TOPOLOGIES GENERATED BY CLOSED INTERVALS

Miloš S. Kurilić¹ and Aleksandar Pavlović¹

Abstract. If $\langle L, < \rangle$ is a dense linear ordering without end points and A and B disjoint dense subsets of L, then the topology \mathcal{O}_{AB} on the set L generated by closed intervals [a, b], where $a \in A$ and $b \in B$, is finer than the standard topology, $\mathcal{O}_{<}$, generated by all open intervals and $\langle L, \mathcal{O}_{AB} \rangle$ is a GO-space. The basic properties of the topology \mathcal{O}_{AB} (separation axioms, cardinal functions, metrizability) are investigated and compared with the corresponding results concerning the standard topology.

AMS Mathematics Subject Classification (2000): 54F05, 03E35, 03E75, 54A10, 54A25, 54D15

Key words and phrases: Linear orderings, topological spaces, closed intervals, GO-spaces, separation axioms, cardinal functions

1. Introduction

If $\langle L, < \rangle$ is a linear order there are several ways to define a topology on the set L using the ordering <. Firstly, the standard topology, $\mathcal{O}_{<}$, is generated by the family of all open intervals. Then the space $\langle L, \mathcal{O}_{<} \rangle$ is called a *linearly* ordered topological space (LOTS). Secondly, following the idea of Sorgenfrey (see [11]), we can observe the topology generated by the family of half-open intervals, i.e. the sets of the form [x, y), where $x, y \in L$. The third way is to generate a topology by closed intervals [a, b], where $a \in A$ and $b \in B$ and where A and B are some subsets of L. Some examples of such a construction are "the two arrows space" of Alexandroff and Uryson ([1], see [3]) and some subspaces of the spaces constructed by Todorčević in [13].

Throughout the paper $\langle L, < \rangle$ will be a dense linear order without end points and A and B disjoint dense subsets of L. Under these assumptions the family

$$\mathcal{B}_{AB} = \{ [a, b] : a \in A \land b \in B \land a < b \}$$

is a base for a topology on the set L, say \mathcal{O}_{AB} . (The condition $A \cap B = \emptyset$ ensures the space $\langle L, \mathcal{O}_{AB} \rangle$ has no isolated points and the density of the sets Aand B provides the space is Hausdorff.) The aim of the paper is to investigate topological properties of spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$.

¹Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, email: milos@im.ns.ac.yu, apavlovic@im.ns.ac.yu

2. Suborderability and separation axioms

It is easy to prove that, in the spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$, all open intervals are open sets and that the intervals [a, b], where $a \in A$ and $b \in B$, are clopen. So, we have

Fact 1. Each space of the form $\langle L, \mathcal{O}_{AB} \rangle$ is zero-dimensional, non-compact and the topology \mathcal{O}_{AB} is finer than the standard topology, $\mathcal{O}_{<}$, on L.

Consequently, these spaces are $T_{3\frac{1}{2}}$. But in Theorem 2 we will show that they have much stronger separation properties.

We remind the reader that a topological space $\langle X, \mathcal{O} \rangle$ is called a *suborderable* space if it can be topologically embedded in some LOTS and that a Hausdorff space $\langle X, \mathcal{O} \rangle$ is called a generalized orderable (briefly GO-)space if there exists a linear order $\langle \text{ on } X \text{ such that } \mathcal{O}_{\langle} \subset \mathcal{O}$ and if at each point a neighborhood base consists of intervals. In [2] Čech showed that GO-spaces are the same as suborderable spaces. Now we have

Theorem 1. Each space of the form $\langle L, \mathcal{O}_{AB} \rangle$ is a GO-space.

Proof. Let
$$\tilde{A} = A \times \{1\}, \ \tilde{B} = B \times \{-1\}, \ K = \tilde{A} \cup (L \times \{0\}) \cup \tilde{B}$$
 and
$$\tilde{L} = \tilde{A} \cup \left((L \setminus (A \cup B)) \times \{0\} \right) \cup \tilde{B} = K \setminus \left((A \cup B) \times \{0\} \right).$$

Let \prec be the lexicographic order on the set K. One can easily verify that \tilde{A} and \tilde{B} are dense subsets of the set \tilde{L} , and therefore \tilde{L} is a dense linear ordering. Also, \tilde{L} has no end points. Let $\mathcal{O}_{\tilde{A}\tilde{B}}$ be the topology on the set \tilde{L} generated by the base $\mathcal{B}_{\tilde{A}\tilde{B}}$ consisting of all sets of the form

$$[\langle a,1\rangle,\langle b,-1\rangle]_{\tilde{L}} = \{x\in \tilde{L}: \langle a,1\rangle \preceq x \preceq \langle b,-1\rangle\},\$$

where $a \in A$, $b \in B$ and a < b.

