
Novi Sad J. Math.
Vol. 35, No. 1, 2005, 187-195

TOPOLOGIES GENERATED BY CLOSED INTERVALS

Miloš S. Kurilić1 and Aleksandar Pavlović1

Abstract. If 〈L, <〉 is a dense linear ordering without end points and
A and B disjoint dense subsets of L, then the topology OAB on the set L
generated by closed intervals [a, b], where a ∈ A and b ∈ B, is finer than
the standard topology, O<, generated by all open intervals and 〈L,OAB〉
is a GO-space. The basic properties of the topology OAB (separation
axioms, cardinal functions, metrizability) are investigated and compared
with the corresponding results concerning the standard topology.
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1. Introduction

If 〈L,<〉 is a linear order there are several ways to define a topology on the
set L using the ordering <. Firstly, the standard topology, O<, is generated
by the family of all open intervals. Then the space 〈L,O<〉 is called a linearly
ordered topological space (LOTS). Secondly, following the idea of Sorgenfrey (see
[11]), we can observe the topology generated by the family of half-open intervals,
i.e. the sets of the form [x, y), where x, y ∈ L. The third way is to generate
a topology by closed intervals [a, b], where a ∈ A and b ∈ B and where A and
B are some subsets of L. Some examples of such a construction are “the two
arrows space” of Alexandroff and Uryson ([1], see [3]) and some subspaces of
the spaces constructed by Todorčević in [13].

Throughout the paper 〈L,<〉 will be a dense linear order without end points
and A and B disjoint dense subsets of L. Under these assumptions the family

BAB = {[a, b] : a ∈ A ∧ b ∈ B ∧ a < b}

is a base for a topology on the set L, say OAB . (The condition A ∩ B = ∅
ensures the space 〈L,OAB〉 has no isolated points and the density of the sets A
and B provides the space is Hausdorff.) The aim of the paper is to investigate
topological properties of spaces of the form 〈L,OAB〉.
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2. Suborderability and separation axioms

It is easy to prove that, in the spaces of the form 〈L,OAB〉, all open intervals
are open sets and that the intervals [a, b], where a ∈ A and b ∈ B, are clopen.
So, we have

Fact 1. Each space of the form 〈L,OAB〉 is zero-dimensional, non-compact and
the topology OAB is finer than the standard topology, O<, on L.

Consequently, these spaces are T3 1
2
. But in Theorem 2 we will show that

they have much stronger separation properties.
We remind the reader that a topological space 〈X,O〉 is called a suborderable

space if it can be topologically embedded in some LOTS and that a Hausdorff
space 〈X,O〉 is called a generalized orderable (briefly GO-)space if there exists
a linear order < on X such that O< ⊂ O and if at each point a neighborhood
base consists of intervals. In [2] Čech showed that GO-spaces are the same as
suborderable spaces. Now we have

Theorem 1. Each space of the form 〈L,OAB〉 is a GO-space.

Proof. Let Ã = A× {1}, B̃ = B × {−1}, K = Ã ∪ (L× {0}) ∪ B̃ and

L̃ = Ã ∪
(
(L \ (A ∪B))× {0}

)
∪ B̃ = K \

(
(A ∪B)× {0}

)
.

Let ≺ be the lexicographic order on the set K. One can easily verify that Ã
and B̃ are dense subsets of the set L̃, and therefore L̃ is a dense linear ordering.
Also, L̃ has no end points. Let OÃB̃ be the topology on the set L̃ generated by
the base BÃB̃ consisting of all sets of the form

[〈a, 1〉, 〈b,−1〉]L̃ = {x ∈ L̃ : 〈a, 1〉 � x � 〈b,−1〉},

where a ∈ A, b ∈ B and a < b.
It can be easily verified that the mapping π1 : 〈L̃,OÃB̃〉 → 〈L,OAB〉 given

by π1(〈x, i〉) = x is a homeomorphism.
Let O≺ be the standard topology on K (generated by the ordering ≺), and

(O≺)L̃ the corresponding induced topology on L̃. Let us show that

OÃB̃ = (O≺)L̃.

