INTEGRATED C-SEMIGROUPS OF UNBOUNDED LINEAR OPERATORS IN BANACH SPACES

Ratko Kravarušic ${ }^{1}$, Milorad Mijatović ${ }^{2}$

Abstract

A family of unbounded linear operators $(S(t))_{t \geq 0}$ in the Banach space $(E,\|\cdot\|)$ which satisfies the composition law for an integrated C-semigroup on a domain $D \subset E$ is introduced and investigated. The Banach spaces $\left(E_{\omega},\|\cdot\|_{\omega}\right), \omega>0$, are used for the construction of a family of infinitesimal generators $A^{\omega}, \omega>0$ which determine an operator A called the infinitesimal generator of $(S(t))_{t \geq 0}$.

AMS Mathematics Subject Classification (1991): 47D06
Key words and phrases: Integrated C-semigroup, infinitesimal generators, $C-$ pseudoresolvents

1. Introduction

Integrated semigroups of unbounded linear operator in Banach spaces have been studied in [7], [8]. This paper is a continuation of these studies. Here we use also some results of [9], [15], for n-times integrated C-semigroups and mild integrated C-existence families of bounded operators.

We proved in [7] that any integrated semigroup of unbounded linear operators under additional conditions is an exponentially bounded integrated semigroup on a subspace with a possibly stronger norm. We obtain this result for the integrated C-semigroups of unbounded operators with additional condition for the operator C.

2. Structural properties

Let $(S(t))_{t \geq 0}$ be a family of unbounded linear operators in a Banach space $(E,\|\cdot\|)$ and let $C: D(C) \rightarrow E$ be an unbounded liner operator. Denote by $D(S(t))$ the domain of $S(t)$ and set
(1)
$\mathbf{D}=\left\{\begin{array}{l}x \in \bigcap_{s, t \geq 0} D(S(s) S(t))\end{array}\right.$

$$
\left.\begin{array}{l}
S(0) x=0 \\
S(t) x \text { is strongly continuous for } t \geq 0, \\
S(t) C x=C S(t) x \text { for } t \geq 0, \\
S(s) S(t) x=\int_{0}^{s}(S(r+t)-S(r)) C x d r \\
=S(t) S(s) x \text { for } t \geq 0
\end{array}\right\}
$$

[^0]If $\mathbf{D} \neq\{0\}$, then $(S(t))_{t \geq 0}$ is said to be an integrated C-semigroup of unbounded linear opetarors in E. Note that $\mathbf{D} \subset S(C)$.

The set

$$
\mathcal{N}=\{x \in \mathbf{D} ; S(t) x=0, \quad t \geq 0\}
$$

is called a degeneration space of an integrated C-semigroup of unbounded linear operators $(S(t))_{t \geq 0}$. A semigroup $(S(t))_{t \geq 0}$ is called nondegenerate if $\mathcal{N}=\{0\}$ and it is called degenerate otherwise.

Lemma 1. If an integrated C-semigroup of bounded linear operators $(S(t))_{t \geq 0}$ is nondegenerate, then C is injective (cf. [15], the proof of Lemma 2.2).

Definition 1. For $\omega \in \mathbb{R}^{+}=(0, \infty), x \in \bigcap_{t \geq 0} D(S(t))$, let

$$
\begin{equation*}
\|x\|_{\omega}:=\sup _{t \geq 0} e^{-\omega t}\|S(t) x\| \tag{2}
\end{equation*}
$$

and set

$$
\begin{equation*}
E_{\omega}:=\left\{x \in \mathbf{D} ;\|x\|_{\omega}<\infty\right\} \tag{3}
\end{equation*}
$$

Then, $\|\cdot\|_{\omega}$ is a norm on E_{ω}.
Let \bar{E}_{ω} denote the closure of the set E_{ω} under the norm $\|\cdot\|$ and $S(t) \mid \bar{E}_{\omega}$ is the part of $S(t)$ in \bar{E}_{ω} i.e.

$$
\begin{equation*}
D\left(S(t) \mid \bar{E}_{\omega}\right)=\left\{x \in \bar{E}_{\omega} ; x \in D(S(t)) \text { and } S(t) x \in \bar{E}_{\omega}\right\} \tag{4}
\end{equation*}
$$

In this paper we assume that for all $\omega>0, C$ is bounded linear operator under the norm $\|\cdot\|$ and $\|C\|_{\omega}=M_{\omega}$.

Proposition 1.

a) If $\omega_{1} \leq \omega_{2}$ and $x \in \mathbf{D}$, then $\|x\|_{\omega_{2}} \leq\|x\|_{\omega_{1}}$. Hence, if $\omega_{1} \leq \omega_{2}$ then $E_{\omega_{1}} \subset E_{\omega_{2}}$.
b) If $x \in E_{\omega}$ then $S(t) x \in E_{\omega}$ and

$$
\begin{equation*}
\|S(t) x\|_{\omega} \leq \frac{2}{\omega} M_{\omega} e^{\omega t}\|x\|_{\omega} \tag{5}
\end{equation*}
$$

Proof.
a) Let $\omega_{1} \leq \omega_{2}$ and $x \in \mathbf{D}$. Then, we have

$$
\begin{aligned}
\|x\|_{\omega_{2}} & =\sup _{t \geq 0} e^{-\omega_{2} t}\|S(t) x\| \\
& =\sup _{t \geq 0} e^{-\omega_{1} t} \cdot e^{\left(\omega_{1}-\omega_{2}\right) t}\|S(t) x\| \leq \sup _{t \geq 0} e^{\omega_{1} t}\|S(t) x\|=\|x\|_{\omega_{1}}
\end{aligned}
$$