It can be easily verified that the mapping $\pi_1 : \langle \tilde{L}, \mathcal{O}_{\tilde{A}\tilde{B}} \rangle \to \langle L, \mathcal{O}_{AB} \rangle$ given by $\pi_1(\langle x, i \rangle) = x$ is a homeomorphism.

Let \mathcal{O}_{\prec} be the standard topology on K (generated by the ordering \prec), and $(\mathcal{O}_{\prec})_{\tilde{L}}$ the corresponding induced topology on \tilde{L} . Let us show that

$$\mathcal{O}_{\tilde{A}\tilde{B}} = (\mathcal{O}_{\prec})_{\tilde{L}}.$$

 (\subset) For $a \in A$, $b \in B$ where a < b it is clear that

$$[\langle a,1\rangle,\langle b,-1\rangle]_{\tilde{L}} = (\langle a,0\rangle,\langle b,0\rangle)_K \cap \tilde{L} \in (\mathcal{O}_{\prec})_{\tilde{L}},$$

and therefore $\mathcal{B}_{\tilde{A}\tilde{B}} \subset (\mathcal{O}_{\prec})_{\tilde{L}}$, which completes the proof of the first inclusion.

 (\supset) Let \mathcal{P}_{\prec} be the subbase of the topology \mathcal{O}_{\prec} consisting of all sets of the form $(x, \rightarrow)_K$ and $(\leftarrow, x)_K$, where $x \in K$. It if sufficient to show that

$$(\mathcal{P}_{\prec})_{\tilde{L}} = \{P \cap L : P \in \mathcal{P}_{\prec}\} \subset \mathcal{O}_{\tilde{A}\tilde{B}}.$$

Topologies generated by closed intervals

If $x \in \tilde{L}$, then $(x, \to)_K \cap \tilde{L} = (x, \to)_{\tilde{L}} \in \mathcal{O}_{\tilde{A}\tilde{B}}$ and $(\leftarrow, x)_K \cap \tilde{L} = (\leftarrow, x)_{\tilde{L}} \in \mathcal{O}_{\tilde{A}\tilde{B}}$. Otherwise, $P \cap \tilde{L} \in \mathcal{O}_{\tilde{A}\tilde{B}}$ since

$$\begin{split} \left(\langle a,0\rangle,\rightarrow\right)_{K}\cap\tilde{L} &= \left[\langle a,1\rangle,\rightarrow\right)_{\tilde{L}}, \quad \left(\leftarrow,\langle a,0\rangle\right)_{K}\cap\tilde{L} = \left(\leftarrow,\langle a,1\rangle\right)_{\tilde{L}},\\ \left(\langle b,0\rangle,\rightarrow\right)_{K}\cap\tilde{L} &= \left(\langle b,-1\rangle,\rightarrow\right)_{\tilde{L}}, \quad \left(\leftarrow,\langle b,0\rangle\right)_{K}\cap\tilde{L} = \left(\leftarrow,\langle b,-1\rangle,\right]_{\tilde{L}}, \end{split}$$

which completes the proof of the second inclusion.

We note that LOTS are collectionwise normal (see [8] or [12]), hereditarily normal and that some of them are not perfectly normal (T_6) spaces (see [3] 3.12.3.d). Since, by [7], GO-spaces are collectionwise normal and hereditarily normal, by Theorem 1 we have

Theorem 2. Each space of the form $\langle L, \mathcal{O}_{AB} \rangle$ is collectionwise normal and hereditarily normal.

Generally, GO-spaces need not to be perfectly normal and the next example shows the same for the spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$.

Example 1. A space $\langle L, \mathcal{O}_{AB} \rangle$ which is not perfectly normal. Let $K = [0, 1]^2 \setminus \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$ and let \langle be the lexicographic order on K. Then, clearly, $\langle K, \langle \rangle$ is a dense linear order without end points. Let us divide the set of rational numbers from the interval (0,1) into two disjoint sets Q_1 and Q_2 dense in (0,1). Clearly, the sets $A = [0,1] \times Q_1$ and $B = [0,1] \times Q_2$ are disjoint order-dense subsets of K and we will prove that the space $\langle K, \mathcal{O}_{AB} \rangle$ is not perfectly normal.