(⊂) For a ∈ A, b ∈ B where a < b it is clear that

[〈a, 1〉, 〈b,−1〉]L̃ = (〈a, 0〉, 〈b, 0〉)K ∩ L̃ ∈ (O≺)L̃,

and therefore BÃB̃ ⊂ (O≺)L̃, which completes the proof of the first inclusion.
(⊃) Let P≺ be the subbase of the topology O≺ consisting of all sets of the

form (x,→)K and (←, x)K , where x ∈ K. It if sufficient to show that

(P≺)L̃ = {P ∩ L̃ : P ∈ P≺} ⊂ OÃB̃ .
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If x ∈ L̃, then (x,→)K∩L̃ = (x,→)L̃ ∈ OÃB̃ and (←, x)K∩L̃ = (←, x)L̃ ∈ OÃB̃ .
Otherwise, P ∩ L̃ ∈ OÃB̃ since(

〈a, 0〉,→
)

K
∩ L̃ =

[
〈a, 1〉,→

)
L̃
,

(
←, 〈a, 0〉

)
K
∩ L̃ =

(
←, 〈a, 1〉

)
L̃
,

(
〈b, 0〉,→

)
K
∩ L̃ =

(
〈b,−1〉,→

)
L̃
,

(
←, 〈b, 0〉

)
K
∩ L̃ =

(
←, 〈b,−1〉,

]
L̃
,

which completes the proof of the second inclusion. 2

We note that LOTS are collectionwise normal (see [8] or [12]), hereditarily
normal and that some of them are not perfectly normal (T6) spaces (see [3]
3.12.3.d). Since, by [7], GO-spaces are collectionwise normal and hereditarily
normal, by Theorem 1 we have

Theorem 2. Each space of the form 〈L,OAB〉 is collectionwise normal and
hereditarily normal.

Generally, GO-spaces need not to be perfectly normal and the next example
shows the same for the spaces of the form 〈L,OAB〉.

Example 1. A space 〈L,OAB〉 which is not perfectly normal. Let K = [0, 1]2 \
{〈0, 0〉, 〈1, 1〉} and let < be the lexicographic order on K. Then, clearly, 〈K,<〉
is a dense linear order without end points. Let us divide the set of rational
numbers from the interval (0,1) into two disjoint sets Q1 and Q2 dense in (0, 1).
Clearly, the sets A = [0, 1] × Q1 and B = [0, 1] × Q2 are disjoint order-dense
subsets of K and we will prove that the space 〈K,OAB〉 is not perfectly normal.

It can be easily verified that, for 0 < x < 1, neighborhood bases at points
〈x, 0〉 and 〈x, 1〉 are B(〈x, 0〉) = {(〈y, 0〉, 〈x, q2〉] : 0 < y < x ∧ q2 ∈ Q2} and
B(〈x, 1〉) = {[〈x, q1〉, 〈y, 1〉) : q1 ∈ Q1 ∧ 1 > y > x} respectively. The set
[0, 1]× (0, 1) is open. Let us suppose that it can be represented as a countable
union of closed sets. Then some of them, say F , intersects c many sets of shape
{x} × [0, 1].

Let F1 = π1[F ]. Clearly |F1| = c and F1 ⊂ [0, 1]. So, regarding the standard
topology on [0, 1], there exists an accumulation point x ∈ (0, 1) of the set F1

and also a sequence 〈xn : n ∈ ω〉 of the elements of the set F1 which converges
to the point x. Without loss of generality we can assume that 〈xn : n ∈ ω〉 is
an increasing, or a decreasing sequence.

If 〈xn : n ∈ ω〉 is an increasing sequence then we will show that the set F
intersects arbitrary basic neighborhood U = (〈y, 0〉, 〈x, q2〉] of the point 〈x, 0〉.
Since y < x there exists xn such that y < xn < x. Also, there exists a point
z ∈ ({xn} × (0, 1)) ∩ F , and clearly z ∈ U . Since F is a closed set, it contains
all of its accumulation points, so 〈x, 0〉 ∈ F , which contradicts the fact that
F ⊂ [0, 1]× (0, 1).

