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INTEGRATED C-SEMIGROUPS OF UNBOUNDED
LINEAR OPERATORS IN BANACH SPACES

Ratko Kravarusié¢!, Milorad Mijatovié?

Abstract. A family of unbounded linear operators (S(t)):>0 in the
Banach space (E, || - ||) which satisfies the composition law for an inte-
grated C'—semigroup on a domain D C FE is introduced and investigated.
The Banach spaces (E,, || - ||»), w > 0, are used for the construction of a
family of infinitesimal generators A“, w > 0 which determine an operator
A called the infinitesimal generator of (S(¢)):>0-
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1. Introduction

Integrated semigroups of unbounded linear operator in Banach spaces have been
studied in [7], [8]. This paper is a continuation of these studies. Here we use
also some results of [9], [15], for n—times integrated C'—semigroups and mild
integrated C'—existence families of bounded operators.

We proved in [7] that any integrated semigroup of unbounded linear oper-
ators under additional conditions is an exponentially bounded integrated semi-
group on a subspace with a possibly stronger norm. We obtain this result for
the integrated C'—semigroups of unbounded operators with additional condition
for the operator C.

2. Structural properties

Let (S(t))t>0 be a family of unbounded linear operators in a Banach space
(E,]| -]) and let C : D(C') — E be an unbounded liner operator. Denote by
D(S(t)) the domain of S(t) and set

(1)

D= )

s)S(t)x = f( (r +1t) — S(r))Czdr
=S5(t)S(s)x for t > 0.

S(0)z =
S(t)x is rongly continuous for ¢ > 0,
S(t)Cx = CS(t)x for t > 0,

(
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If D # {0}, then (S(¢))¢>0 is said to be an integrated C'—semigroup of unbounded
linear opetarors in E. Note that D C S(C').
The set

N ={zeD; S{t)z=0, t>0}

is called a degeneration space of an integrated C'—semigroup of unbounded linear
operators (S(t))i>0. A semigroup (S(t))¢>o is called nondegenerate it N' = {0}
and it is called degenerate otherwise.

Lemma 1. If an integrated C—semigroup of bounded linear operators (S(t))i>o
is nondegenerate, then C' is injective (cf. [15], the proof of Lemma 2.2).

Definition 1. For w € RT = (0,00), x € [ D(S(t)), let

>0
(2) ]l == sup e HS(t)a|
and set
(3) E, ={ze€D; |z], < oo}.
Then, || - |lo s a norm on E,,.

Let E,, denote the closure of the set E,, under the norm || - || and S(t)|E., is
the part of S(t) in E,, i.e.

(4) D(S(t)|E,) = {x € E,; v € D(S(t)) and S(t)x € E,}.

In this paper we assume that for all w > 0, C' is bounded linear operator
under the norm || - || and ||C||, = M.

Proposition 1.

a) If w; < wy and x € D, then ||z||w, < ||Z]lw,. Hence, if w1 < wa then
E, CE,,.

b) If x € E,, then S(t)x € E,, and

2 w
(5) [S®t)z]lw < —Moe o -
Proof.
a) Let wy < wg and x € D. Then, we have
[2]lw, =supe *||S(t)z||
>0
= supe . e(rm@2)t|| S(1)z|| < sup er||S()a]| = ||, -
>0 >0

Thus, Ew1 C Ewg if w; < ws.
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b) Let x € E,,. Then

[S(t)zll = supe™*||S(s)S(t)z]| = e~ sup e~ S(s)S (1)
s>0 s>0

= e¥tsupe st H fS(S(r +1) — S(T))derH
>0 0

S

< e*tsupe vt ( / e?Tew(rtt) |S(r + t)Cx||dr + e~ "

s>0

e“”'e_‘”||S(r)Cx||dr)

S
< e“!|Czl|, supe™“* ( / e dr + e
s>0 0

ewdr>

s

0 0
s

0
s

< M,e“t||z]|, supe (1 + e*“”)/ewdr
s>0 0

1
= Mye*!||z]|wsup — e “5(1 +e 9 (e*s — 1)
s>0 W

1 2
= M e“"||z||,sup — (1 + e*wt)(l —e W) < — Mwe“’t||x||w .
s>0 W w

Remark 1. By the proof of Proposition 1 b), we have

—w(tts 2M.,
e IS () S (W] < == [l

and ()
2M e\t T8
15(s)S(t)z]| < ————llzl..-

The following additional assumption will be needed throughout the paper.
(6) For every w > 0 and for every x € D, there exists K, > 0 such that
2]l = Kollz]].