It can be easily verified that, for 0 < x < 1, neighborhood bases at points $\langle x, 0 \rangle$ and $\langle x, 1 \rangle$ are $\mathcal{B}(\langle x, 0 \rangle) = \{(\langle y, 0 \rangle, \langle x, q_2 \rangle] : 0 < y < x \land q_2 \in Q_2\}$ and $\mathcal{B}(\langle x, 1 \rangle) = \{[\langle x, q_1 \rangle, \langle y, 1 \rangle) : q_1 \in Q_1 \land 1 > y > x\}$ respectively. The set $[0, 1] \times (0, 1)$ is open. Let us suppose that it can be represented as a countable union of closed sets. Then some of them, say F, intersects \mathfrak{c} many sets of shape $\{x\} \times [0, 1]$.

Let $F_1 = \pi_1[F]$. Clearly $|F_1| = \mathfrak{c}$ and $F_1 \subset [0, 1]$. So, regarding the standard topology on [0, 1], there exists an accumulation point $x \in (0, 1)$ of the set F_1 and also a sequence $\langle x_n : n \in \omega \rangle$ of the elements of the set F_1 which converges to the point x. Without loss of generality we can assume that $\langle x_n : n \in \omega \rangle$ is an increasing, or a decreasing sequence.

If $\langle x_n : n \in \omega \rangle$ is an increasing sequence then we will show that the set F intersects arbitrary basic neighborhood $U = (\langle y, 0 \rangle, \langle x, q_2 \rangle]$ of the point $\langle x, 0 \rangle$. Since y < x there exists x_n such that $y < x_n < x$. Also, there exists a point $z \in (\{x_n\} \times (0,1)) \cap F$, and clearly $z \in U$. Since F is a closed set, it contains all of its accumulation points, so $\langle x, 0 \rangle \in F$, which contradicts the fact that $F \subset [0,1] \times (0,1)$.

Analogously, if $\langle x_n : n \in \omega \rangle$ is a decreasing sequence, it can be proved that $\langle x, 1 \rangle \in F$, a contradiction again.

3. Cardinal functions

The basic facts concerning cardinal functions can be found in [3] or [4]. If L is a LOTS, then $|L| \ge w = nw \ge d = hd \ge c = hc = hl \ge \chi = \psi = t$ and $c \ge l \ge e$ (see [3] p. 222), and, in addition, for dense LOTS we have nw = d. In this section we firstly investigate these cardinal invariants of the topology \mathcal{O}_{AB} and compare them with the corresponding invariants of the standard topology. After that we give some notes on metrizability.

Theorem 3. The relations between the basic cardinal functions of the spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$ are described by the following diagram.

Proof. It is known (see [4] or [3] p. 225) that the following inequalities hold in each topological space: $nw \leq w, c \leq d \leq hd, c \leq hc \leq hl, e \leq l \leq hl$, $\psi \leq \chi$ and $t \leq \chi$. Clearly, in spaces $\langle L, \mathcal{O}_{AB} \rangle$ we have $d \leq \min\{|A|, |B|\} \leq \max\{|A|, |B|\} \leq |L|$.

 $w = \max\{|A|, |B|\}$. Obviously, $w \leq |\mathcal{B}_{AB}| = \max\{|A|, |B|\}$. Let us suppose that $w = \lambda < \max\{|A|, |B|\} = |A| = \kappa$. Then, by [3], Theorem 1.1.15, there exists a base $\mathcal{B}' \subset \mathcal{B}_{AB}$ such that $|\mathcal{B}'| = \lambda$. Let $\mathcal{B}' = \{[a_i, b_i] : i \in \lambda\}$, let $a' \in A \setminus \{a_i : i \in \lambda\}$ and let b' be an arbitrary element of B greater than a'. The set [a', b'] is open, but it can not be represented as the union of some subfamily of \mathcal{B}' . A contradiction. If $\max\{|A|, |B|\} = |B|$, the proof is similar.