Analogously, if 〈xn : n ∈ ω〉 is a decreasing sequence, it can be proved that
〈x, 1〉 ∈ F , a contradiction again.



190 M. S. Kurilić, A. Pavlović

3. Cardinal functions

The basic facts concerning cardinal functions can be found in [3] or [4]. If
L is a LOTS, then |L| ≥ w = nw ≥ d = hd ≥ c = hc = hl ≥ χ = ψ = t and
c ≥ l ≥ e (see [3] p. 222), and, in addition, for dense LOTS we have nw = d. In
this section we firstly investigate these cardinal invariants of the topology OAB

and compare them with the corresponding invariants of the standard topology.
After that we give some notes on metrizability.

Theorem 3. The relations between the basic cardinal functions of the spaces of
the form 〈L,OAB〉 are described by the following diagram.

�� �χ = ψ = t
�� �e

�� �l

�
�

�
�

�	

@
@R

@
@R

�� �c = hc = hl
?

�� �d = hd
?

�� �min{|A|, |B|}
?

�� �w = nw = max{|A|, |B|}
?

�� �|L|

Proof. It is known (see [4] or [3] p. 225) that the following inequalities hold
in each topological space: nw ≤ w, c ≤ d ≤ hd, c ≤ hc ≤ hl, e ≤ l ≤ hl,
ψ ≤ χ and t ≤ χ. Clearly, in spaces 〈L,OAB〉 we have d ≤ min{|A|, |B|} ≤
max{|A|, |B|} ≤ |L|.

w = max{|A|, |B|}. Obviously, w ≤ |BAB | = max{|A|, |B|}. Let us suppose
that w = λ < max{|A|, |B|} = |A| = κ. Then, by [3], Theorem 1.1.15, there
exists a base B′ ⊂ BAB such that |B′| = λ. Let B′ = {[ai, bi] : i ∈ λ}, let
a′ ∈ A\{ai : i ∈ λ} and let b′ be an arbitrary element of B greater than a′. The
set [a′, b′] is open, but it can not be represented as the union of some subfamily
of B′. A contradiction. If max{|A|, |B|} = |B|, the proof is similar.

nw ≥ w. Suppose |A| ≤ |B| and let N be a net in the space 〈L,OAB〉. If
b ∈ B, then there is a ∈ A such that a < b and, clearly, [a, b] is a neighborhood
of b. Since N is a net we can choose Nb ∈ N such that b ∈ Nb ⊂ [a, b]. If
b, b′ ∈ B and b < b′, then b′ ∈ Nb′ \ Nb so |N | ≥ |B| = max{|A|, |B|} = w. If
|A| > |B| the proof is similar.
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The equality d = hd for GO-spaces has been proved by Skula in [10]. Lutzer
in [7] has obtained that c = hl in GO spaces. The proof of χ ≤ c and ψ = χ = t
for GO-spaces can be found in [9] or [5]. 2

In the following examples we show that, in ZFC, all the inequalities from
the diagram, except c < d, can be strict.

Example 2. w < |L|. If we divide the set of rational numbers into two disjoint
dense subsets Q1 and Q2, then w(〈R,OQ1Q2〉) = ℵ0 < c = |R|.

Example 3. d < min{|A|, |B|}. If we divide the set of irrational numbers into
two disjoint dense subsets A and B of cardinality c, then d(〈R,OAB〉) = |Q| =
ℵ0 < c = |A| = |B|.

Example 4. l < c. Let us consider the space K defined in Example 1. Since
{(〈x, 0〉, 〈x, 1〉) : x ∈ [0, 1]} is a c-sized cellular family, we have c(K) = c.

