k+1) n$-dimensional C^{∞} manifold. In some local chart (U, φ) some point $u \in E$ has the coordinates

$$
\left(x^{a}, y^{1 a}, y^{2 a}, \ldots, y^{k a}\right)=\left(y^{0 a}, y^{1 a}, y^{2 a}, \ldots, y^{k a}\right)=\left(y^{A a}\right)
$$

where $x^{a}=y^{0 a}$ and

$$
a, b, c, d, e, \ldots=1,2, \ldots, n, \quad A, B, C, D, \ldots=0,1,2, \ldots, k .
$$

The following abbreviations:

$$
\partial_{A a}=\frac{\partial}{\partial y^{A a}}, \quad A=1,2, \ldots, k, \quad \partial_{a}=\partial_{0 a}=\frac{\partial}{\partial x^{a}}=\frac{\partial}{\partial y^{0 a}}
$$

will be used.
If in some other chart $\left(U^{\prime}, \varphi^{\prime}\right)$ the point $u \in E$ has the coordinates $\left(x^{a^{\prime}}, y^{1 a^{\prime}}, y^{2 a^{\prime}}, \ldots, y^{k a^{\prime}}\right)$, then in $U \cap U^{\prime}$ the allowable coordinate transformations

[^0]are given by:
(1)
\[

$$
\begin{aligned}
& x^{a^{\prime}}=x^{a^{\prime}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& y^{1 a^{\prime}}=\left(\partial_{a} x^{a^{\prime}}\right) y^{1 a}=\left(\partial_{0 a} y^{0 a^{\prime}}\right) y^{1 a}, \\
& y^{2 a^{\prime}}=\left(\partial_{0 a} y^{1 a^{\prime}}\right) y^{1 a}+\left(\partial_{1 a} y^{1 a^{\prime}}\right) y^{2 a}, \ldots, \\
& y^{k a^{\prime}}=\left(\partial_{0 a} y^{(k-1) a}\right) y^{1 a}+\left(\partial_{1 a} y^{(k-1) a}\right) y^{2 a}+\cdots+\left(\partial_{(k-1) a} y^{(k-1) a}\right) y^{k a} .
\end{aligned}
$$
\]

The natural basis \bar{B} of $T(E)$ is

$$
\begin{equation*}
\bar{B}=\left\{\partial_{0 a}, \partial_{1 a}, \ldots, \partial_{k a}\right\} \tag{2}
\end{equation*}
$$

The natural basis \bar{B}^{*} of $T^{*}(E)$ is

$$
\begin{equation*}
\bar{B}^{*}=\left\{d y^{0 a}, d y^{1 a}, \ldots, d y^{k a}\right\} . \tag{3}
\end{equation*}
$$

The special adapted basis

$$
\begin{equation*}
B^{*}=\left\{\delta y^{0 a}, \delta y^{1 a}, \delta y^{2 a}, \ldots, \delta y^{k a}\right\} \tag{4}
\end{equation*}
$$

of $T^{*}(E)$ is given by [2]
(5) $\delta y^{0 a}=d x^{a}=d y^{0 a}$

$$
\begin{aligned}
\delta y^{1 a} & =\binom{1}{1} d y^{1 a}+\binom{1}{0} M_{0 b}^{1 a} d y^{0 b} \\
\delta y^{2 a} & =\binom{2}{2} d y^{2 a}+\binom{2}{1} M_{0 b}^{1 a} d y^{1 b}+\binom{2}{0} M_{0 b}^{2 a} d y^{0 b}
\end{aligned}
$$

$$
\delta y^{3 a}=\binom{3}{3} d y^{3 a}+\binom{3}{2} M_{0 b}^{1 a} d y^{2 b}+\binom{3}{1} M_{0 b}^{2 a} d y^{1 b}+\binom{3}{0} M_{0 b}^{3 a} d y^{0 b}
$$

$$
\delta y^{4 a}=\binom{4}{4} d y^{4 a}+\binom{4}{3} M_{0 b}^{1 a} d y^{3 b}
$$

$$
+\binom{4}{2} M_{0 b}^{2 a} d y^{2 b}+\binom{4}{1} M_{0 b}^{3 a} d y^{1 b}+\binom{4}{0} M_{0 b}^{4 a} d y^{0 b}, \ldots
$$

$$
\delta y^{k a}=\binom{k}{k} d y^{k a}+\binom{k}{k-1} M_{0 b}^{1 a} d y^{(k-1) b}+
$$

$$
+\binom{k}{k-2} M_{0 b}^{(k-2) a} d y^{(k-2) b}+\cdots+\binom{k}{0} M_{0 b}^{k a} d y^{0 b}
$$