Thus, $E_{\omega_{1}} \subset E_{\omega_{2}}$ if $\omega_{1} \leq \omega_{2}$.
b) Let $x \in E_{\omega}$. Then

$$
\begin{gathered}
\|S(t) x\|_{\omega}=\sup _{s \geq 0} e^{-\omega s}\|S(s) S(t) x\|=e^{\omega t} \sup _{s \geq 0} e^{-\omega(t+s)}\|S(s) S(t) x\| \\
=e^{\omega t} \sup _{s \geq 0} e^{-\omega(s+t)}\left\|_{0}^{s}(S(r+t)-S(r)) C x d r\right\| \\
\leq e^{\omega t} \sup _{s \geq 0} e^{-\omega s}\left(\int_{0}^{s} e^{\omega r} e^{-\omega(r+t)}\|S(r+t) C x\| d r+e^{-\omega t} \int_{0}^{s} e^{\omega r} e^{-\omega r}\|S(r) C x\| d r\right) \\
\leq e^{\omega t}\|C x\|_{\omega} \sup _{s \geq 0} e^{-\omega s}\left(\int_{0}^{s} e^{\omega r} d r+e^{-\omega t} \int_{0}^{s} e^{\omega r} d r\right) \\
\leq M_{\omega} e^{\omega t}\|x\|_{\omega} \sup _{s \geq 0} e^{-\omega s}\left(1+e^{-\omega t}\right) \int_{0}^{s} e^{\omega r} d r \\
=M_{\omega} e^{\omega t}\|x\|_{\omega} \sup _{s \geq 0} \frac{1}{\omega} e^{-\omega s}\left(1+e^{-\omega t}\right)\left(e^{\omega s}-1\right) \\
=M_{\omega} e^{\omega t}\|x\|_{\omega} \sup _{s \geq 0} \frac{1}{\omega}\left(1+e^{-\omega t}\right)\left(1-e^{-\omega s}\right) \leq \frac{2}{\omega} M_{\omega} e^{\omega t}\|x\|_{\omega}
\end{gathered}
$$

Remark 1. By the proof of Proposition 1 b), we have

$$
e^{-\omega(t+s)}\|S(s) S(t) x\| \leq \frac{2 M_{\omega}}{\omega}\|x\|_{\omega}
$$

and

$$
\|S(s) S(t) x\| \leq \frac{2 M_{\omega} e^{\omega(t+s)}}{\omega}\|x\|_{\omega}
$$

The following additional assumption will be needed throughout the paper. (6) For every $\omega>0$ and for every $x \in \mathbf{D}$, there exists $K_{\omega}>0$ such that $\|x\|_{\omega} \geq K_{\omega}\|x\|$.
Remark 2. If for an integrated C-semigroup of unbounded linear operators $(S(t))_{t \geq 0}$ there exist $t_{0} \geq 0$ and $K_{t_{0}}>0$ such that

$$
\begin{equation*}
\left\|S\left(t_{0}\right) x\right\| \geq K_{t_{0}}\|x\|, \quad x \in \mathbf{D} \tag{7}
\end{equation*}
$$

then, for every $\omega>0$

$$
\|x\|_{\omega}=\sup _{t \geq 0} e^{-\omega t}\|S(t) x\| \geq e^{-\omega t_{0}}\left\|S\left(t_{0}\right) x\right\| \geq K_{\omega}\|x\|, x \in \mathbf{D}
$$

where $K_{\omega}=e^{-\omega t_{0}} K_{t_{0}}$.

Theorem 1. Let $(S(t))_{t \geq 0}$ be an integrated C-semigroup of unbounded linear operators in E such that:
(i) $(S(t))_{t \geq 0}$ is nondegenerate,
(ii) C is the bounded linear operator under the norm $\|\cdot\|_{\omega}$ in E_{ω},
(iii) condition (6) holds.

Then:
a) Let $\omega>0$ be fixed. Suppose that for every $t \geq 0, S(t) \mid \bar{E}_{\omega}$ is a closed operator in \bar{E}_{ω}.
Then $\left(E_{\omega},\|\cdot\|_{\omega}\right)$ is a Banach space.
b) If $S(t)$ is a closed operator in E, then $S(t) \mid \bar{E}_{\omega}$ is a closed operator in \bar{E}_{ω} for $t \geq 0$ and $\omega>0$.

Proof.
a) Recall the assumption:

If $\left\{x_{n}\right\} \subset D\left(S(t) \mid \bar{E}_{\omega}\right),\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|S(t) x_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $x \in D\left(S(t) \mid \bar{E}_{\omega}\right)$ and $S(t) x=y$.