 $nw \geq w$. Suppose $|A| \leq |B|$ and let \mathcal{N} be a net in the space $\langle L, \mathcal{O}_{AB} \rangle$. If $b \in B$, then there is $a \in A$ such that a < b and, clearly, [a, b] is a neighborhood of b. Since \mathcal{N} is a net we can choose $N_b \in \mathcal{N}$ such that $b \in N_b \subset [a, b]$. If $b, b' \in B$ and b < b', then $b' \in N_{b'} \setminus N_b$ so $|\mathcal{N}| \geq |B| = \max\{|A|, |B|\} = w$. If |A| > |B| the proof is similar.

The equality d = hd for GO-spaces has been proved by Skula in [10]. Lutzer in [7] has obtained that c = hl in GO spaces. The proof of $\chi \leq c$ and $\psi = \chi = t$ for GO-spaces can be found in [9] or [5].

In the following examples we show that, in ZFC, all the inequalities from the diagram, except c < d, can be strict.

Example 2. w < |L|. If we divide the set of rational numbers into two disjoint dense subsets Q_1 and Q_2 , then $w(\langle \mathbb{R}, \mathcal{O}_{Q_1Q_2} \rangle) = \aleph_0 < \mathfrak{c} = |\mathbb{R}|$.

Example 3. $d < \min\{|A|, |B|\}$. If we divide the set of irrational numbers into two disjoint dense subsets A and B of cardinality \mathfrak{c} , then $d(\langle \mathbb{R}, \mathcal{O}_{AB} \rangle) = |\mathbb{Q}| = \aleph_0 < \mathfrak{c} = |A| = |B|$.

Example 4. l < c. Let us consider the space K defined in Example 1. Since $\{(\langle x, 0 \rangle, \langle x, 1 \rangle) : x \in [0, 1]\}$ is a c-sized cellular family, we have c(K) = c.

Let $K = \bigcup_{i \in I} [a_i, b_i]$, where $[a_i, b_i] \in \mathcal{B}_{AB}$, let $G = ((0, 1] \times \{0\}) \cup ([0, 1] \times \{1\})$ and $J = \{i \in I : [a_i, b_i] \cap G \neq \emptyset\}$. Then for $i \in J$ we have $\pi_1[[a_i, b_i] \cap G] = [x_i, y_i]_{[0,1]}$, where $x_i = \pi_1(a_i)$ and $y_i = \pi_1(b_i)$ and $0 \leq x_i < y_i \leq 1$. Clearly $[0,1] = \bigcup_{i \in J} [x_i, y_i]$ and there exists a countable set $J' \subset J$ such that $\bigcup_{i \in J} (x_i, y_i) = \bigcup_{i \in J'} (x_i, y_i)$. For the set $P = [0,1] \setminus \bigcup_{i \in J} (x_i, y_i)$ we have $P \subset \{x_i : i \in J\} \cup \{y_i : i \in J\}$. If $x_i, x_j \in P \cap \{x_i : i \in J\}$ and $x_i < x_j$, then $y_i \leq x_j$ (since otherwise $x_j \notin P$) so $(x_i, y_i) \cap (x_j, y_j) = \emptyset$. Consequently $P \cap \{x_i : i \in J\}$ (and similarly $P \cap \{y_i : i \in J\}$) is a countable set, so $|P| \leq \aleph_0$. Since $\bigcup_{i \in J'} (x_i, y_i) \times [0, 1] \subset \bigcup_{i \in J'} [a_i, b_i]$, for a point $\langle x, y \rangle \in K \setminus \bigcup_{i \in J'} [a_i, b_i]$ we have $x \in P$. The set $P \times \mathbb{Q}$ is countable, so, it remains to cover such points $\langle x, y \rangle \in (\langle x, q_1 \rangle, \langle x, q_2 \rangle) \subset [a_i, b_i]$ for some $i \in I$. Since there are countably many open sets of the form $(\langle x, q_1 \rangle, \langle x, q_2 \rangle)$, where $x \in P$, $q_1 \in Q_1$ and $q_2 \in Q_2$, all the points $\langle x, y \rangle \in K \setminus \bigcup_{i \in J'} [a_i, b_i]$ can be covered by countably many intervals $[a_i, b_i]$. Thus $l(K, \mathcal{O}_{AB}) = \aleph_0$.