$\left\{\delta y^{0 a}, \delta y^{1 a}, \ldots, \delta y^{k a}\right\}$ form the adapted basis B^{*} of $T^{*}(E)$. In the special adapted bases $B^{*}(1.5)$ and $B(1.7)$ the J structure has a simpler form.

Theorem 1.1. The necessary and sufficient conditions that $\delta y^{A a}$ are transformed as d-tensor field, i.e.

$$
\delta y^{A a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{a}} \delta y^{A a}, \quad A=0,1, \ldots, k
$$

are the following equations
(6) $\quad M_{0 b}^{1 a} \partial_{0 a} y^{0 b^{\prime}}=\binom{1}{0} M_{0 c^{\prime}}^{1 b^{\prime}} \partial_{0 b} y^{0 c^{\prime}}+\partial_{0 b} y^{1 b^{\prime}}$,

$$
\begin{aligned}
M_{0 b}^{2 a} \partial_{0 a} y^{0 b^{\prime}} & =\binom{2}{0} M_{0 c^{\prime}}^{2 b^{\prime}} \partial_{0 b} y^{0 c^{\prime}}+\binom{2}{1} M_{0 c^{\prime}}^{1 b^{\prime}} \partial_{0 b} y^{1 c^{\prime}}+\binom{2}{2} \partial_{0 b} y^{2 b^{\prime}}, \\
M_{0 b}^{3 a} \partial_{0 a} y^{0 b^{\prime}} & =\binom{3}{0} M_{0 c^{\prime}}^{3 b^{\prime}} \partial_{0 b} y^{0 c^{\prime}}+\binom{3}{1} M_{0 c^{\prime}}^{2 b^{\prime}} \partial_{0 b} y^{1 c^{\prime}}+ \\
& +\binom{3}{2} M_{0 c^{\prime}}^{1 b^{\prime}} \partial_{0 b} y^{2 c^{\prime}}+\binom{3}{3} \partial_{0 b} y^{3 b^{\prime}}, \ldots, \\
M_{0 b}^{k a} \partial_{0 a} y^{0 b^{\prime}} & =\binom{k}{0} M_{0 c^{\prime}}^{k b^{\prime}} \partial_{0 b} y^{0 c^{\prime}}+\binom{k}{1} M_{0 c^{\prime}}^{(k-1) b^{\prime}} \partial_{0 b} y^{1 c^{\prime}} \\
& +\binom{k}{2} M_{0 c^{\prime}}^{(k-2) b^{\prime}} \partial_{0 b} y^{2 c^{\prime}}+\ldots+ \\
& +\binom{k}{k-1} M_{0 c^{\prime}}^{1 b^{\prime}} \partial_{0 b} y^{(k-1) c^{\prime}}+\binom{k}{k} \partial_{0 b} y^{k b^{\prime}}
\end{aligned}
$$

The special adapted basis $B=\left\{\delta_{0 a}, \delta_{1 a}, \ldots, \delta_{k a}\right\}$ of $T(E)$ is given by [2]

$$
\begin{equation*}
\delta_{1 a}=\binom{1}{1} \partial_{1 a}-\binom{2}{1} N_{0 a}^{1 b} \partial_{2 b}- \tag{8}
\end{equation*}
$$

$$
-\binom{3}{1} N_{0 a}^{2 b} \partial_{3 b}-\cdots-\binom{k}{1} N_{0 a}^{(k-1) b} \partial_{k b}, \ldots
$$

$$
\begin{align*}
\delta_{0 a} & =\binom{0}{0} \partial_{0 a}-\binom{1}{0} N_{0 a}^{1 b} \partial_{1 b}-\binom{2}{0} N_{0 a}^{2 b} \partial_{2 b}- \tag{7}\\
& -\binom{3}{0} N_{0 a}^{3 b} \partial_{3 b}-\cdots-\binom{k}{0} N_{0 a}^{k b} \partial_{k b}
\end{align*}
$$

$$
\begin{equation*}
\delta_{k a}=\binom{k}{k} \partial_{k a} \tag{9}
\end{equation*}
$$