Remark 2. If for an integrated C'—semigroup of unbounded linear operators
(S(t))t>0 there exist to > 0 and Ky, > 0 such that

(7) [S(to)z| = Ky, |lzll, =€D,
then, for every w > 0

[2]|lw = supe™ ! [|S(t)z| > e™*||S(to)x|| > K,|lz||, = € D,
t>0

where K, = e “0 K} .
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Theorem 1. Let (S(t))i>0 be an integrated C—semigroup of unbounded linear
operators in E such that:

(1) (S(t))i>0 is nondegenerate,

(ii) C is the bounded linear operator under the norm || - ||, in E,,

(#i3) condition (6) holds.

Then:

a) Let w > 0 be fived. Suppose that for every t > 0, S(t)|E,, is a closed
operator in E,,.
Then (E,, || - |lw) i a Banach space.

b) If S(t) is a closed operator in E, then S(t)|E,, is a closed operator in E,,
fort >0 and w > 0.

Proof.

a) Recall the assumption:

If {z,} € D(S(t)|E.), ||vn—2| — 0and ||S(t)z, —y|| — 0 as n — oo, then
r € D(S(t)|E,) and S(t)x = y.

Suppose {z,} C E, is a Cauchy sequence with respect to the norm || - ||,.
For every € > 0 there exists a number N > 0 such that

(8) |Zm — Znllw = sup e |S#t)zm — S(t)z,| <&, myn > N.
>0

By (6) we have ||z, — 5] < , m,n > N. Hence, there exists € E such

£
K,
that ||z, — x| — 0 as n — co. By (8)

(9) eSO — S(E)zall < & ¢ 0, myn > N,

that is, for ¢t > 0, {e7“!*S(t)xy >0 is a Cauchy sequence in the norm of E.
Therefore, for every ¢t > 0 there exists y; € E such that ||e"“!*S(t)z,, — v — 0
asn — oo. Fix n > N in (9) and let m — oo. Then,

(10) le™* S(t)zn — gl <e.

In (10) N is independent of . B

Since S(t)|E,, is closed for t > 0, the same holds for e=“*S(t)|E,, t > 0.
This implies € D(e”“'S(t)|E,) = D(S(t)|E,) and y; = e~ “*S(t)xz. Now, by
(10)

(11) e S(t)an — S(Hall <2, n> N, ¢ 0.
This implies ||z, — z||o < &, for n > N and ||z, — 2|, — 0 as n — oc.

Consequently, ||z]l, < co.
It remains to prove that € D. Since z,, € D by (1), we have

S

(12) S(5)S () = / (S(r+ 1) = S(r))Candr |
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By Remark 1 we have

2Mwew(t+s)
15(s)St)an = S(5)S ()] < —————llzn — @l -

Now, fix s, > 0. Then by (5)

|S(t)Cx,, — S(t)Cx|| < Mye* ||z, — ||, -

It implies

H / (S(r+ ) — S(r))Cndr — / (S(r+1) — S(r))Cadr

0 0
< 180 +0) = Se)C(en - o)ar
0
< Mo M ( w(s+t) +ews)||xn _l'”w S 0asn — 00.
w
Further
(13) 1S (s) / (r4+t)—S(r))Czxdr|| - 0asn — co.
0

Since [|S(t)zn, — S(t)z|| < e*!||x,, — 2|, and ||z, — 2], — 0 as n — oo, we have
IIS(#)xn — S(t)z|| — 0 as n — oo. On the other hand S(s)|E,, is closed in E,,,
by (13), we obtain

S

S(t)x € D(S(s)) and S(s)S(t)x = /(S(r +t) — S(r))Cxdr.