Suppose $\left\{x_{n}\right\} \subset E_{\omega}$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{\omega}$. For every $\varepsilon>0$ there exists a number $N>0$ such that

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|_{\omega}=\sup _{t \geq 0} e^{-\omega t}\left\|S(t) x_{m}-S(t) x_{n}\right\|<\varepsilon, m, n>N \tag{8}
\end{equation*}
$$

By (6) we have $\left\|x_{m}-x_{n}\right\|<\frac{\varepsilon}{K_{\omega}}, m, n>N$. Hence, there exists $x \in E$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. By (8)

$$
\begin{equation*}
e^{-\omega t}\left\|S(t) x_{m}-S(t) x_{n}\right\|<\varepsilon, \quad t \geq 0, m, n>N \tag{9}
\end{equation*}
$$

that is, for $t \geq 0,\left\{e^{-\omega t} S(t) x_{n}\right\}_{t \geq 0}$ is a Cauchy sequence in the norm of E. Therefore, for every $t \geq 0$ there exists $y_{t} \in E$ such that $\left\|e^{-\omega t} S(t) x_{n}-y_{t}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Fix $n>N$ in (9) and let $m \rightarrow \infty$. Then,

$$
\begin{equation*}
\left\|e^{-\omega t} S(t) x_{n}-y_{t}\right\| \leq \varepsilon \tag{10}
\end{equation*}
$$

In (10) N is independent of t.
Since $S(t) \mid \bar{E}_{\omega}$ is closed for $t \geq 0$, the same holds for $e^{-\omega t} S(t) \mid \bar{E}_{\omega}, t \geq 0$. This implies $x \in D\left(e^{-\omega t} S(t) \mid \bar{E}_{\omega}\right)=D\left(S(t) \mid \bar{E}_{\omega}\right)$ and $y_{t}=e^{-\omega t} S(t) x$. Now, by (10)

$$
\begin{equation*}
e^{-\omega t}\left\|S(t) x_{n}-S(t) x\right\| \leq \varepsilon, \quad n>N, t \geq 0 \tag{11}
\end{equation*}
$$

This implies $\left\|x_{n}-x\right\|_{\omega} \leq \varepsilon$, for $n>N$ and $\left\|x_{n}-x\right\|_{\omega} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, $\|x\|_{\omega}<\infty$.

It remains to prove that $x \in \mathbf{D}$. Since $x_{n} \in \mathbf{D}$ by (1), we have

$$
\begin{equation*}
S(s) S(t) x_{n}=\int_{0}^{s}(S(r+t)-S(r)) C x_{n} d r \tag{12}
\end{equation*}
$$

By Remark 1 we have

$$
\left\|S(s) S(t) x_{n}-S(s) S(t) x\right\| \leq \frac{2 M_{\omega} e^{\omega(t+s)}}{\omega}\left\|x_{n}-x\right\|_{\omega}
$$

Now, fix $s, t \geq 0$. Then by (5)

$$
\left\|S(t) C x_{n}-S(t) C x\right\| \leq M_{\omega} e^{\omega t}\left\|x_{n}-x\right\|_{\omega}
$$

It implies

$$
\begin{aligned}
& \left\|\int_{0}^{s}(S(r+t)-S(r)) C x_{n} d r-\int_{0}^{s}(S(r+t)-S(r)) C x d r\right\| \\
& \quad \leq \int_{0}^{s}\left\|(S(r+t)-S(r)) C\left(x_{n}-x\right)\right\| d r \\
& \quad \leq \frac{M_{\omega}}{\omega}\left(e^{\omega(s+t)}+e^{\omega s}\right)\left\|x_{n}-x\right\|_{\omega} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Further

$$
\begin{equation*}
\left\|S(s) S(t) x-\int_{0}^{s}(S(r+t)-S(r)) C x d r\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

Since $\left\|S(t) x_{n}-S(t) x\right\| \leq e^{\omega t}\left\|x_{n}-x\right\|_{\omega}$ and $\left\|x_{n}-x\right\|_{\omega} \rightarrow 0$ as $n \rightarrow \infty$, we have $\left\|S(t) x_{n}-S(t) x\right\| \rightarrow 0$ as $n \rightarrow \infty$. On the other hand $S(s) \mid \bar{E}_{\omega}$ is closed in \bar{E}_{ω}, by (13), we obtain

$$
S(t) x \in D(S(s)) \text { and } S(s) S(t) x=\int_{0}^{s}(S(r+t)-S(r)) C x d r
$$

Let $t_{1} \geq 0$. Then,

$$
\begin{align*}
\left\|S(t) x-S\left(t_{1}\right) x\right\| & \leq\left\|S(t) x-S(t) x_{n}\right\|+\left\|S(t) x_{n}-S\left(t_{1}\right) x_{n}\right\| \\
& +\left\|S\left(t_{1}\right) x_{n}-S\left(t_{1}\right) x\right\| \leq e^{\omega t}\left\|x_{n}-x\right\|_{\omega} \tag{14}\\
& +\left\|S(t) x_{n}-S\left(t_{1}\right) x_{n}\right\|+e^{\omega t_{1}}\left\|x_{n}-x\right\|_{\omega}
\end{align*}
$$

For $\varepsilon>0$ and n sufficiently large choose $\delta>0$ such that $e^{\omega t}<e^{\omega t_{1}}+\varepsilon$ and

$$
\left\|S(t) x_{n}-S\left(t_{1}\right) x_{n}\right\|<\varepsilon, \quad \text { for } 0<\left|t-t_{1}\right|<\delta
$$