Theorem 1.2. The elements of the natural basis of $T(E):\left\{\partial_{0 a}, \partial_{1 a}, \ldots, \partial_{k a}\right\}$ and special adapted basis $B:\left\{\delta_{0 a}, \delta_{1 a}, \ldots, \delta_{k a}\right\}$ of $T(E)$ and the coefficients $M_{0 a}^{B b}$ of B^{*} are connected by

There are also the conditions when the special adapted bases B and B^{*} are dual to each other, further when the elements of B and B^{*} are transforming as tensors.

$$
\begin{aligned}
& \text { (10) } \partial_{2 a}= \\
& \partial_{0 a}=\delta_{0 a}+M_{0 a}^{1 b} \delta_{1 b}+M_{0 a}^{2 b} \delta_{2 b}+\cdots+\quad M_{0 a}^{k b} \delta_{k b}, \\
& \partial_{1 a}=\quad \delta_{1 a}+\binom{2}{1} M_{0 a}^{1 b} \delta_{2 b}+\cdots+\binom{k}{1} M_{0 a}^{(k-1) b} \delta_{k b}, \\
& \delta_{2 a}+\cdots+\binom{k}{2} M_{0 a}^{(k-2) b} \delta_{k b}, \\
& \partial_{k a}= \\
& \delta_{k a} .
\end{aligned}
$$

The proof of Theorems 1.1 and 1.2 can be found in [2].

2. The J structure

Definition 2.1. The k-tangent structure J is an $\mathcal{F}(E)$-linear mapping

$$
J: \chi(E) \rightarrow \chi(E)
$$

defined by
(1) $J \partial_{0 i}=\partial_{1 i}, J \partial_{1 i}=2 \partial_{2 i}, \ldots, J \partial_{\alpha i}=(\alpha+1) \partial_{(\alpha+1) i}, \cdots, J \partial_{(k-1) i}=k \partial_{k i}$,

$$
J \partial_{k i}=0
$$

Its representation in the basis $\bar{B}=\left\{\partial_{0 i}, \partial_{1 i}, \ldots, \partial_{k i}\right\}$ is

$$
J=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \tag{2}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 2 & 0 & \ldots & 0 & 0 \\
0 & 0 & 3 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & k & 0
\end{array}\right]
$$

The k-structure J determined by Definition 2.1 is the same as J used in [5], [6], but there it is represented in different basis of the tangent space.

For the k-tangent structure J the relation

$$
\begin{equation*}
J^{k+1}=0 \tag{3}
\end{equation*}
$$

is valid. In the natural bases \bar{B} and \bar{B}^{*} of $T(E)$ and $T^{*}(E)$ it can be written in the form

$$
\begin{align*}
& J=\left[\partial_{0 a} \partial_{1 a} \ldots \partial_{k a}\right]\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & & 0 & 0 \\
0 & 2 & 0 & & 0 & 0 \\
0 & 0 & 3 & & 0 & 0 \\
\vdots & & \vdots & & k & 0
\end{array}\right] \otimes\left[\begin{array}{c}
d y^{0 a} \\
d y^{1 a} \\
d y^{2 a} \\
\vdots \\
d y^{k a}
\end{array}\right]= \tag{4}\\
& \partial_{1 a} \otimes d y^{0 a}+2 \partial_{2 a} \otimes d y^{1 a}+3 \partial_{3 a} \otimes d y^{2 a}+\cdots+k \partial_{k a} \otimes d y^{(k-1) a}
\end{align*}
$$