0
Let t; > 0. Then,
[S(t)x = St)zll < ISE)z — S(E)anll + [[S(E)zn — S(t1)za|l
(14) HIS(t)an — Stth)al| < e, — ]l
+HIS()wn — S(t)zall + e lzn — 2l -
For € > 0 and n sufficiently large choose § > 0 such that e“! < e¥!* + ¢ and

|S(t)xn — S(t1)zy| <e, for O< |t —t1] <0.

Then (14) follows that S(¢)x is strongly continuous for ¢ > 0.
Clearly, it holds

[1S@)Cz — CSH)z[| < [|S(#)Cx = SE)Cwn + [|CS(E)2n — CS(t)2]|
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2M2ewt
wk,,

2M,,

< Mwe‘”tllﬂ?n - IHw + ok
w

Jon = @llo = Mue (14 222 ) 2 — allu < e

for n sufficiently large.
It is easy to see that

15(0)z]| = [[S(0)z = SO)zn|| < [lz - znllo <€

for n sufficiently large. Hence S(0)z = 0 and = € D.

b) We have S(t)|E, C S(t), t > 0, so if S(t) is closed, then S(¢)|E,, is
closable, with the closure S(t)|E,. If z € D(S(t)|E,), then there is a sequence
{zn} C D(S(t)|E,), and y € E,, such that ||z, —z|| — 0 and ||S(t)z,—y| — 0 as
n — oo. Then x € F,, and since S(t) is closed, z € D(S(t)) and S(t)x =y € E,,.
Thus x € D(S(t)|E,), and S(t)|E,, is a closed operator in E,,. O

3. Family of C'—pseudoresolvents

In this section we suppose that for a nondegenerate integrated C'—semigroups
(S(t))t>0 of unbounded linear operators for every w > 0 hold:

(1) The operator C is bounded under the norm || - ||, in E,.

(i) There exists K, > 0 such that

1
loll < = llel
w

(iii) The operator S(t)|E,, is closed in E,, for t > 0 and w > 0.
Then, we have EJL"'“ =E,.

Definition 2. For fited w > 0 and A € C, Re\ > w define

RNz = /\/e*)‘tS(t)xdt, x€eE,.
0

Observe that

oo

HA/e—AtS(t)th < \)\|/e_tR€A||S(t)x||dt < %/e‘meAHS(t)wadt
0 0 UJ 0

DM [ e 20, |

< — A = - .

- wK, Hx||w/e dt wK,(ReA — w) Izl
0

Thus, the integral is an improper Riemann integral converging absolutely in
the norm of E. Observe that R¥(\) is in general unbounded in (E, || - ||) and
that its domain is F,,,.
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Theorem 2. Fizw >0 and A € C with Re\ > w.
a) (i) R“(\)(E,) C E,. Moreover,

w(ReA —w) |
L] RNzl < [lzflw, =€ B,
(i1) R¥(N)xz € D(S(t)C) and

St)CR* Nz = R*(N)S(t)Cx = R*(\)CS(t)z, t >0, z € E,.

b) (i) For every x € E,,, ||x||ge < 00, where

(15) ||| g := sup sup
neNg A>0

_ n+1 w (n)
A —w) H(R ()\)) Czl|l, A >w.
n! A
The norm || - ||ge is equivalent to the norm || - ||,.
(i) If w1 < wg and ReA > way, then R“1(N\)x = R¥*(N)z, x € E,,. Thus,
as operators in E, R¥1(\) C R¥2()\) if Re\ > ws.