Then (14) follows that $S(t) x$ is strongly continuous for $t \geq 0$.
Clearly, it holds

$$
\|S(t) C x-C S(t) x\| \leq\left\|S(t) C x-S(t) C x_{n}\right\|+\left\|C S(t) x_{n}-C S(t) x\right\|
$$

$$
\leq M_{\omega} e^{\omega t}\left\|x_{n}-x\right\|_{\omega}+\frac{2 M_{\omega}^{2} e^{\omega t}}{\omega K_{\omega}}\left\|x_{n}-x\right\|_{\omega}=M_{\omega} e^{\omega t}\left(1+\frac{2 M_{\omega}}{\omega K_{\omega}}\right)\left\|x_{n}-x\right\|_{\omega}<\varepsilon
$$

for n sufficiently large.
It is easy to see that

$$
\|S(0) x\|=\left\|S(0) x-S(0) x_{n}\right\| \leq\left\|x-x_{n}\right\|_{\omega}<\varepsilon
$$

for n sufficiently large. Hence $S(0) x=0$ and $x \in \mathbf{D}$.
b) We have $S(t) \mid \bar{E}_{\omega} \subseteq S(t), t \geq 0$, so if $S(t)$ is closed, then $S(t) \mid \bar{E}_{\omega}$ is closable, with the closure $\overline{S(t) \mid \bar{E}_{\omega}}$. If $x \in D\left(\overline{S(t) \mid \bar{E}_{\omega}}\right)$, then there is a sequence $\left\{x_{n}\right\} \subset D\left(\overline{S(t) \mid \bar{E}_{\omega}}\right)$, and $y \in \bar{E}_{\omega}$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|S(t) x_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then $x \in \bar{E}_{\omega}$ and since $S(t)$ is closed, $x \in D(S(t))$ and $S(t) x=y \in \bar{E}_{\omega}$. Thus $x \in D\left(\overline{S(t) \mid \bar{E}_{\omega}}\right)$, and $S(t) \mid \bar{E}_{\omega}$ is a closed operator in \bar{E}_{ω}.

3. Family of C-pseudoresolvents

In this section we suppose that for a nondegenerate integrated C-semigroups $(S(t))_{t \geq 0}$ of unbounded linear operators for every $\omega>0$ hold:
(i) The operator C is bounded under the norm $\|\cdot\|_{\omega}$ in E_{ω}.
(ii) There exists $K_{\omega}>0$ such that

$$
\|x\| \leq \frac{1}{K_{\omega}}\|x\|_{\omega} .
$$

(iii) The operator $S(t) \mid \bar{E}_{\omega}$ is closed in \bar{E}_{ω} for $t \geq 0$ and $\omega>0$.

Then, we have $\bar{E}_{\omega}^{\|\cdot\|_{\omega}}=E_{\omega}$.
Definition 2. For fixed $\omega>0$ and $\lambda \in \mathbb{C}, \operatorname{Re} \lambda>\omega$ define

$$
R^{\omega}(\lambda) x=\lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x d t, \quad x \in E_{\omega}
$$

Observe that

$$
\begin{aligned}
& \left\|\lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x d t\right\| \leq|\lambda| \int_{0}^{\infty} e^{-t R e \lambda}\|S(t) x\| d t \leq \frac{|\lambda|}{K_{\omega}} \int_{0}^{\infty} e^{-t R e \lambda}\|S(t) x\|_{\omega} d t \\
& \quad \leq \frac{2 M_{\omega}|\lambda|}{\omega K_{\omega}}\|x\|_{\omega} \int_{0}^{\infty} e^{(\omega-R e \lambda) t} d t=\frac{2 M_{\omega}|\lambda|}{\omega K_{\omega}(\operatorname{Re} \lambda-\omega)}\|x\|_{\omega}
\end{aligned}
$$

Thus, the integral is an improper Riemann integral converging absolutely in the norm of E. Observe that $R^{\omega}(\lambda)$ is in general unbounded in $(E,\|\cdot\|)$ and that its domain is E_{ω}.

Theorem 2. Fix $\omega>0$ and $\lambda \in \mathbb{C}$ with Re $\lambda>\omega$.
a) (i) $R^{\omega}(\lambda)\left(E_{\omega}\right) \subset E_{\omega}$. Moreover,

$$
\frac{\omega(R e \lambda-\omega)}{2 M_{\omega}|\lambda|}\left\|R^{\omega}(\lambda) x\right\|_{\omega} \leq\|x\|_{\omega}, \quad x \in E_{\omega}
$$

(ii) $R^{\omega}(\lambda) x \in D(S(t) C)$ and

$$
S(t) C R^{\omega}(\lambda) x=R^{\omega}(\lambda) S(t) C x=R^{\omega}(\lambda) C S(t) x, \quad t \geq 0, x \in E_{\omega}
$$

b) (i) For every $x \in E_{\omega},\|x\|_{R^{\omega}}<\infty$, where

$$
\begin{equation*}
\|x\|_{R^{\omega}}:=\sup _{n \in \mathbb{N}_{0}} \sup _{\lambda>0} \frac{(\lambda-\omega)^{n+1}}{n!}\left\|\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\|, \lambda>\omega \tag{15}
\end{equation*}
$$

The norm $\|\cdot\|_{R^{\omega}}$ is equivalent to the norm $\|\cdot\|_{\omega}$.
(ii) If $\omega_{1} \leq \omega_{2}$ and Re $\lambda>\omega_{2}$, then $R^{\omega_{1}}(\lambda) x=R^{\omega_{2}}(\lambda) x, x \in E_{\omega}$. Thus, as operators in $E, R^{\omega_{1}}(\lambda) \subset R^{\omega_{2}}(\lambda)$ if $R e \lambda>\omega_{2}$.