LetK =
⋃

i∈I [ai, bi], where [ai, bi] ∈ BAB , let G = ((0, 1]×{0})∪([0, 1]×{1})
and J = {i ∈ I : [ai, bi] ∩ G 6= ∅}. Then for i ∈ J we have π1[[ai, bi] ∩
G] = [xi, yi][0,1], where xi = π1(ai) and yi = π1(bi) and 0 ≤ xi < yi ≤ 1.
Clearly [0, 1] =

⋃
i∈J [xi, yi] and there exists a countable set J ′ ⊂ J such that⋃

i∈J(xi, yi) =
⋃

i∈J′(xi, yi). For the set P = [0, 1] \
⋃

i∈J(xi, yi) we have P ⊂
{xi : i ∈ J} ∪ {yi : i ∈ J}. If xi, xj ∈ P ∩ {xi : i ∈ J} and xi < xj ,
then yi ≤ xj (since otherwise xj 6∈ P ) so (xi, yi) ∩ (xj , yj) = ∅. Consequently
P ∩ {xi : i ∈ J} (and similarly P ∩ {yi : i ∈ J}) is a countable set, so |P | ≤ ℵ0.
Since

⋃
i∈J′(xi, yi) × [0, 1] ⊂

⋃
i∈J′ [ai, bi], for a point 〈x, y〉 ∈ K \

⋃
i∈J′ [ai, bi]

we have x ∈ P . The set P ×Q is countable, so, it remains to cover such points
〈x, y〉, where y 6∈ Q. For such 〈x, y〉 there are q1 ∈ Q1 and q2 ∈ Q2 such that
〈x, y〉 ∈ (〈x, q1〉, 〈x, q2〉) ⊂ [ai, bi] for some i ∈ I. Since there are countably many
open sets of the form (〈x, q1〉, 〈x, q2〉), where x ∈ P , q1 ∈ Q1 and q2 ∈ Q2, all
the points 〈x, y〉 ∈ K \

⋃
i∈J′ [ai, bi] can be covered by countably many intervals

[ai, bi]. Thus l(K,OAB) = ℵ0.

Example 5. χ < c and χ < l. Let κ be an infinite cardinal. The set Q(κ) =
κ×Q with the lexicographic order < is a dense linearly ordered set without end
points. Let us divide the set of rational numbers into two disjoint dense subsets
Q1 and Q2. The sets A = κ×Q1 and B = κ×Q2 are dense in Q(κ). Clearly, the
sets Qα = {α}×Q, α ∈ κ, are open in the space 〈Q(κ),OAB〉 and Qα ∩Qβ = ∅
for α 6= β, so Q(κ) =

⋃
α<κQα. This implies l(Q(κ)) = c(Q(κ)) = κ.

Let x = 〈α, q〉 ∈ Q(κ). Clearly, the family B(x) = {[〈α, a〉, 〈α, b〉] : a ≤ q ≤
b ∧ a ∈ Q1 ∧ b ∈ Q2} is a countable neighborhood base at the point x, so, we
have χ(Q(κ)) = ℵ0.

Now, for κ > ℵ0 we have χ(Q(κ)) < c(Q(κ)) and χ(Q(κ)) < l(Q(κ)).

Example 6. l < χ. Let the set L = ((ω1 + 1) × [0, 1)Q) \ {〈0, 0〉} be ordered
lexicographically and let Q1, Q2 ⊂ (0, 1)Q be disjoint sets dense in (0, 1)Q. Then,
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clearly, the sets A = (ω1 + 1)×Q1 and B = (ω1 + 1)×Q2 are dense subsets of
L.

Firstly, χ(〈ω1, 0〉) > ℵ0, since if the point 〈ω1, 0〉 would have countable
character, then it would have a neighborhood base of the form {[an, bn] : n ∈ ω}
and the set {π1(an) : n ∈ ω} would be a cofinal subset of ω1, which is impossible.

Secondly, we show l(L) = ℵ0. let L =
⋃

i∈I [ai, bi] where [ai, bi] ∈ BAB and let
〈ω1, 0〉 ∈ [ai0 , bi0 ] = [〈α, p〉, 〈ω1, q〉]. Then α < ω1 and consequently L \ [ai0 , bi0 ]
is a countable set which can be covered by countably many members of the
given cover.