Proof.
a) (i)Lett>0and x € E,. Then,
2Mwew‘3
15(s)zlle < —"— llzlls < o0
which implies

Hx\/e"\tS(t)xdtHw < |)\|/e‘tR@A||S(t)a:det
0 0

T pn 2M, 2M, |\
< I\ (w—ReA)t 4w wdt< AT wit w < .
<IN e 2 lalludt < e ol < o0
0

(i1) We obtain R“(N)z € E, C D(S(t)C). Since S(t) is closed under the
norm || - || and S(¢)C = CS(t), then holds

S(#)CR*(N)a = R*(\)S(t)Cx = R*(\)CS(t)zx, = € E,, .

b) (i) We will show that, for every z € E,,, R“(\)z € D. Theorem 2a) implies
that R“(AN)z € () D(S(¢)) and S(¢)R¥(N)xz = R¥(\)S(t)z, t > 0.
>0

It follows R¥(N)S(t)x € () D(S(s)) and also S(t)R“(N)z € () D(S(s)).
5>0 s>0
Thus, RNz € () D(S(s)S(t)). -

s,t>0
Therefore

S(s)S(H)R” Nz = BR*(\)S(5)S(t)z
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= )\0706_)"’5’(]9)5’( $)S(t)xdp = )\O/ e S(p ~0/ (r+t)—S(r))Cxdrdp

= /(S(T +1t)—S(r))CRY(MNadr.
0

Moreover, S(t)R¥(A)z = R¥(X)S(t)z implies
S(O)R*(N)x = /e**SS(O)S(s)zds =0.
0
We will prove tlir? St)R“(MNx = S(t1)R*(MN)z, z € E,. For z € E,, and

s > 0, using strong continuity, we have
1S(t)S(s)x — S(t1)S(s)z|| = 0 as ¢ —t1.
Remark 1 implies

2Mw ws
1S(1)S(s)z]| < 25— etz <

w

2M,,e“*
S (et 4 )l

for sufficiently small |t — ¢;|. The dominated convergence theorem for vector
valued integrals implies

t—t1 t—t1 t—ty

lim S(tH)R¥(A\)z = li A/e_’\SS(t)S(s)xds = )\/e_’\s lim S(t)S(s)zds
0 0

)\/e‘AsS t1)S(s)zds = AS(ty /e 23S (s)xds = S(t1)RY(N).
0

0
Re\ —
By (i), ||R*(M)z|. < oo and WHR‘”(A)wa < ||z/lo. Thus R¥()) is a
bounded linear operator with respect to the norm || - ||,.

(i1) Let € E,, and A > w. Then, for n € Ny,

oo

(16) (RWA(A))(”)cx = (-1)" / treMS()Cadt
0
and
H(Rw)f)\))(n)CxH < 7t"e_’\t|5’( HCz|dt < 7 ne=t L - IS(0)Cx |t

0 0
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oM, [ 2M,, !
< tre= A= g, dt = r

WK, Wk, ()\ _w)n+1 ||=THw
0

This implies

whe, (A= w)™ 1y RY () ()
< .
o s swp = ||(557) el < e

We will use the following assertion (cf. [3]):

Let f(¢) be continuous and bounded. If A — oo, ;n — oo so that — —
then,
_ n+1 3
e [ p(s)ds = f0).
n!
0
By (16)
()‘ B w)n+1 Rw()‘) (n) _ n (/\ — w)n-{-l 7 —(A—w)s n, —ws
— ( 3 ) Czx = (-1) — /e s"e%*S(s)Cuads

0

and by using the preceding statement, we obtain

—wt o n A —w)" R ()N ()
e S(t)Cx—ﬁlgg%(—l) p ( 3 ) Cx.

Fort >0

n+1 w (n)
e SOz < hm sup (R ») ) H

R A>w

A —w)" L RY(N)
g B ()
n€Ng A>w n!

and

(/\ _ w)71,+1 H Rw(/\) (n)
L < c H
ol < sup s | (57 e
(ii) Obviously, E,,, C E,, if w1 < ws. For & € E,, and Re\ > wy the oper-
ators R¥1(\) and R“?(\) are defined and R“'(A\)z = R¥?>(A)z. Thus R¥1(\) C
R“2(\). O

4. Family of infinitesimal generators

Definition 3. A function R(-) defined on a subset D(R) of the complex plane
with values in L(E) is called C—pseudoresolvent if it comutes with C' and sat-
isfies the equation

(17) (5 = NROVR(2) = ROC — R(u)C, (A i € D(R)).
R(-) is said to be nondegenerate if R(A\)x =0 for all A € D(R) implies z = 0.
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Theorem 3. The family of operators (R*(A\))reasw 0n E,, w > 0 is the
C'—pseudoresolvent i.e.