Proof.
a) (i) Let $t \geq 0$ and $x \in E_{\omega}$. Then,

$$
\|S(s) x\|_{\omega} \leq \frac{2 M_{\omega} e^{\omega s}}{\omega}\|x\|_{\omega}<\infty
$$

which implies

$$
\begin{gathered}
\left\|\lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x d t\right\|_{\omega} \leq|\lambda| \int_{0}^{\infty} e^{-t R e \lambda}\|S(t) x\|_{\omega} d t \\
\leq|\lambda| \int_{0}^{\infty} e^{(\omega-R e \lambda) t} \frac{2 M_{\omega}}{\omega}\|x\|_{\omega} d t \leq \frac{2 M_{\omega}|\lambda|}{\omega(\operatorname{Re\lambda }-\omega)}\|x\|_{\omega}<\infty .
\end{gathered}
$$

(ii) We obtain $R^{\omega}(\lambda) x \in E_{\omega} \subset D(S(t) C)$. Since $S(t)$ is closed under the norm $\|\cdot\|$ and $S(t) C=C S(t)$, then holds

$$
S(t) C R^{\omega}(\lambda) x=R^{\omega}(\lambda) S(t) C x=R^{\omega}(\lambda) C S(t) x, \quad x \in E_{\omega} .
$$

b) (i) We will show that, for every $x \in E_{\omega}, R^{\omega}(\lambda) x \in \mathbf{D}$. Theorem 2a) implies that $R^{\omega}(\lambda) x \in \bigcap_{t \geq 0} D(S(t))$ and $S(t) R^{\omega}(\lambda) x=R^{\omega}(\lambda) S(t) x, t \geq 0$.

It follows $R^{\omega}(\lambda) S(t) x \in \bigcap_{s \geq 0} D(S(s))$ and also $S(t) R^{\omega}(\lambda) x \in \bigcap_{s \geq 0} D(S(s))$. Thus, $R^{\omega}(\lambda) x \in \bigcap_{s, t \geq 0} D(S(s) S(t))$.

Therefore

$$
S(s) S(t) R^{\omega}(\lambda) x=R^{\omega}(\lambda) S(s) S(t) x
$$

$$
\begin{gathered}
=\lambda \int_{0}^{\infty} e^{-\lambda p} S(p) S(s) S(t) x d p=\lambda \int_{0}^{\infty} e^{-\lambda p} S(p) \int_{0}^{s}(S(r+t)-S(r)) C x d r d p \\
=\int_{0}^{s}(S(r+t)-S(r)) C R^{\omega}(\lambda) x d r
\end{gathered}
$$

Moreover, $S(t) R^{\omega}(\lambda) x=R^{\omega}(\lambda) S(t) x$ implies

$$
S(0) R^{\omega}(\lambda) x=\int_{0}^{\infty} e^{-\lambda s} S(0) S(s) x d s=0
$$

We will prove $\lim _{t \rightarrow t_{1}} S(t) R^{\omega}(\lambda) x=S\left(t_{1}\right) R^{\omega}(\lambda) x, x \in E_{\omega}$. For $x \in E_{\omega}$ and $s \geq 0$, using strong continuity, we have

$$
\left\|S(t) S(s) x-S\left(t_{1}\right) S(s) x\right\| \rightarrow 0 \text { as } t \rightarrow t_{1}
$$

Remark 1 implies

$$
\|S(t) S(s) x\| \leq \frac{2 M_{\omega} e^{\omega s}}{\omega} e^{\omega t}\|x\|_{\omega} \leq \frac{2 M_{\omega} e^{\omega s}}{\omega}\left(e^{\omega t_{1}}+\varepsilon\right)\|x\|_{\omega}
$$

for sufficiently small $\left|t-t_{1}\right|$. The dominated convergence theorem for vector valued integrals implies

$$
\begin{gathered}
\lim _{t \rightarrow t_{1}} S(t) R^{\omega}(\lambda) x=\lim _{t \rightarrow t_{1}} \lambda \int_{0}^{\infty} e^{-\lambda s} S(t) S(s) x d s=\lambda \int_{0}^{\infty} e^{-\lambda s} \lim _{t \rightarrow t_{1}} S(t) S(s) x d s \\
=\lambda \int_{0}^{\infty} e^{-\lambda s} S\left(t_{1}\right) S(s) x d s=\lambda S\left(t_{1}\right) \int_{0}^{\infty} e^{-\lambda s} S(s) x d s=S\left(t_{1}\right) R^{\omega}(\lambda) x .
\end{gathered}
$$

By (i), $\left\|R^{\omega}(\lambda) x\right\|_{\omega}<\infty$ and $\frac{\omega(R e \lambda-\omega)}{2|\lambda| M_{\omega}}\left\|R^{\omega}(\lambda) x\right\|_{\omega} \leq\|x\|_{\omega}$. Thus $R^{\omega}(\lambda)$ is a bounded linear operator with respect to the norm $\|\cdot\|_{\omega}$.
(ii) Let $x \in E_{\omega}$ and $\lambda>\omega$. Then, for $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x=(-1)^{n} \int_{0}^{\infty} t^{n} e^{-\lambda t} S(t) C x d t \tag{16}
\end{equation*}
$$

and

$$
\left\|\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\| \leq \int_{0}^{\infty} t^{n} e^{-\lambda t}\|S(t) C x\| d t \leq \int_{0}^{\infty} t^{n} e^{-\lambda t} \frac{1}{K_{\omega}}\|S(t) C x\|_{\omega} d t
$$

$$
\leq \frac{2 M_{\omega}}{\omega K_{\omega}} \int_{0}^{\infty} t^{n} e^{-(\lambda-\omega) t}\|x\|_{\omega} d t=\frac{2 M_{\omega}}{\omega K_{\omega}} \frac{n!}{(\lambda-\omega)^{n+1}}\|x\|_{\omega}
$$