Example 7. e < l. Let the set L = (ω1 × [0,→)Q) \ {〈0, 0〉} (that is L =⋃
α<ω1

Qα where Q0 = {0}× (0,→)Q and Qα = {α}× [0,→)Q, for 0 < α < ω1)
be ordered lexicographically and let the sets A′, B′ ⊂ (0,→)Q be disjoint and
dense in (0,→)Q. Then, clearly, the sets A = ω1×A′ and B = ω1×B′ are dense
in L and we observe the space 〈L,OAB〉. Since the open cover L =

⋃
x∈L(←, x)L

does not contain a countable subcover, we have l(L,OAB) = ℵ1.
Suppose that there exists a closed and discrete subset D ⊂ L such that

|D| = ℵ1. Since |Qα| = ℵ0, the set C = {α < ω1 : D ∩ Qα 6= ∅} is of
cardinality ℵ1. Let 〈αn : n ∈ ω〉 be an increasing sequence of elements of C
and α = sup{αn : n ∈ ω}. If U is a neighborhood of the point 〈α, 0〉 then there
are a = 〈ξ, q〉 ∈ A and b ∈ B such that 〈α, 0〉 ∈ [a, b] ⊂ U . Clearly we have
ξ < α so there exists n ∈ ω such that ξ < αn < α. Consequently, there is q ∈ Q
such that 〈αn, q〉 ∈ D ∩ U . Thus 〈α, 0〉 ∈ D = D. But now the point 〈α, 0〉 is
not isolated in D, which is impossible, since the set D is discrete. The equality
e(L,OAB) = ℵ0 is proved.

The inequality c < d will be considered later in this section. Now we compare
the cardinal invariants of the standard topology and of the topology OAB .

Theorem 4. Let 〈L,<〉 be a dense linear ordering without end points and
A,B ⊂ L disjoint dense subsets of L. Then

a) w(L,O<) = d(L,O<) = d(L,OAB);
b) c(L,O<) = c(L,OAB);
c) χ(L,O<) ≥ χ(L,OAB);
d) l(L,O<) ≤ l(L,OAB);
e) e(L,O<) ≤ e(L,OAB).

Proof. Since O< ⊂ OAB we have d(L,O<) ≤ d(L,OAB), c(L,O<) ≤ c(L,OAB),
l(L,O<) ≤ l(L,OAB) and e(L,O<) ≤ e(L,OAB). Clearly, the density of L
implies the first equality in a).

d(L,O<) ≥ d(L,OAB). If the set D is dense in 〈L,O<〉, then it intersects
each open interval. Consequently, D ∩ [a, b] 6= ∅, for each [a, b] ∈ BAB , so D is
a dense set in the space 〈L,OAB〉.

c(L,O<) ≥ c(L,OAB). If C is a cellular family in the space 〈L,OAB〉 then
for each C ∈ C there are aC ∈ A and bC ∈ B such that [aC , bC ] ⊂ C. Since L is
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a dense ordering, {(aC , bC) : C ∈ C} is a cellular family in 〈L,O<〉 of size |C|,
so |C| ≤ c(L,O<).

χ(L,O<) ≥ χ(L,OAB). Let x ∈ L, cf((←, x)) = κ and cf((x,→)∗) = λ.
Then χ(x, (L,O<)) = κ · λ, while the character of the point x with respect to
the topology OAB is κ (if x ∈ B), λ (if x ∈ A) or κ · λ (if x ∈ L \ (A ∪B)). 2

We remark that, according to Theorem 3, for the spaces 〈L,O<〉 and 〈L,OAB〉
the cardinal functions hd, hc, and hl are equal. In the following example we
show that the inequalities given in the previous theorem can be strict.

Example 8. l(L,O<) < l(L,OAB), χ(L,O<) > χ(L,OAB) and l(L,O<) <
e(L,OAB). Let the set L = ((ω1 +1)× [0, 1)) \ {〈0, 0〉} be ordered lexicographi-
cally, let A be the set of the elements of L having the second coordinate rational
and let B = L \ A. Then it is easy to prove that l(L,O<) = ℵ0, while L =⋃

α<ω1
(←, 〈α, 0〉) ∪ [〈ω1, 0〉,→) is an open cover of L having no countable sub-

cover. Considering the point a = 〈ω1, 0〉 we conclude that χ(a, (L,O<)) = ℵ1,
while χ(L,OAB) = ℵ0. Since the set E = {〈α, 0〉 : 0 < α < ω1} is closed and
discrete in 〈L,OAB〉 we have e(L,OAB) = ℵ1 > l(L,O<).