(L —=ANR*(NR* (1) = R(\)C — R (u)C, Re\ > w, Rep > w.
Proof. Note that the operator C' is bounded under the norm || - ||, and
CR*(A) = R*(\)C.

Fix w > 0. We will show that the family of operators (R“(\)) rex>w Satisfies
equation (17). Let \,p € C, A # pu, Rel,Repy > w, and = € E,. Then
R“(AN)R“ () is well defined because ((R¥(u))(E,) C E,. We have

(18) RY(MR”(n)x = )\/e_)‘sS(s)R“’(u)xds
0

= )\,u/e_’\s/e_“tS(s)S(t)x dt ds
0 0

= )\M/e_’\s/e_“t/(S(r +t) — S(r))Cadrdtds
0 0
i w— )\,u (A= p) /e / _"t/S(T—i—t)Ca:drdtds
0 0
o0 . o0 . S 1
—/e /e " S(T)derdtds” = m[/\u(/\ — (I — I)].
0 0 0

By using Theorem 2a) and the change of variables, we obtain
(19)

00 00 s o} o} s+t
I = /efAS/e“t/S(r—Ft)C’xdrdtds = /64‘5/67‘” / S(v)Cxdvdtds
0 0 0 0 0 t

v

//efk("*t)eﬂ‘tS(v)C'xdtdv
00

1 (R‘“(u)Cw R‘”()\)C’az)’

AN = p) woo A

> =

//efksef“tS(v)C’zdsdtdvz
0

=—— [ e S () Cadv =
W‘WO/ ( )S(0)

oo oo S o0

1 S
(20) I, = /e‘AS/e_”t/S’(T)C’xdrdtds = m /e_’\s/S(r)derds
0 0 0

0 0
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1 o0 oo 1 oo oo
=— /S(T)C’m/e_/\sdsdr =— /e‘MS(T)Cm/e_A(s_")dsdr
I 1
0 T 0 r
L[ R*(\Cz
= 7/}1/ /6 S(T)de’f’ = T .

0
Thus (18), (19) and (20) imply

(21) RY(A\R® (p)x

1 1 RY(u)Cx RY(N)Cx RY(N)Cx
_)\—/L[/\H(A u)()\()\—,u)( 1 A ) A2 ”
1 RY(p)Cx  RY(\)Cx A—p

= _ _ Rw

- [”( [ ) ) )
1 w 1%}
- m(R (\Cz — R (,u)Cx)

and the family of operators (R (\)) gea>w satisfies equation (17). O

(A)cx]

Lemma 2.
(i) The null space

N(R(\) = {z € E,; R“(\)z =0}

is independent of the choice of A with Re\ > w.
(ii) The inverse C~1(Range(R* (X)), ReX > w, is independent of the choice
of \.

Proof.
(i) Let x € N(R¥(X)). Then (17) implies

CR*(uw)z=CR*Nz+ (A— p)R(u)R*(N)z =0, z € E,, Re\, Repp > w .

The operator C' is injective and we have R¥(u)x = 0 for Rep > w. Then
N(R“(N)) = N(R*())-

(ii) Let x € C~1(Range(R*()\))). Then there exists y € E,, such that Cz =
R¥Y(N)y for Re\ > w. For Rep > w (A # u) we have

C?z = CR*(\)y = CR*(u)y — (A — p) R* () R* (\)y
= RY(W)(Cy—(A—p)R*(N)y) = R*(1)(Cy—(A—p)Cz) = CR* () (y—(A—p)z) .

Since C' is injective, we obtain
Cr=R“(p)z for z=y—(A—p)x.

Therefore,
x € C'(Range(R* (1)), Reu > w.
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Lemma 3.
(i) The null space N'(C — AR“ (X)) is independent of A with Re\ > w.
(ii) The inverse C~1(Range(C—AR*()))) is independent of X\ with Re\ > w.