This implies

$$
\frac{\omega K_{\omega}}{2 M_{\omega}} \sup _{n \in \mathbb{N}_{0}} \sup _{\lambda>\omega} \frac{(\lambda-\omega)^{n+1}}{n!}\left\|\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\| \leq\|x\|_{\omega}
$$

We will use the following assertion (cf. [3]):
Let $f(t)$ be continuous and bounded. If $\lambda \rightarrow \infty, ; n \rightarrow \infty$ so that $\frac{n}{\lambda-\omega} \rightarrow t$, then,

$$
\frac{(\lambda-\omega)^{n+1}}{n!} \int_{0}^{\infty} e^{-(\lambda-\omega) s} s^{n} f(s) d s \rightarrow f(t) .
$$

By (16)

$$
\frac{(\lambda-\omega)^{n+1}}{n!}\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x=(-1)^{n} \frac{(\lambda-\omega)^{n+1}}{n!} \int_{0}^{\infty} e^{-(\lambda-\omega) s} s^{n} e^{-\omega s} S(s) C x d s
$$

and by using the preceding statement, we obtain

$$
e^{-\omega t} S(t) C x=\lim _{\substack{\lambda \rightarrow \infty}}(-1)^{n} \frac{(\lambda-\omega)^{n+1}}{n!}\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x .
$$

For $t \geq 0$

$$
\begin{gathered}
e^{-\omega t}\|S(t) C x\| \leq \lim _{n \rightarrow \infty} \sup _{\lambda>\omega}\left\|\frac{(\lambda-\omega)^{n+1}}{n!}\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\| \\
\leq \sup _{n \in \mathbb{N}_{0}} \sup _{\lambda>\omega} \frac{(\lambda-\omega)^{n+1}}{n!}\left\|\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\|
\end{gathered}
$$

and

$$
\|x\|_{\omega} \leq \sup _{n \in \mathbb{N}_{0}} \sup _{\lambda>\omega} \frac{(\lambda-\omega)^{n+1}}{n!}\left\|\left(\frac{R^{\omega}(\lambda)}{\lambda}\right)^{(n)} C x\right\|
$$

(ii) Obviously, $E_{\omega_{1}} \subseteq E_{\omega_{2}}$ if $\omega_{1} \leq \omega_{2}$. For $x \in E_{\omega_{1}}$ and $R e \lambda>\omega_{2}$ the operators $R^{\omega_{1}}(\lambda)$ and $R^{\omega_{2}}(\lambda)$ are defined and $R^{\omega_{1}}(\lambda) x=R^{\omega_{2}}(\lambda) x$. Thus $R^{\omega_{1}}(\lambda) \subset$ $R^{\omega_{2}}(\lambda)$.

4. Family of infinitesimal generators

Definition 3. A function $R(\cdot)$ defined on a subset $D(R)$ of the complex plane with values in $L(E)$ is called C-pseudoresolvent if it comutes with C and satisfies the equation

$$
\begin{equation*}
(\mu-\lambda) R(\lambda) R(\mu)=R(\lambda) C-R(\mu) C,(\lambda, \mu \in D(R)) \tag{17}
\end{equation*}
$$

$R(\cdot)$ is said to be nondegenerate if $R(\lambda) x=0$ for all $\lambda \in D(R)$ implies $x=0$.

Theorem 3. The family of operators $\left(R^{\omega}(\lambda)\right)_{R e \lambda>\omega}$ on $E_{\omega}, \omega>0$ is the C-pseudoresolvent i.e.

$$
(\mu-\lambda) R^{\omega}(\lambda) R^{\omega}(\mu)=R^{\omega}(\lambda) C-R^{\omega}(\mu) C, R e \lambda>\omega, R e \mu>\omega
$$

Proof. Note that the operator C is bounded under the norm $\|\cdot\|_{\omega}$ and

$$
C R^{\omega}(\lambda)=R^{\omega}(\lambda) C .
$$

Fix $\omega>0$. We will show that the family of operators $\left(R^{\omega}(\lambda)\right)_{R e \lambda>\omega}$ satisfies equation (17). Let $\lambda, \mu \in \mathbb{C}, \lambda \neq \mu, \operatorname{Re} \lambda, \operatorname{Re} \mu>\omega$, and $x \in E_{\omega}$. Then $R^{\omega}(\lambda) R^{\omega}(\mu)$ is well defined because $\left(\left(R^{\omega}(\mu)\right)\left(E_{\omega}\right) \subset E_{\omega}\right.$. We have

$$
\begin{gather*}
R^{\omega}(\lambda) R^{\omega}(\mu) x=\lambda \int_{0}^{\infty} e^{-\lambda s} S(s) R^{\omega}(\mu) x d s \tag{18}\\
=\lambda \mu \int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} S(s) S(t) x d t d s \\
=\lambda \mu \int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} \int_{0}^{s}(S(r+t)-S(r)) C x d r d t d s \\
=\frac{1}{\lambda-\mu}\left[\lambda \mu (\lambda - \mu) \left(\int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} \int_{0}^{s} S(r+t) C x d r d t d s\right.\right. \\
\left.\left.-\int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} \int_{0}^{s} S(r) C x d r d t d s\right)\right]=\frac{1}{\lambda-\mu}\left[\lambda \mu(\lambda-\mu)\left(I_{1}-I_{2}\right)\right]
\end{gather*}
$$

