
Novi Sad J. Math.
Vol. 35, No. 1, 2005, 127-135

On Analytic Integrated Semigroups

Marko Kostić1

Abstract. The known definition of an analytic n-times integrated semi-
group is reconsidered and one superfluous condition is removed. It is
proved that every densely defined generator of an exponentially bounded,
analytic n-times integrated semigroup of angle α with the appropriate
growth rate at zero is also the generator of an analytic C0-semigroup of
the same angle.
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1. Introduction

We analyze the definition of an analytic integrated semigroup given in [3]. With
the notation explained in Sections 2 and 3, we will prove the following.

Theorem 1.1. Let A be a densely defined operator and α ∈ (0, π
2 ]. Then the

following assertions are equivalent.

(a) A is the generator of an exponentially bounded, analytic n-times integrated
semigroup (Sn(t))t≥0 of angle α with ||Sn(z)|| = O(|z|n), z → 0, z ∈ Σγ ,
for all γ ∈ (0, α) and some (all) n ∈ N.

(b) A is the generator of an analytic C0-semigroup of angle α.

Theorem 1.2. Let A be a closed linear operator and 0 < α ≤ π
2 , n ∈ N. Then

the following assertions are equivalent.

(a’) A is the generator of an exponentially bounded, analytic n-times integrated
semigroup (Sn(t))t≥0 of angle α.

(b’) For all γ ∈ (0, α), there exist Cγ > 0 and ωγ > 0 so that ωγ + Σπ
2 +γ ⊂

ρ(A) and that the following holds:

||R(λ : A)|| ≤ Cγ(1 + |λ|)n−1, λ ∈ ωγ + Σπ
2 +γ , and(1)

lim
λ→+∞

R(λ : A)x
λn−1

= 0, x ∈ E.(2)
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2. Preliminaries

We use the standard terminology: E denotes a non-trivial complex Banach
space and L(E) denotes the space of all bounded linear operators from E into
E. For a linear operator A, its domain, range and null space are denoted by
D(A), Im(A) and Kern(A), respectively. We will always assume that A is a
closed operator.

We refer to [1] and [2] for the material related to integrated semigroups.
Schwartz space of test functions on the real line R is denoted by D = C∞0 .

Its dual D′ is equipped with the strong topology; we denote by D0 the sub-
space of D which consists of the elements supported by [0,∞). Further on,
D′(L(E)) = L(D, L(E)) is the space of continuous linear functions from D into
L(E), equipped with the topology of uniform convergence on bounded subsets
of D; D′0(L(E)) is the subspace of D′(L(E)) containing the elements supported
by [0,∞). A distribution δt ∈ D′, t ∈ R, is defined by 〈δt, ϕ〉 := ϕ(t), ϕ ∈ D.

Following [8] (cf. also [11] and [6]), a distribution semigroup G is an element
G ∈ D′0(L(E)) with the properties

G(ϕ ∗0 ψ) = G(ϕ)G(ψ), ϕ, ψ ∈ D, and N (G) :=
⋂

ϕ∈D0

KernG(ϕ) = {0},

where ∗0 is the convolution f ∗0 g(t) :=
t∫
0

f(t − s)g(s)ds, t ∈ R. We denote

such a semigroup as (DSG). The infinitesimal generator of G is defined by
A = {(x, y) ∈ E2 : G(−ϕ′)x = G(ϕ)y, ϕ ∈ D0}; it is a closed linear operator in
E satisfying G(ϕ)A ⊂ AG(ϕ), ϕ ∈ D and {G(ϕ)x : x ∈ E, ϕ ∈ D} ⊂ D(A).
Following [2, Definition 3.2.5], a strongly continuous operator family (T (t))t>0

is called a semigroup if the following conditions are satisfied:

(i) T (t+ s) = T (t)T (s), t, s > 0,

(ii) T (t)x = 0, for all t > 0, implies x = 0,

(iii) supt∈(0,1]||T (t)|| <∞.