Example 5. $\chi < c$ and $\chi < l$. Let κ be an infinite cardinal. The set $Q(\kappa) = \kappa \times \mathbb{Q}$ with the lexicographic order < is a dense linearly ordered set without end points. Let us divide the set of rational numbers into two disjoint dense subsets Q_1 and Q_2 . The sets $A = \kappa \times Q_1$ and $B = \kappa \times Q_2$ are dense in $Q(\kappa)$. Clearly, the sets $Q_{\alpha} = \{\alpha\} \times \mathbb{Q}, \ \alpha \in \kappa$, are open in the space $\langle Q(\kappa), \mathcal{O}_{AB} \rangle$ and $Q_{\alpha} \cap Q_{\beta} = \emptyset$ for $\alpha \neq \beta$, so $Q(\kappa) = \bigcup_{\alpha < \kappa} Q_{\alpha}$. This implies $l(Q(\kappa)) = c(Q(\kappa)) = \kappa$.

Let $x = \langle \alpha, q \rangle \in Q(\kappa)$. Clearly, the family $\mathcal{B}(x) = \{ [\langle \alpha, a \rangle, \langle \alpha, b \rangle] : a \leq q \leq b \land a \in Q_1 \land b \in Q_2 \}$ is a countable neighborhood base at the point x, so, we have $\chi(Q(\kappa)) = \aleph_0$.

Now, for $\kappa > \aleph_0$ we have $\chi(Q(\kappa)) < c(Q(\kappa))$ and $\chi(Q(\kappa)) < l(Q(\kappa))$.

Example 6. $l < \chi$. Let the set $L = ((\omega_1 + 1) \times [0, 1)_{\mathbb{Q}}) \setminus \{\langle 0, 0 \rangle\}$ be ordered lexicographically and let $Q_1, Q_2 \subset (0, 1)_{\mathbb{Q}}$ be disjoint sets dense in $(0, 1)_{\mathbb{Q}}$. Then,

clearly, the sets $A = (\omega_1 + 1) \times Q_1$ and $B = (\omega_1 + 1) \times Q_2$ are dense subsets of L.

Firstly, $\chi(\langle \omega_1, 0 \rangle) > \aleph_0$, since if the point $\langle \omega_1, 0 \rangle$ would have countable character, then it would have a neighborhood base of the form $\{[a_n, b_n] : n \in \omega\}$ and the set $\{\pi_1(a_n) : n \in \omega\}$ would be a cofinal subset of ω_1 , which is impossible.

Secondly, we show $l(L) = \aleph_0$. let $L = \bigcup_{i \in I} [a_i, b_i]$ where $[a_i, b_i] \in \mathcal{B}_{AB}$ and let $\langle \omega_1, 0 \rangle \in [a_{i_0}, b_{i_0}] = [\langle \alpha, p \rangle, \langle \omega_1, q \rangle]$. Then $\alpha < \omega_1$ and consequently $L \setminus [a_{i_0}, b_{i_0}]$ is a countable set which can be covered by countably many members of the given cover.

Example 7. e < l. Let the set $L = (\omega_1 \times [0, \to)_{\mathbb{Q}}) \setminus \{\langle 0, 0 \rangle\}$ (that is $L = \bigcup_{\alpha < \omega_1} Q_\alpha$ where $Q_0 = \{0\} \times (0, \to)_{\mathbb{Q}}$ and $Q_\alpha = \{\alpha\} \times [0, \to)_{\mathbb{Q}}$, for $0 < \alpha < \omega_1$) be ordered lexicographically and let the sets $A', B' \subset (0, \to)_{\mathbb{Q}}$ be disjoint and dense in $(0, \to)_{\mathbb{Q}}$. Then, clearly, the sets $A = \omega_1 \times A'$ and $B = \omega_1 \times B'$ are dense in L and we observe the space $\langle L, \mathcal{O}_{AB} \rangle$. Since the open cover $L = \bigcup_{x \in L} (\leftarrow, x)_L$ does not contain a countable subcover, we have $l(L, \mathcal{O}_{AB}) = \aleph_1$.