By using Theorem 2a) and the change of variables, we obtain

$$
\begin{align*}
& I_{1}=\int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{\mu t} \int_{0}^{s} S(r+t) C x d r d t d s=\int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} \int_{t}^{s+t} S(v) C x d v d t d s \tag{19}\\
& =\int_{0}^{\infty} \int_{0}^{v} \int_{v-t}^{\infty} e^{-\lambda s} e^{-\mu t} S(v) C x d s d t d v=\frac{1}{\lambda} \int_{0}^{\infty} \int_{0}^{v} e^{-\lambda(v-t)} e^{-\mu t} S(v) C x d t d v \\
& =\frac{1}{\lambda(\lambda-\mu)} \int_{0}^{\infty} e^{-\lambda v}\left(e^{(\lambda-\mu) v}-1\right) S(v) C x d v=\frac{1}{\lambda(\lambda-\mu)}\left(\frac{R^{\omega}(\mu) C x}{\mu}-\frac{R^{\omega}(\lambda) C x}{\lambda}\right), \\
& \text { (20) } \quad I_{2}=\int_{0}^{\infty} e^{-\lambda s} \int_{0}^{\infty} e^{-\mu t} \int_{0}^{s} S(r) C x d r d t d s=\frac{1}{\mu} \int_{0}^{\infty} e^{-\lambda s} \int_{0}^{s} S(r) C x d r d s \tag{20}
\end{align*}
$$

$$
\begin{gathered}
=\frac{1}{\mu} \int_{0}^{\infty} S(r) C x \int_{r}^{\infty} e^{-\lambda s} d s d r=\frac{1}{\mu} \int_{0}^{\infty} e^{-\lambda r} S(r) C x \int_{r}^{\infty} e^{-\lambda(s-r)} d s d r \\
=\frac{1}{\lambda \mu} \int_{0}^{\infty} e^{-\lambda r} S(r) C x d r=\frac{R^{\omega}(\lambda) C x}{\lambda^{2} \mu}
\end{gathered}
$$

Thus (18), (19) and (20) imply

$$
\begin{gather*}
R^{\omega}(\lambda) R^{\omega}(\mu) x \tag{21}\\
=\frac{1}{\lambda-\mu}\left[\lambda \mu(\lambda-\mu)\left(\frac{1}{\lambda(\lambda-\mu)}\left(\frac{R^{\omega}(\mu) C x}{\mu}-\frac{R^{\omega}(\lambda) C x}{\lambda}\right)-\frac{R^{\omega}(\lambda) C x}{\lambda^{2} \mu}\right)\right] \\
=\frac{1}{\lambda-\mu}\left[\mu\left(\frac{R^{\omega}(\mu) C x}{\mu}-\frac{R^{\omega}(\lambda) C x}{\lambda}\right)-\frac{\lambda-\mu}{\lambda} R^{\omega}(\lambda) C x\right] \\
=\frac{1}{\mu-\lambda}\left(R^{\omega}(\lambda) C x-R^{\omega}(\mu) C x\right)
\end{gather*}
$$

and the family of operators $\left(R^{\omega}(\lambda)\right)_{R e \lambda>\omega}$ satisfies equation (17).

Lemma 2.

(i) The null space

$$
\mathcal{N}\left(R^{\omega}(\lambda)\right)=\left\{x \in E_{\omega} ; R^{\omega}(\lambda) x=0\right\}
$$

is independent of the choice of λ with Re $\lambda>\omega$.
(ii) The inverse $C^{-1}\left(\operatorname{Range}\left(R^{\omega}(\lambda)\right), \operatorname{Re} \lambda>\omega\right.$, is independent of the choice of λ.
Proof.
(i) Let $x \in \mathcal{N}\left(R^{\omega}(\lambda)\right)$. Then (17) implies
$C R^{\omega}(\mu) x=C R^{\omega}(\lambda) x+(\lambda-\mu) R^{\omega}(\mu) R^{\omega}(\lambda) x=0, x \in E_{\omega}, \operatorname{Re} \lambda, R e \mu>\omega$.
The operator C is injective and we have $R^{\omega}(\mu) x=0$ for $R e \mu>\omega$. Then $\mathcal{N}\left(R^{\omega}(\lambda)\right)=\mathcal{N}\left(R^{\omega}(\mu)\right)$.
(ii) Let $x \in C^{-1}\left(\operatorname{Range}\left(R^{\omega}(\lambda)\right)\right)$. Then there exists $y \in E_{\omega}$ such that $C x=$ $R^{\omega}(\lambda) y$ for $R e \lambda>\omega$. For $\operatorname{Re} \mu>\omega(\lambda \neq \mu)$ we have

$$
\begin{gathered}
C^{2} x=C R^{\omega}(\lambda) y=C R^{\omega}(\mu) y-(\lambda-\mu) R^{\omega}(\mu) R^{\omega}(\lambda) y \\
=R^{\omega}(\mu)\left(C y-(\lambda-\mu) R^{\omega}(\lambda) y\right)=R^{\omega}(\mu)(C y-(\lambda-\mu) C x)=C R^{\omega}(\mu)(y-(\lambda-\mu) x) .
\end{gathered}
$$

Since C is injective, we obtain

$$
C x=R^{\omega}(\mu) z \quad \text { for } \quad z=y-(\lambda-\mu) x .
$$

Therefore,

$$
x \in C^{-1}\left(\operatorname{Range}\left(R^{\omega}(\mu)\right), \quad \operatorname{Re} \mu>\omega .\right.
$$

Lemma 3.

(i) The null space $\mathcal{N}\left(C-\lambda R^{\omega}(\lambda)\right)$ is independent of λ with Re $\lambda>\omega$.
(ii) The inverse $C^{-1}\left(\operatorname{Range}\left(C-\lambda R^{\omega}(\lambda)\right)\right)$ is independent of λ with $\operatorname{Re} \lambda>\omega$.