Proof.
(i) For N(C — AR“())) we have Cz — AR*(\)z = 0. Hence,

R*(u)Cx — AR (n)R“(MN)x =0

and

CR® )z — ﬁ(CR“’(u)x _ CR“(\)z) = 0.

Since C is injective, we have R“(u)x — %M(R“’(,u)x —RY(MN)x =0, XA # u. By

A
multiplying both sides of the equality by A — p it follows

ARY(p)x — pR¥ (p)x — ARY () + AR*(MN)x =0
and
ARY(AN)z = pR”(p)x .

Therefore,
Czx— puR*(p)x =0, Reu>w.

(ii) Let x € C~1(Range(C — AR“()\))). Then
(22) Cx=Cy— AR“(\)y

for some y € E,, and ReA > w. We will show that for z = = + %(y — x) the

following holds
Cx=Cz—uR”(u)z, Reu>w.

By using (22) we obtain
C%r = C%y — AR*(\)Cy
= C% — A[R*(n)Cy — (A — p)R* (1) R* (\)y]
= C% = AR*(1)(Cy — (A = p) R*(N)y)

= ey are(w(0y - 2T oty - ) = o(cy - Ar ) (e + By - 0))

Since C' is injective, we have

Cx = Cy — AR“(u) (x + % (y — :z:))

and after multiplication with % we obtain

0= %C(y —z) — pR¥(p) (m + %(y - w)) :
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Finally

cr=C(A+5w-o) - ur () (o + Ly - )

and therefore

Czx=Cz— uR%u(z), for z:m—l—ﬁ(y—m)7 nw#EN Rel>w.

A
Note that
2|\ M.,
IR O)Cll < i Sl Red >, w e B,
and the operators R¥(A)C are bounded under the norm || - ||, - a

Theorem 4. For the family of operators (R“(\)) rex>w it holds:
(i) There exists some linear operator BY such that \I — B* is injective and

Range(R¥ (X)) C D(B¥),
(23) RY(MN)(M — B¥) C (M — BY)R*(\) =C,
for all X with ReX > w,

if and only if
N(E“(N) = {0}

(ii) The largest operator which satisfies (23) is the closed linear operator A%
defined by

D(A%) := C7'[Range(R*(\)] = {x € E_;
Cz € Range(R“(\))},

A%z = (A — ((R*(\))"HCx, z € D(A¥),

which is independent of X\, Re\ > w .

(24)

(iii) If B satisfies (23) then C~1B“C = A%, where
D(C™'B¥C) = {x € E,; Cx € D(B®) and B*Cz € Range(C)}.
In particulary C~1AYC = A%.
Proof. (see [11] Theorem 3.4) O

Let D(A) = U D(A¥), where A“ is given in Theorem 4. For z € D(A)
w>0
let w > 0 such that x € D(AY). There exists y € E, such that Cax =

R¥(N)y, Re) > w. We define
(25) Az =Xz —y.

We call A the infinitesimal generator of the once integrated C'—semigroup
of unbounded linear operators (S(t));>o0.
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It is clear that « € D(A) implies € D(A“) for some w > 0 and
Ar =Xz —y=Xr — (R*(\))"'Cx = A%z
For y € E,, we have Cz = R“(\)y. Thus, the operator A is well defined and
D(A|E,) = AY.
It is easy to show that D(A) is a subspace of F and A is a linear operator.

Theorem 5.
(1) If w1 < wy then A¥* C A%2.
(ii) For all x € E,, the resolvent equation

(M—-Ay=2z, ReA>w

has a unique solution belonging to E,, and y = C~1RY()\)x.
(#i) Let w > 0. Then fort >0, S(t)(D(A¥)) C D(A¥) and

S(t)A“z = A“S(t)z, =€ D(A®).

(iv) The operator A is closed under the topology induced by the norm || - ||
and

CA® C A¥C.