Theorem 2.1. The k-tangent structure J defined by Definition (2.1) the elements of the basis $B=\left\{\delta_{0 a}, \delta_{1 a}, \ldots, \delta_{k a}\right\}$ determined by (1.7) transform in the following way

$$
\begin{gather*}
J \delta_{0 a}=\delta_{1 a}, J \delta_{1 a}=2 \delta_{2 a}, J \delta_{A a}=(A+1) \delta_{(A+1) a}, \ldots \tag{5}\\
J \delta_{(k-1) a}=k \partial_{k a}, J \delta_{k a}=0 .
\end{gather*}
$$

Theorem 2.2. The k-tangent structure J given by (2.1) satisfies the relations

$$
\begin{equation*}
d y^{0 b} J=0, d y^{1 b} J=d y^{0 b}, d y^{2 b} J=2 d y^{1 b}, \ldots, d y^{k b} J=k d y^{(k-1) b} \tag{6}
\end{equation*}
$$

Theorem 2.3. For the k-tangent structure J given by (2.1) we have

$$
\begin{equation*}
\delta y^{0 b} J=0, \delta y^{1 b} J=\delta y^{0 b}, \delta y^{2 b} J=2 \delta y^{1 b}, \ldots, \delta y^{k b} J=k \delta y^{(k-1) b} \tag{7}
\end{equation*}
$$

where $\left\{\delta y^{0 b}, \delta y^{1 b}, \ldots, \delta y^{k b}\right\}$ is the special adapted basis B^{*} of $T(E)$ determined by (1.5).

Theorem 2.4. The structure J in the adapted basis $B=\left\{\delta_{0 a}, \delta_{1 a}, \ldots, \delta_{k a}\right\}$ and $B^{*}=\left\{\delta y^{0 a}, \delta y^{1 a}, \ldots, \delta y^{k a}\right\}$ is given by

$$
\begin{equation*}
J=\delta_{1 a} \otimes \delta y^{0 a}+2 \delta_{2 a} \otimes \delta y^{1 a}+3 \delta_{3 a} \otimes \delta y^{2 a}+\ldots k \delta_{k a} \otimes \delta y^{(k-1) a} \tag{8}
\end{equation*}
$$

The proof of Theorems 2.1-2.4 can be found in [2].

3. $f(2 t+1,-1)$-structure in $O s c^{k} M$ and the structure on the hypersurface

In the special adapted basis $B=\left\{\delta_{0 a}, \delta_{1 a}, \ldots, \delta_{k a}\right\}$ of $T(E)$, the vectors $\left\{\delta_{0 a}\right\}$ span the n-dimensional space $T_{H}(E)$, and the vectors $\left\{\delta_{1 a}, \delta_{2 a}, \ldots, \delta_{k a}\right\}$ the $k \cdot n$-dimensional $T_{V}(E)$ and,

$$
T(E)=T_{H}(E)+T_{V}(E)
$$

On the space $T(E) \otimes T(E)$, a metric tensor G is defined such that $T(E)$ can be decomposed into two orthogonal parts $T_{H}(E)$ and $T_{V}(E)$, where

$$
G=g_{0 a}{ }_{0 b} \delta y^{0 a} \otimes \delta y^{0 b}+g_{A a} B b \delta y^{A a} \otimes \delta y^{B b}, A=1,2, \ldots, k
$$

Definition 3.1. Let $E=O s c^{k} M$ be an $m=(k+1) n$-dimensional differentiable manifold of class C^{∞}, and let there be given a tensor field $f \neq 0$ of the type $(1,1)$ and of class C^{∞} such that

$$
\begin{equation*}
f^{2 t+1}-f=0, \quad f^{2 i+1}-f \neq 0 \quad \text { for } 1 \leq i<t \tag{1}
\end{equation*}
$$

where t is a fixed integer greater than 1. Let rank $f=r$ be constant. We call such a structure an $f(2 t+1,-1)$-structure or an f-structure of the rank r and of degree $2 t+1$.