Obviously, if (T (t))t>0 is a semigroup, then there exist constants M > 0 and

ω > 0 such that ||T (t)|| ≤ Meωt, t > 0. Define S1(t) :=
t∫
0

T (s)ds, t ≥ 0. Then

(S1(t))t≥0 is an exponentially bounded once integrated semigroup. A closed
linear operator A is said to be the generator of (T (t))t>0 if and only if A is the
generator of (S1(t))t≥0, or equivalently, if there exists ω1 ≥ ω such that

R(λ : A) = λ

∞∫
0

e−λtS1(t)dt, λ > ω1.
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3. Analytic integrated semigroups

We refer to [2] for the material closely related to analytic semigroups. Especially,
we need [2, Corollary 3.9.9]: Let γ ∈ (0, π

2 ). Suppose that e±iγA generate C0-
semigroups. Then A generates an analytic C0-semigroup of angle γ.

Let α ∈ (0, π]. We will use the notation Σα := {z ∈ C : z 6= 0, | arg z| < α}.
Let K ∈ L1

loc([0,∞)) be an exponentially bounded function. Analytic convo-
luted K-semigroups as well as their relations with convoluted cosine functions,
ultradistribution and hyperfunction sines are investigated in [7]. Here is the def-
inition with K(t) = tn−1

(n−1)! , n ∈ N; actually, we reformulate [4, Definition 21.2]
(cf. also [3]) given by deLaubenfels so that one of his conditions is neglected.

Definition 3.1. Let 0 < α ≤ π
2 , n ∈ N, and let (Sn(t))t≥0 be an exponentially

bounded n-times integrated semigroup. Then (Sn(t))t≥0 is an analytic n-times
integrated semigroup of angle α, if there exists an analytic function
Sn : Σα → L(E) which satisfies:

(i) Sn(t) = Sn(t), t > 0, and

(ii) limz→0, z∈ΣγSn(z)x = 0, for all γ ∈ (0, α) and x ∈ E.

(Sn(t))t≥0 is an exponentially bounded, analytic n-times integrated semigroup
of angle α, if for all γ ∈ (0, α) there exist constants Mγ > 0 and ωγ > 0 such
that ||Sn(z)|| ≤Mγe

ωγRez, z ∈ Σγ .

It is clear that an analytic n-times integrated semigroup (Sn(t))t≥0 of angle α
is exponentially bounded if and only if for all γ ∈ (0, α), there exist appropriate
constants Mγ > 0 and ωγ > 0 so that ||Sn(z)|| ≤Mγe

ωγ |z|, z ∈ Σγ .
From now on, we shall denote Sn by Sn since it will not cause any confusion.

Put T (z) := dn

dznSn(z), z ∈ Σα.
The definition of an analytic n-times integrated semigroup (Sn(t))t≥0 of angle α

in [4] contains, in addition, the next condition: T (z1+z2) = T (z1)T (z2), z1, z2 ∈
Σα. We prove in the following proposition that this condition automatically
holds.

Proposition 3.2. Let (Sn(t))t≥0 be an analytic n-times integrated semigroup
of angle α. Then (T (z))z∈Σα

is an analytic operator family with:

1. T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σα,

2. T (t)x = 0, for all t > 0, implies x = 0, and
3. limz→0, z∈Σγ

T (z)x = x, x ∈ D(An).

Proof. Let A be the generator of (Sn(t))t≥0 and let t1 > 0 and t2 > 0 be fixed.
Put

G(ϕ)x = (−1)n

∞∫
0

ϕ(n)(t)Sn(t)xdt, ϕ ∈ D, x ∈ E.
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Then G is a (DSG) generated by A (cf. [6]). Integration by parts gives that for
every ϕ ∈ D with suppϕ ⊂ (a,∞), 0 < a < min(t1, t2), one has

G(ϕ)x =

∞∫
0

ϕ(t)T (t)xdt, x ∈ E.