Suppose that there exists a closed and discrete subset $D \subset L$ such that $|D| = \aleph_1$. Since $|Q_{\alpha}| = \aleph_0$, the set $C = \{\alpha < \omega_1 : D \cap Q_{\alpha} \neq \emptyset\}$ is of cardinality \aleph_1 . Let $\langle \alpha_n : n \in \omega \rangle$ be an increasing sequence of elements of C and $\alpha = \sup\{\alpha_n : n \in \omega\}$. If U is a neighborhood of the point $\langle \alpha, 0 \rangle$ then there are $a = \langle \xi, q \rangle \in A$ and $b \in B$ such that $\langle \alpha, 0 \rangle \in [a, b] \subset U$. Clearly we have $\xi < \alpha$ so there exists $n \in \omega$ such that $\xi < \alpha_n < \alpha$. Consequently, there is $q \in \mathbb{Q}$ such that $\langle \alpha, q \rangle \in D \cap U$. Thus $\langle \alpha, 0 \rangle \in \overline{D} = D$. But now the point $\langle \alpha, 0 \rangle$ is not isolated in D, which is impossible, since the set D is discrete. The equality $e(L, \mathcal{O}_{AB}) = \aleph_0$ is proved.

The inequality c < d will be considered later in this section. Now we compare the cardinal invariants of the standard topology and of the topology \mathcal{O}_{AB} .

Theorem 4. Let $\langle L, < \rangle$ be a dense linear ordering without end points and $A, B \subset L$ disjoint dense subsets of L. Then

- a) $w(L, \mathcal{O}_{<}) = d(L, \mathcal{O}_{<}) = d(L, \mathcal{O}_{AB});$
- b) $c(L, \mathcal{O}_{<}) = c(L, \mathcal{O}_{AB});$
- c) $\chi(L, \mathcal{O}_{<}) \geq \chi(L, \mathcal{O}_{AB});$
- d) $l(L, \mathcal{O}_{\leq}) \leq l(L, \mathcal{O}_{AB});$
- $e) e(L, \mathcal{O}_{<}) \leq e(L, \mathcal{O}_{AB}).$

Proof. Since $\mathcal{O}_{<} \subset \mathcal{O}_{AB}$ we have $d(L, \mathcal{O}_{<}) \leq d(L, \mathcal{O}_{AB})$, $c(L, \mathcal{O}_{<}) \leq c(L, \mathcal{O}_{AB})$, $l(L, \mathcal{O}_{<}) \leq l(L, \mathcal{O}_{AB})$ and $e(L, \mathcal{O}_{<}) \leq e(L, \mathcal{O}_{AB})$. Clearly, the density of L implies the first equality in a).

 $d(L, \mathcal{O}_{<}) \geq d(L, \mathcal{O}_{AB})$. If the set *D* is dense in $\langle L, \mathcal{O}_{<} \rangle$, then it intersects each open interval. Consequently, $D \cap [a, b] \neq \emptyset$, for each $[a, b] \in \mathcal{B}_{AB}$, so *D* is a dense set in the space $\langle L, \mathcal{O}_{AB} \rangle$.

 $c(L, \mathcal{O}_{\leq}) \geq c(L, \mathcal{O}_{AB})$. If \mathcal{C} is a cellular family in the space $\langle L, \mathcal{O}_{AB} \rangle$ then for each $C \in \mathcal{C}$ there are $a_C \in A$ and $b_C \in B$ such that $[a_C, b_C] \subset C$. Since L is Topologies generated by closed intervals

a dense ordering, $\{(a_C, b_C) : C \in \mathcal{C}\}$ is a cellular family in $\langle L, \mathcal{O}_{<} \rangle$ of size $|\mathcal{C}|$, so $|\mathcal{C}| \leq c(L, \mathcal{O}_{<})$.

 $\chi(L, \mathcal{O}_{<}) \geq \chi(L, \mathcal{O}_{AB})$. Let $x \in L$, $\operatorname{cf}((\leftarrow, x)) = \kappa$ and $\operatorname{cf}((x, \rightarrow)^*) = \lambda$. Then $\chi(x, (L, \mathcal{O}_{<})) = \kappa \cdot \lambda$, while the character of the point x with respect to the topology \mathcal{O}_{AB} is κ (if $x \in B$), λ (if $x \in A$) or $\kappa \cdot \lambda$ (if $x \in L \setminus (A \cup B)$). \Box

We remark that, according to Theorem 3, for the spaces $\langle L, \mathcal{O}_{<} \rangle$ and $\langle L, \mathcal{O}_{AB} \rangle$ the cardinal functions hd, hc, and hl are equal. In the following example we show that the inequalities given in the previous theorem can be strict.