Theorem 3.1. For a tensor field $f, f \neq 0$ satisfying (2.1), the operators

$$
\begin{equation*}
\mathbf{m}=I-f^{2 t}, \quad \mathbf{l}=f^{2 t} \tag{2}
\end{equation*}
$$

are the complementary projection operators where I denotes the identity operator applied to the tangent space at a point of the manifold.

Proof. We have

$$
\mathbf{l}+\mathbf{m}=I, \mathbf{l}^{2}=\mathbf{l}, \mathbf{m}^{2}=\mathbf{m}, \mathbf{m l}=\mathbf{l} \mathbf{m}=0
$$

by virtue of (3.1), which proves the theorem.
Let L and M be the complementary distributions corresponding to the operators \mathbf{l} and \mathbf{m}, respectively. If $\operatorname{rank} f=r$ is constant and $\operatorname{dim} L=r$, then $\operatorname{dim} M=m-r$.
Theorem 3.2. For f satisfying (3.1) and $\mathbf{1}, \mathbf{m}$, defined by (3.2), we have
(a) $\mathbf{l} f=f \mathbf{l}=f$,
(b) $\mathbf{m} f=f \mathbf{m}=0$,
(c) $f^{2 t} \mathbf{m}=0$,
(d) $\left(\mathbf{m}+f^{t}\right)^{2}=I$.

Theorem 3.3. Suppose that there is a projection operator \mathbf{m} on E and that there exists a tensor field f such that (3.3b) and (3.3d) are satisfied, then f satisfies (3.1).

Proposition 3.1. Let an f-structure of the rank r and degree $2 t+1$ be given on E, then $f^{2 t} \mathbf{l}=\mathbf{l}$ and $f^{2 t} \mathbf{m}=0$, i.e. f^{t} acts on L as an almost product structure operator and on M as a null operator.

We shall assume that E is a $O s c^{k} M$ space of dimension $m=(k+1) n$, and that rank $f=r=k \cdot n$. Then $\operatorname{dim} L=k \cdot n, \operatorname{dim} M=n$ and $M=T_{H}(E), L=$ $T_{V}(E)$.

If we denote by h the projection morphism of $T(E)$ to $T_{H}(E)$, we can construct the mapping α which is defined in [10] by

$$
\left.\alpha(X, Y)=\frac{1}{2}[\bar{h}(\mathbf{l} X, \mathbf{l} Y)]+\bar{h}(\mathbf{m} X, \mathbf{m} Y)\right], \quad \forall X, Y \in T(E)
$$

where $\bar{h}=G h$, is a pseudo-Riemannian structure on $T(E)$, such that $\alpha(X, Y)=$ $0, \forall X \in M$, $Y \in L$.

If we put $g(X, Y)=\frac{1}{2 t}\left[\alpha(X, Y)+\alpha(f X, f Y)+\cdots+\alpha\left(f^{2 t-1} X, f^{2 t-1} Y\right)\right]$, it is easy to see that $g(X, Y)=0, \forall X \in M, Y \in L$.

Also, using (3.2) and Theorem 3.2 we get $g(f X, f Y)=\frac{1}{2 t}[\alpha(f X, f Y)+$ $\left.\alpha\left(f^{2} X, f^{2} Y\right)+\cdots+\alpha(X, Y)\right]=g(X, Y)$. Thus f is an isometry with respect to g.

In [9] and [10] an adapted frame form $f(2 t+1,-1)$-structure is chosen and matrices of tensors $g_{i j}$ and f_{i}^{j} are given with respect to this adapted frame. According to the results in [9] and [10] we have for the $E=O s c^{k} M$ the following theorem
Theorem 3.4. A necessary and sufficient condition for a space E of dimension $(k+1) n$ to admit a tensor field $f \neq 0$ of type $(1,1)$ and of rank $k \cdot n$, such that $f^{2 \cdot 2^{k}+1}-f=0$, is that
i) $r=k \cdot 2 p=k \cdot n$,
ii) $2 p=s \cdot 2^{k}=s \cdot t, s \in N, t=2^{k}$,
iii) the group of the tangent bundle of the manifold be reduced to the group

$$
\bar{S}_{\left(\frac{2 p}{2^{k}}\right)} \times \bar{S}_{\left(\frac{2 p}{2^{k-1}}\right)} \times \ldots \times \bar{S}_{\left(\frac{2 p}{4}\right)} \times U_{p} \times O_{2 p} \times O_{m-r}
$$

Theorem 3.5. Denote $-f^{k}$ by ϕ. The structure ϕ satisfies the condition $\phi^{3}-$ $\phi=0$, i.e. ϕ is an $\phi(3,-1)$-structure.