Put ϕk(t) = ϕ(k(t − t1)), ψk(t) = ϕ(k(t − t2)), t ∈ R, k ∈ N, where ϕ is an
arbitrary nonnegative test function satisfying

∫
R
ϕ(t)dt = 1 and suppϕ ⊂ [0, 1].

Then (ϕk) and (ψk) are sequences in {ϕ ∈ D : suppϕ ⊂ (a,∞)} which converge
in distributional sense to δt1 and δt2 , respectively. Consequently, (ϕk ∗ δt2) is a
sequence in {ϕ ∈ D : suppϕ ⊂ (a,∞)} which converges in distributional sense
to δt1+t2 , and

T (t1)T (t2)x = limk→∞G(ϕk)T (t2)x = limk→∞G(ϕk)limj→∞G(ψj)x

= limk→∞limj→∞G(ϕk)G(ψj)x = limk→∞limj→∞G(ϕk ∗0 ψj)x

= limk→∞G(ϕk ∗ δt2)x = T (t1 + t2)x, x ∈ E.

It extends to all z1 and z2 belonging Σα by the uniqueness theorem for analytic
functions. It proves 1. The assumption T (t)x = 0, for all t > 0, implies that for
every ϕ ∈ D with suppϕ ⊂ (0,∞), the following holds G(ϕ)x = 0. Since the
translation is a continuous linear mapping from D into D, the previous remains
true for all ϕ ∈ D0. It implies x ∈ N (G) and x = 0. Thus 2. is proved.
Let us prove 3. Let x ∈ D(An) be fixed. Then it is well known that

dn

dtn
Sn(t)x = Sn(t)Anx+

tn−1

(n− 1)!
An−1x+ . . .+ tAx+ x, t ≥ 0.

By the uniqueness theorem for analytic functions, we have

dn

dzn
Sn(z)x = Sn(z)Anx+

zn−1

(n− 1)!
An−1x+ . . .+ zAx+ x, z ∈ Σγ ,

and 3. follows from Definition 3.1. 2

The proof of Proposition 3.2 implies the next statement.

Corollary 3.3. Let (Sn(t))t≥0 be an n-times integrated semigroup generated
by A. If Sn(·) ∈ Cn((0,∞) : L(E)), then (T (t))t>0 satisfies 2. Furthermore, 1.
holds for all positive real numbers t1 and t2.

The following lemma will be used in the proof of Proposition 3.5 given below.

Lemma 3.4. Let n ∈ N. Suppose that A generates an n-times integrated
semigroup (Sn(t))t≥0 and ai ∈ C, i = 0, 1, . . . , n − 1. Let Vn(t) := Sn(t) +∑n−1

i=0 ait
iI, t ≥ 0. If (Vn(t))t≥0 is an n-times integrated semigroup generated

by a closed linear operator B, then A = B and ai = 0, i = 0, 1, . . . , n− 1.

Proof. Let x ∈ E, ϕ ∈ D. Define
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G(ϕ)x = (−1)n
∞∫
0

ϕ(n)(t)Sn(t)xdt and H(ϕ)x = (−1)n
∞∫
0

ϕ(n)(t)Vn(t)xdt.

Then G and H are (DSG) generated by A and B, respectively. Moreover, it
follows that G(ϕ) = H(ϕ), ϕ ∈ D0, and it implies

A = {(x, y) ∈ E2 : G(−ϕ′)x = G(ϕ)y, ϕ ∈ D0}

= {(x, y) ∈ E2 : H(−ϕ′)x = H(ϕ)y, ϕ ∈ D0} = B.

Since every (local) n-times integrated semigroup is uniquely determined by its
generator, one obtains Sn(t) = Vn(t), t ≥ 0. This ends the proof. 2

Proposition 3.5. Assume that A is a densely defined operator and that A is
the generator of an exponentially bounded, analytic n-times integrated semigroup
(Sn(t))t≥0 of angle α, 0 < α ≤ π

2 , which satisfies ||Sn(z)|| = O(|z|n), z → 0, z ∈
Σγ , for all γ ∈ (0, α). Then A generates a C0-semigroup.