Example 8. $l(L, \mathcal{O}_{<}) < l(L, \mathcal{O}_{AB}), \chi(L, \mathcal{O}_{<}) > \chi(L, \mathcal{O}_{AB})$ and $l(L, \mathcal{O}_{<}) < e(L, \mathcal{O}_{AB})$. Let the set $L = ((\omega_1 + 1) \times [0, 1)) \setminus \{\langle 0, 0 \rangle\}$ be ordered lexicographically, let A be the set of the elements of L having the second coordinate rational and let $B = L \setminus A$. Then it is easy to prove that $l(L, \mathcal{O}_{<}) = \aleph_0$, while $L = \bigcup_{\alpha < \omega_1} (\leftarrow, \langle \alpha, 0 \rangle) \cup [\langle \omega_1, 0 \rangle, \rightarrow)$ is an open cover of L having no countable subcover. Considering the point $a = \langle \omega_1, 0 \rangle$ we conclude that $\chi(a, (L, \mathcal{O}_{<})) = \aleph_1$, while $\chi(L, \mathcal{O}_{AB}) = \aleph_0$. Since the set $E = \{\langle \alpha, 0 \rangle : 0 < \alpha < \omega_1\}$ is closed and discrete in $\langle L, \mathcal{O}_{AB} \rangle$ we have $e(L, \mathcal{O}_{AB}) = \aleph_1 > l(L, \mathcal{O}_{<})$.

What about the inequality $c(L, \mathcal{O}_{AB}) < d(L, \mathcal{O}_{AB})$? For the answer we need the following fact.

Fact 2. If $\langle L, \rangle$ is a dense linear ordering without end points, then there are disjoint dense subsets $A, B \subset L$.

Proof. An interval (a, b) ⊂ L will be called stable if each its subinterval is of size |(a, b)|. Firstly, since there is no infinite decreasing sequence of cardinals, each interval in *L* contains a stable subinterval. Secondly, if the interval (a, b) is stable, then there are disjoint subsets A, B ⊂ (a, b) which are dense in (a, b). (If |(a, b)| = κ and if I_{α} , $\alpha < \kappa$, is an enumeration of all subintervals of (a, b), then we define $A = \{a_{\alpha} : \alpha < \kappa\}$ and $B = \{b_{\alpha} : \alpha < \kappa\}$ picking different a_{α} and b_{α} from $I_{\alpha} \setminus (\{a_{\beta} : \beta < \alpha\} \cup \{b_{\beta} : \beta < \alpha\})$. By Zorn's Lemma the partial ordering $\langle \mathbb{P}, \subset \rangle$, where $\mathbb{P} = \{\mathcal{I} : \mathcal{I} \text{ is a disjoint family of stable intervals}\}$ has a maximal element, say $\mathcal{I}^* = \{I_j : j \in J\}$. For $j \in J$, let A_j and B_j be disjoint dense subsets of I_j . The sets $A = \bigcup_{j \in J} A_j$ and $B = \bigcup_{j \in J} B_j$ are disjoint and we prove that they are dense subsets of *L*. If $a, b \in L$ and a < b, and if *I* is a stable subinterval of (a, b), then, by the maximality of \mathcal{I}^* we have $I \cap I_{j_0} \neq \emptyset$, for some $j_0 \in J$. Since $I \cap I_{j_0}$ is a subinterval of I_{j_0} it contains an element of A_{j_0} , thus $A \cap (a, b) \neq \emptyset$. Similarly, $B \cap (a, b) \neq \emptyset$.

Theorem 5. The following conditions are equivalent:

a) There exists a dense linear ordering without end points, $\langle L, < \rangle$, having disjoint dense subsets A and B such that $c(L, \mathcal{O}_{AB}) < d(L, \mathcal{O}_{AB})$;

b) \neg GSH (that is, there exists a linearly ordered continuum $\langle L, < \rangle$ satisfying $c(L, \mathcal{O}_{<}) < d(L, \mathcal{O}_{<})$).

Proof. (a \Rightarrow b) Let condition (a) hold. Then, by Theorem 4, there holds $c(L, \mathcal{O}_{<}) < d(L, \mathcal{O}_{<})$, so $\langle L, < \rangle$ is a dense $d(L, \mathcal{O}_{<})$ -Suslin line and its Dedekind completion is a $d(L, \mathcal{O}_{<})$ -Suslin continuum (see [14] p. 274).