Theorem 3.6. The structure ϕ is an almost paracontact Riemannian structure if $\operatorname{rank} f=m-1$.

Proof. Let

$$
\mathbf{m}=I-f^{2 k}=\left[\begin{array}{cccccc}
0 & 0 & & & & \\
0 & 0 & & & & \\
& & \ddots & & & \\
& & & 0 & 0 & \\
& & & 0 & 0 & \\
& & & & & 1
\end{array}\right], \quad \xi=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right], \quad \mu=(0,0, \ldots, 0,1)
$$

M is an 1-dimensional distribution.
Multiplying the corresponding matrices, it is clear that $\mathbf{m}=\xi \otimes \mu$,

$$
\phi^{2}=I-\mathbf{m}=I-\xi \otimes \mu, \quad \phi \xi=0, \quad \mu \phi=0, \quad \mu(\xi)=1, \quad \mu(X)=g(\xi, X)
$$

and $g(\phi X, \phi Y)=g(X, Y)-\mu(X) \cdot \mu(Y)$, which prove the Theorem.

Theorem 3.7. Let E be a $O s c^{k} M$ manifold with $\phi(3,-1)$-structure of rank $r=n \cdot k$ and let \mathcal{N}^{m-1} be a hypersurface in E. If the dimension of $T\left(\mathcal{N}^{m-1}\right)_{u} \cap$ $f\left(T\left(\mathcal{N}^{m-1}\right)\right)_{u}$ is constant, say s, for all $u \in \mathcal{N}^{m-1}$, then \mathcal{N}^{m-1} possesses a natural $F(3,-1)$-structure of rank s.

Proof. Let C be a transversal defined on \mathcal{N}^{m-1}, i.e. $C \in T(E)_{u}$ but $C \notin$ $T\left(\mathcal{N}^{m-1}\right)_{u}$ for all $u \in \mathcal{N}^{m-1}$. Let B be a differential of the imbedding of \mathcal{N}^{m-1} in E. Then B is a map of $T\left(\mathcal{N}^{m-1}\right)$ into $T_{R}(E)$, where $T_{R}(E)$ denotes the restriction of $T(E)$, the tangent bundle of E to \mathcal{N}^{m-1}. Then we can find a locally 1-form C^{*} defined on \mathcal{N}^{m-1} such that:

$$
B^{-1} B=I, \quad B B^{-1}=I-C^{*} \otimes C, \quad C^{*} B=B^{-1} C=0, \quad C^{*}(C)=1 .
$$

Let F be defined locally on $T\left(\mathcal{N}^{m-1}\right)$ by $F=B^{-1} \phi B$. Then:

$$
\begin{aligned}
F^{2} X & =B^{-1} \phi B B^{-1} \phi B X=B^{-1} \phi\left(I-C^{*} \otimes C\right) \phi(B X) \\
& =B^{-1} \phi^{2}(B X)-C^{*} \phi(B X) B^{-1} \phi C .
\end{aligned}
$$

If C is in distribution E, then $\phi C=0$; so we have that

$$
\begin{aligned}
\left(F^{3}-F\right) X & =B^{-1} \phi B B^{-1} \phi^{2} B X-B^{-1} \phi B X \\
& =B^{-1} \phi\left(I-C^{*} \otimes C\right) \phi^{2} B X-B^{-1} \phi B X \\
& =B^{-1}\left(\left(\phi^{3}-\phi\right) B X\right)=0
\end{aligned}
$$

for all X. On the other hand, suppose that C is in distribution L. Then:

$$
\begin{aligned}
\left(F^{3}-F\right) X & =\left(B^{-1} \phi B\right) B^{-1} \phi^{2}(B X) \\
& -\left(B^{-1} \phi b\right) C^{*}(\phi B X) B^{-1} \phi C-B^{-1} \phi B X \\
& =B^{-1}\left(\phi^{3}-\phi\right) B X-C^{*}\left(\phi^{2} B X\right) B^{-1} \phi C \\
& -C^{*}(\phi B X) B^{-1} \phi^{2} C+C^{*}(\phi B X) C^{*}(\phi C) B^{-1} \phi C=0
\end{aligned}
$$

since $\phi^{2} C=C$ on L and $C^{*} B=B^{-1} C=0$, and since we can choose C^{*} so that $C^{*}(\phi C)=0$. Also $C^{*}\left(\phi^{2} B X\right)=C^{*}\left(B X+\left(\phi^{2}-1\right) B X\right)=0$.

Theorem 3.8. If (ϕ, ξ, μ) is an almost paracontact structure on E, then \mathcal{N}^{m-1} possesses a natural $F(3,-1)$-structure if ξ is tangent to \mathcal{N}^{m-1}. The hypersurface \mathcal{N}^{m-1} possesses a natural almost product structure if ξ is not tangent to \mathcal{N}^{m-1}.

Proof. When ξ is not tangent to \mathcal{N}^{m-1}, ξ can be chosen for a pseudonormal. Then we have from Theorem 3.7 that $T\left(\mathcal{N}^{m-1}\right) \cap f\left(T\left(\mathcal{N}^{m-1}\right)\right)=T\left(\mathcal{N}^{m-1}\right)$, and $\operatorname{rank} F=\operatorname{dim} \mathcal{N}^{m-1}=m-1$. The almost paracontact structure F has a maximal rank, i.e. F is an almost product structure.

References

[1] Čomić, I., Grujić, G., Stojanov, J., The subspaces of Miron's $O s c^{k} M$. Presented on Workshop of Finsler Geometry and its Applications, Debrecen 2003
[2] Čomić, I., Liouville vector fields and k-sprays expressed in special adapted basis of Miron's $O s c^{k} M$. Presented on the Sixth International Workshop on Differential Geometry and its Applications Clui-Napoca, Romania September 2003
[3] Miron, R., Atanasiu, Gh., Differential Geometry of the k-Osculator Bundle. Rev. Roum. Math. Pures et Appl., Tom XLI, No. 3-4 (1996) 205-236.
[4] Miron, R., Atanasiu, Gh., Higher Order Lagrange Spaces. Rev. Roum. Math. Pures et Appl. Tom XLI, No. 3-4 (1996) 251-263.
[5] Miron, R., The geometry of higher order Lagrange spaces. Applicationes to mechanich and physics, Kluwer Acad. Publ. 1996.
[6] Miron, R., The Geometry of Hamilton and Lagrange Spaces. Kluwer Acad. Publ. 2000.
[7] Munteanu, Gh., Metric almost tangent structure of second order. Bull. Math. Soc. Sci. Mat. Roumanie 34(1) (1990), 49-54.
[8] Nikić, J., Subspaces of differentiable manifolds admitting $f(2 k+1,-1)$-structure. Colloquia mathematica societatis Janos Bolyai, 46. topics in Differential geom. Debrecen (1984), 941-957.
[9] Nikić, J., Čomić, I., $f\left(2 \cdot 2^{k}+1,-1\right)$-structure in $(k+1)$-Lagrangian Space. Review of Research Faculty of Science, Mathematics Series, 24, 2(1994), 165-173.
[10] Nikić, J., On a structure defined by a tensor field f of the type $(1,1)$ satisfying $f^{2 \cdot 2 k+1}-f=0$, Review of Research Faculty of Science - University of Novi Sad, Volume 12(1982), 369-377.

Received by the editors june 29, 2004

[^0]: ${ }^{1}$ Faculty of Technical Sciences, 21000 Novi Sad, Serbia and Montenegro, e-mail: nikic@uns.ns.ac.yu
 ${ }^{2}$ This research was partly supported by the Ministry Science and Enviromental protection of the Republic of Serbia, Grant number 1262.