Proof. Let us fix γ ∈ (0, α) and t ∈ (0, 1
1+sin γ ). Assume that ||Sn(z)|| ≤

M |z|n, |z| ≤ 1, z ∈ Σγ , for some M > 0. The Cauchy integral formula implies

T (t) =
n!
2πi

∮
|z−t|=t sin γ

Sn(z)
(z − t)n+1

dz.

Since t+ t sin γeiθ ∈ Σγ ∩ {z ∈ C : 0 < |z| ≤ 1}, θ ∈ [0, 2π], we obtain

||T (t)|| ≤ n!
2π

2π∫
0

||Sn(t+ t sin γeiθ)||
tn+1 sinn+1 γ

t sin γdθ ≤ n!
2πtn sinn γ

2πM(t+ t sin γ)n;

hence supt∈(0,1] ||T (t)|| <∞. Corollary 3.3 implies that (T (t))t>0 is a semigroup.

Let S1(t) =
t∫
0

T (s)ds, t ≥ 0. Then (S1(t))t≥0 is an exponentially bounded

once integrated semigroup. Define Vn(t) :=
t∫
0

(t−s)n−1

(n−1)! T (s)xds, t ≥ 0. Then

(Vn(t))t≥0 is an exponentially bounded n-times integrated semigroup. Let x ∈ E
be fixed. Then Vn(·)x ∈ Cn−1([0,∞) : E) ∩ Cn((0,∞) : E) and dn

dtnVn(t)x =
T (t)x, t > 0. Moreover, dn

dtnSn(t)x = T (t)x, t > 0. Lemma 3.4 implies Sn(t) =
Vn(t), t ≥ 0. Then we obtain

λ

∞∫
0

e−λtS1(t)xdt = λn

∞∫
0

e−λt

t∫
0

(t− s)n−1

(n− 1)!
T (s)xdsdt

= λn

∞∫
0

e−λtSn(t)xdt = R(λ : A)x, λ sufficiently large,
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and it implies that A is the generator of (T (t))t>0. Define T (0) := I. By virtue
of [2, Corollary 3.3.11], (T (t))t≥0 is a C0-semigroup generated by A. 2

The next proposition is a slight improvement of [3, Proposition 3.7(a)].

Proposition 3.6. Let A be the generator of an exponentially bounded, analytic
n-times integrated semigroup (Sn(t))t≥0 of angle α, 0 < α ≤ π

2 , n ∈ N. Let
θ ∈ (−α, α). Then eiθA generates an exponentially bounded, analytic n-times
integrated semigroup (e−inθS(teiθ))t≥0 of angle α− |θ|.

Proof. It is proved in [3, Proposition 3.7(a)] that (e−inθS(teiθ))t≥0 is an
exponentially bounded n−times integrated semigroup generated by eiθA. Put
Sθ(z) := e−inθS(zeiθ), z ∈ Σα−|θ|. By Definition 3.1, (Sθ(t))t≥0 is an exponen-
tially bounded, analytic n-times integrated semigroup of angle α− |θ|. 2

Proof of Theorem 1.1. Let us prove (b) → (a). Fix n ∈ N; then it is clear that
A generates an exponentially bounded, analytic n-times integrated semigroup
(Sn(t))t≥0 of angle α. Let γ ∈ (0, α). Then there exists a constant M ≥ 1
such that ||T (z)|| ≤ M, z ∈ Σγ ∩ {z ∈ C : |z| ≤ 1}. Moreover, for all
β ∈ (−γ, γ), eiβA is the generator of a C0-semigroup (Tβ(t))t≥0 given by
Tβ(t) = T (eiβt), t ≥ 0. By Proposition 3.6,

Sn(z)x = ein arg z

|z|∫
0

(|z| − s)n−1

(n− 1)!
T (sei arg z)xds, x ∈ E, z ∈ Σγ .