(v) For allt > 0 and x € D(A), fS(r)a:dr € D(A). The functiont — S(t)x
is differentiable of t for t > 0. It hoolds S'(t)x — Cx = S(t)Ax, or equivalenty,
S(t)r —tCx = fltS(r)Aacdr7 t>0.

0
Proof.
(i) Let w1 < we and z € D(A*1). Then we have z € Range(C~1R¥()\)) =

C71Range(R*()\)) and z = C~*R¥()\)y, for some y € E,, and Re\ > w;. It is
clear that wy < ws implies R¥1(\) < R¥2(\) and

CTIR“* (\)y = CT'R¥z(\)y.

Hence
Cz =R*?(N)y, =€ D(A*).

Then A“'z = Az —y = A“?(x), ReX > wq, x € D(A¥"). It implies A¥* C A“>.
(ii) We will show that y = C~*R¥(A\)Cx € E,, is the unique solution of the
resolvent equation. For z € E,, and Re\ > w we have

(M — A“)CT'RY(N)x = [M — (M — (R“(N\)O)~'CICT 'R Nz = .

Then A|E, = A¥ implies (ii).
(iii) For x € D(A), let w > 0 such that © € D(AY). Therefore we have

S(t)Ax = S(t)AYx = S(t)(Ax — y)
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=AS(t)x — S(t)y = AYS(t)x = AS(t)x,

where Cz = RY(\)y for ReA > w.
(iv) The operator A is closed under the norm || - ||, (Theorem 4) and

CA%x =C(A\x —y) = Czx — Cy = A“Cz.

(v) Let w > 0 and t > 0 be fixed. Then

C/S mdr‘<e /HS Cw’dr

t
. 2M,e¥® 2M,,
<o P, [ar < 2 g < .

0

—(—u’é

¢
Hence, [ S(r)xzdr € E,,. There exists
0

R“(\) j S(r)xdr = )\]Oe’\SS(s) j S(r)xdrds .
0 0 0

Let y € E,, such that Cz = R¥(\)y. The operator A% is closed and for A¥x =
Ar — y we have

0 ¢ ¢ ¢
/S(T)A“’zdr = A“’/S(r):pdr = )\/S(r)xdrf/S(r)ydr.
0 0 0 0
t
Therefore f S(r)zdr € D(A%) and f S(r)zdr € D(A) because A|E,, = A%.

We obtam for x € D(AY), C’a: = R¥(\)y for some y € E, with ReA > w
and A“z = Az — y. By Fubini’s theorem it holds (cf. [7])

WCI S(t+h) / “ATS(r)ydr — / e S (r ydr
0 0
A s A (t+h) A e !
= Te’\t/e_’\“S(v)C’ydv— / e M S(v)Cydv+ T/ S (v)Cydv.
0 0 0

Let A — 0. We have

(26) S'(t)x = eMC%x — f'(t)
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where
t

ft) = e /e_’\”S(U)C’ydv.
0
Differentiating, it follows

¢
fi)= /\e’\t/e_)‘”S(v)C’ydv + M. e MS (1) Oy
0
and (26) implies
¢
(27) S'(t)Cx = eMNC%x — )\ekt/e_A“S(v)Cydv - S(t)Cy.
0

Therefore,

t t

eMCZx—)\e)‘t/ef)‘vS(v)C'ydv = /\eAt(/ef)‘”S(v)C’ydvf/67)‘”S(U)Cydv)
0 0 0

)\/ N §(p + 1) Cydp — )\/e (t)y + S(p)Cy)dv
0 0

oo

:)\S(t)/ S (p ydp—l—)\/e AP S(p)Cydp = \S(t)Cx + C?z.
0
Since S(t)C = CS(t) and by using (27) we obtain

CS'(t)x = C*x + \CS(t)x — CS(t)y .
The operator C is injective and we have
S'(t)x = Cz + AS(t)x — S(t)y.

Therefore
S'(t)x = Co+ S(t)Az, w >0,

and
S(t)AYr = S (t)x — Cx.

Since A = A“ on E,,, it implies

t
/S YAzdr = S(t)x —tCx, t > 0.
0
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