What about the inequality c(L,OAB) < d(L,OAB)? For the answer we need
the following fact.

Fact 2. If 〈L,<〉 is a dense linear ordering without end points, then there are
disjoint dense subsets A,B ⊂ L.

Proof. An interval (a, b) ⊂ L will be called stable if each its subinterval is of
size |(a, b)|. Firstly, since there is no infinite decreasing sequence of cardinals,
each interval in L contains a stable subinterval. Secondly, if the interval (a, b)
is stable, then there are disjoint subsets A,B ⊂ (a, b) which are dense in (a, b).
(If |(a, b)| = κ and if Iα, α < κ, is an enumeration of all subintervals of (a, b),
then we define A = {aα : α < κ} and B = {bα : α < κ} picking different aα

and bα from Iα \ ({aβ : β < α} ∪ {bβ : β < α}.) By Zorn’s Lemma the partial
ordering 〈P,⊂〉, where P = {I : I is a disjoint family of stable intervals} has a
maximal element, say I∗ = {Ij : j ∈ J}. For j ∈ J , let Aj and Bj be disjoint
dense subsets of Ij . The sets A =

⋃
j∈J Aj and B =

⋃
j∈J Bj are disjoint and

we prove that they are dense subsets of L. If a, b ∈ L and a < b, and if I is a
stable subinterval of (a, b), then, by the maximality of I∗ we have I ∩ Ij0 6= ∅,
for some j0 ∈ J . Since I ∩ Ij0 is a subinterval of Ij0 it contains an element of
Aj0 , thus A ∩ (a, b) 6= ∅. Similarly, B ∩ (a, b) 6= ∅. 2

Theorem 5. The following conditions are equivalent:
a) There exists a dense linear ordering without end points, 〈L,<〉, having

disjoint dense subsets A and B such that c(L,OAB) < d(L,OAB);
b) ¬ GSH (that is, there exists a linearly ordered continuum 〈L,<〉 satisfying

c(L,O<) < d(L,O<)).
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Proof. (a ⇒ b) Let condition (a) hold. Then, by Theorem 4, there holds
c(L,O<) < d(L,O<), so 〈L,<〉 is a dense d(L,O<)-Suslin line and its Dedekind
completion is a d(L,O<)-Suslin continuum (see [14] p. 274).

(b ⇒ a) Let 〈L,<〉 be a κ-Suslin continuum. By Fact 2 there are disjoint
dense sets A,B ⊂ L and by Theorem 4 we have c(L,OAB) < d(L,OAB). 2

Similarly, considering ccc linear orderings we have:

Theorem 6. SH ⇔ For each dense linear ordering without end points, 〈L,<〉,
and each disjoint dense sets A,B ⊂ L there holds: if c(L,OAB) = ℵ0 then
d(L,OAB) = ℵ0.

It is well known that SH is independent even of ZFC+CH (Namely, Jensen
showed the consistency of ZFC+GCH+SH, while ¬SH follows from V = L.)

Now a few words on metrizability.

Theorem 7. If |A| = |B| = ℵ0, then the space 〈L,OAB〉 is metrizable. If the
space 〈L,OAB〉 is metrizable, then |A| = |B|.

Proof. If |A| = |B| = ℵ0, then w(L) = ℵ0 and by the Urison Metrization
Theorem, (see [3] Theorem 4.2.9), every second countable Tychonov space is
metrizable.

If L is a metrizable space, then w(L) = d(L), so, by Theorem 3, we have
max{|A|, |B|} = min{|A|, |B|}. 2

In the following examples we will show that the reversed implications need
not to be valid.

Example 9. For the space defined in Example 3 we have |A| = |B| = c, so
w(L) = c. But this space is separable, so it is not metrizable.

Example 10. The space Q(κ) defined in Example 5 can be represented as a
sum of spaces {α}×Q, where α ∈ κ. These spaces are metrizable (Theorem 7),
hence Q(κ), as the sum of metrizable spaces, is metrizable, while |A| = |B| = κ.

We note that some properties of the spaces of the form 〈L,OAB〉 when L = R
can be found in [6].
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