Hence, ||Sn(z)|| = O(|z|n), z → 0, z ∈ Σγ . In order to prove (a) → (b), let
us suppose that there exists n ∈ N such that A generates an exponentially
bounded, analytic n-times integrated semigroup (Sn(t))t≥0 of angle α satisfying
||Sn(z)|| = O(|z|n), z → 0, z ∈ Σγ , for all γ ∈ (0, α). By the uniqueness of
analytic continuation, it is sufficient to prove that A generates an analytic C0-
semigroup of angle γ, for all γ ∈ (0, α). By Proposition 3.6, for all γ ∈ (0, α),
e±iγA generate exponentially bounded, analytic n-times integrated semigroups
of angle α− |θ| which satisfies the assumptions of Proposition 3.5. Thus, e±iγA
generate (differentiable) C0-semigroups (T (te±iγ))t≥0 and A generates an ana-
lytic C0-semigroup of angle γ. The proof is completed. 2

Next we prove Theorem 1.2; it is a generalization of [4, Theorem 21.13(a)]
and [3, Lemma 5.5(a)].

Proof of Theorem 1.2. In order to see that (b’) is a consequence of (a’), let
us fix γ ∈ (0, α) and choose γ1 ∈ (γ, α) after that. Suppose that ||Sn(z)|| ≤

Meω|z|, z ∈ Σγ1 , for some ω > 0. Clearly, R(λ:A)
λn =

∞∫
0

e−λtSn(t)dt, λ > ω. Then

[2, Theorem 2.6.1] implies that there exists an analytic function
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R : ω + Σγ1+
π
2
→ L(E) which satisfies R(λ) = R(λ : A), Reλ > ω and

sup
λ∈ω+Σγ+ π

2

||(λ− ω)
R(λ)
λn

|| <∞.

Proposition B.5 in [2] implies ω + Σγ1+
π
2
⊂ ρ(A) and R(λ : A) = R(λ), λ ∈

ω + Σγ1+
π
2
. Hence, (1) holds for any ωγ > ω and appropriate Cγ > 0. Since

limt→0+ Sn(t)x = 0, x ∈ E, (2) holds by [2, Theorem 2.6.4(a)]. Assume
conversely that (b’) holds. Fix γ ∈ (0, α) and choose ω > ωγ after that.
Then the function q : (ω, ∞) → C, q(λ) = R(λ:A)

λn , λ > ω, can be analytically
extended to a function q̃ : ω + Σγ+ π

2
→ C. Furthermore,

sup
λ∈ω+Σγ+ π

2

||(λ− ω)q̃(λ)|| ≤ sup
λ∈ω+Σγ+ π

2

Cγ(|λ|+ ω)(1 + |λ|)n−1/|λ|n <∞.

An application of [2, Theorem 2.6.1] gives that there exists an analytic function

Sn : Σγ → L(E) such that R(λ:A)
λn =

∞∫
0

e−λtSn(t)dt, λ > ω, and that ||Sn(z)|| ≤

Mβe
wRez, z ∈ Σβ , for all β ∈ (0, γ). Define Sn(0) := 0. Assumption (2) and [2,

Theorem 2.6.4] imply that limt→0+ Sn(t)x = 0. Thus, (Sn(t))t≥0 is a strongly
continuous operator family, and consequently, (Sn(t))t≥0 is an exponentially
bounded n-times integrated semigroup generated by A. Moreover, for every
fixed β ∈ (0, γ) and x ∈ E, supz∈Σβ

||e−ωzSn(z)x|| < ∞ and [2, Proposition
2.6.3(b)] implies limz→0, z∈Σβ

Sn(z)x = 0. Accordingly, A is the generator of
an exponentially bounded, analytic n-times integrated semigroup (Sn(t))t≥0 of
angle γ. This completes the proof of the theorem. 2

Theorem 1.2 and [4, Theorem 21.17] immediately imply:

Corollary 3.7. Let A be a densely defined operator. Suppose that there exist
α ∈ (0, π

2 ] and n ∈ N such that for all γ ∈ (0, α) there exist ωγ > 0 and Cγ > 0
so that (1) holds. Then (2) is automatically fulfilled.