 $(b \Rightarrow a)$ Let $\langle L, \langle \rangle$ be a κ -Suslin continuum. By Fact 2 there are disjoint dense sets $A, B \subset L$ and by Theorem 4 we have $c(L, \mathcal{O}_{AB}) < d(L, \mathcal{O}_{AB})$. \Box

Similarly, considering ccc linear orderings we have:

Theorem 6. $SH \Leftrightarrow For each dense linear ordering without end points, <math>\langle L, < \rangle$, and each disjoint dense sets $A, B \subset L$ there holds: if $c(L, \mathcal{O}_{AB}) = \aleph_0$ then $d(L, \mathcal{O}_{AB}) = \aleph_0$.

It is well known that SH is independent even of ZFC+CH (Namely, Jensen showed the consistency of ZFC+GCH+SH, while \neg SH follows from V = L.)

Now a few words on metrizability.

Theorem 7. If $|A| = |B| = \aleph_0$, then the space $\langle L, \mathcal{O}_{AB} \rangle$ is metrizable. If the space $\langle L, \mathcal{O}_{AB} \rangle$ is metrizable, then |A| = |B|.

Proof. If $|A| = |B| = \aleph_0$, then $w(L) = \aleph_0$ and by the Urison Metrization Theorem, (see [3] Theorem 4.2.9), every second countable Tychonov space is metrizable.

If L is a metrizable space, then w(L) = d(L), so, by Theorem 3, we have $\max\{|A|, |B|\} = \min\{|A|, |B|\}$.

In the following examples we will show that the reversed implications need not to be valid.

Example 9. For the space defined in Example 3 we have $|A| = |B| = \mathfrak{c}$, so $w(L) = \mathfrak{c}$. But this space is separable, so it is not metrizable.

Example 10. The space $Q(\kappa)$ defined in Example 5 can be represented as a sum of spaces $\{\alpha\} \times \mathbb{Q}$, where $\alpha \in \kappa$. These spaces are metrizable (Theorem 7), hence $Q(\kappa)$, as the sum of metrizable spaces, is metrizable, while $|A| = |B| = \kappa$.

We note that some properties of the spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$ when $L = \mathbb{R}$ can be found in [6].

Acknowledgment

Research is supported by the MNŽS (Project 1768: Forcing, Model Theory and Set-theoretic Topology).

References

 Alexandroff, P., Uryson, P., Mémoire sur les espaces topologiques compacts. Amsterdam: Verh. Akad. Wetensch. 14 1929.

- [2] Čech, E., Topological spaces, (Revised edition by Z. Frolk and M. Katětov. Scientific editor, V. Pták. Editor of the English translation, C. O. Junge), Prague: Publishing House of the Czechoslovak Academy of Sciences; London, New York, Sydney: Interscience Publishers John Wiley & Sons 1966.
- [3] Engelking, R., General Topology. Berlin: Heldermann Verlag 1989.
- [4] Hodel, R., Cardinal functions I. In: Handbook of Set-Theoretic Topology (K. Kunen, J. E. Vaughan, eds.), pp. 1-61. Amsterdam: North-Holland 1984.
- [5] Juhász, I., Cardinal functions in topology. Amsterdam: Mathematisch Centrum, 1971.
- [6] Kurilić, M. S., Pavlović, A., A consequence of the Proper Forcing Axiom in topology. Publ. Math. Debrecen 64/1-2 (2004), 15-20.
- [7] Lutzer, D., On generalized ordered spaces. Dissertationes Math. Rozprawy Mat. 89 (1971), 32pp.
- [8] Mansfield, M. J., Some generalizations of full normality. Trans. Amer. Math. Soc. 86 (1957), 489-505.
- [9] Meyer, P. R., Wilson, R. G., Cardinal functions on topological spaces satisfying order conditions. Houston J. Math. 5 (1979), No. 1, 107-118.
- [10] Skula, L., Hereditary m-separability of an ordered space. Časopis Pěst. Mat. 90 (1965), 451-455.
- [11] Sorgenfrey, R., On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632.
- [12] Steen, L. A., A direct proof that a linearly ordered space is hereditarily collectionwise normal. Proc. Amer. Math. Soc. 24 (1970), 727-728.
- [13] Todorčević, S., Aronszajn orderings. Djuro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57(71)(1995), 29-46.
- [14] Todorčević, S., Trees and Linearly Ordered Sets. In: Handbook of Set-Theoretic Topology, (K. Kunen, J. E. Vaughan, eds.), pp. 235-293. Amsterdam: North-Holland 1984.

Received by the editors May 30, 2005