The Hille-Yosida type estimates for generators of analytic convoluted semi-
groups have been recently proved in [7]. Note that there exist an exponentially
bounded, continuous function K with 0 ∈ suppK and a closed linear operator A
in L2[0, π] such that the resolvent set of A does not contain any half-line (ω,∞),
ω ∈ R and that A generates an analytic convoluted K-semigroup of angle π

2 (cf.
[7]).

Proposition 3.8. If A generates an exponentially bounded, analytic n-times
integrated semigroup (Sn(t))t≥0 of angle α, then for all γ ∈ (0, α), the following
holds: (we continue the numbering)

4. Sn(z)A ⊂ ASn(z), z ∈ Σα,

5. T (z)A ⊂ AT (z), z ∈ Σα; if x ∈ D(A), then d
dzT (z)x = T (z)Ax, z ∈ Σα,
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6. if x ∈ E and z ∈ Σα, then
z∫
0

Sn(λ)xdλ ∈ D(A) and

A

z∫
0

Sn(λ)xdλ = Sn(z)x− zn

n!
x.

Proof. Let x ∈ D(A) and z ∈ Σα be fixed. Proposition 3.6 implies that ei arg zA
generates an exponentially bounded n-times integrated semigroup
(e−in arg zSn(tei arg z))t≥0. Thus, 4. is true. Note that 5. is proved in [3] with
the help of regularized semigroups; we give a quite different proof. Proposition
3.6 implies that ei arg zA is the generator of a distribution semigroup Gz given
by

Gz(ϕ)x = (−1)n

∞∫
0

ϕ(n)(t)e−in arg zSn(tei arg z)xdt, x ∈ E, ϕ ∈ D.

Integration by parts and the analyticity of Sn(·) imply that for all ϕ ∈ D with
suppϕ ⊂ ( |z|2 ,∞), the following holds

Gz(ϕ)x =

∞∫
0

ϕ(t)T (tei arg z)xdt, x ∈ E.

Let (ϕn) be a sequence in {ϕ ∈ D : suppϕ ⊂ ( |z|2 ,∞)} which converges in distri-
butional sense to δ|z|. Thus, T (z)x = limn→∞Gz(ϕn)x, x ∈ E. Let x ∈ D(A).
Since Gz(ϕn)x ∈ D(A), n ∈ N and limn→∞AGz(ϕn)x = limn→∞Gz(ϕn)Ax =
T (z)Ax, the closedness of A implies T (z)x ∈ D(A), z ∈ Σα and AT (z)x =
T (z)Ax, z ∈ Σα. Since x ∈ D(A), one also hasGz(−ϕ′)x = Gz(ϕ)ei arg zAx, ϕ ∈
D0 and it implies that for all ϕ ∈ D with suppϕ ⊂ ( |z|2 ,∞), the following holds

∞∫
0

ϕ(t)
d

dt
T (tei arg z)xdt =

∞∫
0

ϕ(t)T (tei arg z)Axdt.

Then the standard limit procedure implies:

d

dz
T (z)x = T (z)Ax = limn→∞Gz(ϕn)Ax.

Hence, 5. is proved. Let us prove 6. Let x ∈ E and z ∈ Σα. By Proposition
3.6, one obtains

z∫
0

Sn(λ)xdλ = ei arg z

|z|∫
0

Sn(tei arg z)dt ∈ D(ei arg zA); therefore,
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A

z∫
0

Sn(λ)xdλ = ei arg zA

|z|∫
0

Sn(tei arg z)xdt

= ein arg z(e−in arg zSn(|z|ei arg z)x− |z|n

n!
x)

= Sn(z)x− ein arg z |z|n

n!
x = Sn(z)x− zn

n!
x.

At the end, we note that several examples of non-densely defined generators
of exponentially bounded, once integrated analytic semigroups can be derived
through the analysis of the higher order elliptic differential operators in the
spaces of Hölder continuous functions (cf. [9, Section 4]).
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[6] Kostić, M., C-distribution semigroups. preprint.
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