Proof.
(i) For $\mathcal{N}\left(C-\lambda R^{\omega}(\lambda)\right)$ we have $C x-\lambda R^{\omega}(\lambda) x=0$. Hence,

$$
R^{\omega}(\mu) C x-\lambda R^{\omega}(\mu) R^{\omega}(\lambda) x=0
$$

and

$$
C R^{\omega}(\mu) x-\frac{\lambda}{\lambda-\mu}\left(C R^{\omega}(\mu) x-C R^{\omega}(\lambda) x\right)=0 .
$$

Since C is injective, we have $R^{\omega}(\mu) x-\frac{\lambda}{\lambda-\mu}\left(R^{\omega}(\mu) x-R^{\omega}(\lambda) x=0, \lambda \neq \mu\right.$. By multiplying both sides of the equality by $\lambda-\mu$ it follows

$$
\lambda R^{\omega}(\mu) x-\mu R^{\omega}(\mu) x-\lambda R^{\omega}(\mu) x+\lambda R^{\omega}(\lambda) x=0
$$

and

$$
\lambda R^{\omega}(\lambda) x=\mu R^{\omega}(\mu) x .
$$

Therefore,

$$
C x-\mu R^{\omega}(\mu) x=0, \quad \operatorname{Re} \mu>\omega .
$$

(ii) Let $x \in C^{-1}\left(\operatorname{Range}\left(C-\lambda R^{\omega}(\lambda)\right)\right)$. Then

$$
\begin{equation*}
C x=C y-\lambda R^{\omega}(\lambda) y \tag{22}
\end{equation*}
$$

for some $y \in E_{\omega}$ and $\operatorname{Re} \lambda>\omega$. We will show that for $z=x+\frac{\mu}{\lambda}(y-x)$ the following holds

$$
C x=C z-\mu R^{\omega}(\mu) z, \quad R e \mu>\omega .
$$

By using (22) we obtain

$$
\begin{gathered}
C^{2} x=C^{2} y-\lambda R^{\omega}(\lambda) C y \\
=C^{2} y-\lambda\left[R^{\omega}(\mu) C y-(\lambda-\mu) R^{\omega}(\mu) R^{\omega}(\lambda) y\right] \\
=C^{2} y-\lambda R^{\omega}(\mu)\left(C y-(\lambda-\mu) R^{\omega}(\lambda) y\right) \\
=C^{2} y-\lambda R^{\omega}(\mu)\left(C y-\frac{\lambda-\mu}{\lambda} C(y-x)\right)=C\left(C y-\lambda R^{\omega}(\mu)\left(x+\frac{\mu}{\lambda}(y-x)\right)\right) .
\end{gathered}
$$

Since C is injective, we have

$$
C x=C y-\lambda R^{\omega}(\mu)\left(x+\frac{\mu}{\lambda}(y-x)\right)
$$

and after multiplication with $\frac{\mu}{\lambda}$ we obtain

$$
0=\frac{\mu}{\lambda} C(y-x)-\mu R^{\omega}(\mu)\left(x+\frac{\mu}{\lambda}(y-x)\right) .
$$

Finally

$$
C x=C\left(\lambda+\frac{\mu}{\lambda}(y-x)-\mu R^{\omega}(\mu)\left(x+\frac{\mu}{\lambda}(y-x)\right)\right)
$$

and therefore

$$
C x=C z-\mu R^{\omega} \mu(z), \text { for } z=x+\frac{\mu}{\lambda}(y-x), \mu \neq \lambda, \operatorname{Re} \lambda>\omega
$$

Note that

$$
\left\|R^{\omega}(\lambda) C x\right\|_{\omega} \leq \frac{2|\lambda| M_{\omega}}{\omega(\operatorname{Re} \lambda-\omega)}\|x\|_{\omega}, \quad R e \lambda>\omega, \omega \in E_{\omega}
$$

and the operators $R^{\omega}(\lambda) C$ are bounded under the norm $\|\cdot\|_{\omega}$.

Theorem 4. For the family of operators $\left(R^{\omega}(\lambda)\right)_{R e \lambda>\omega}$ it holds:
(i) There exists some linear operator B^{ω} such that $\lambda I-B^{\omega}$ is injective and

$$
\left\{\begin{array}{l}
\operatorname{Range}\left(R^{\omega}(\lambda)\right) \subset D\left(B^{\omega}\right) \tag{23}\\
R^{\omega}(\lambda)\left(\lambda I-B^{\omega}\right) \subset\left(\lambda I-B^{\omega}\right) R^{\omega}(\lambda)=C \\
\quad \text { for all } \lambda \text { with } \operatorname{Re} \lambda>\omega
\end{array}\right.
$$

if and only if

$$
\mathcal{N}\left(R^{\omega}(\lambda)\right)=\{0\}
$$

(ii) The largest operator which satisfies (23) is the closed linear operator A^{ω} defined by

$$
\left\{\begin{array}{c}
D\left(A^{\omega}\right):=C^{-1}\left[\operatorname{Range}\left(R^{\omega}(\lambda)\right]=\left\{x \in E_{\omega}\right.\right. \tag{24}\\
\left.C x \in \operatorname{Range}\left(R^{\omega}(\lambda)\right)\right\}, \\
A^{\omega} x:=\left(\lambda-\left(\left(R^{\omega}(\lambda)\right)^{-1}\right) C x, x \in D\left(A^{\omega}\right)\right. \\
\text { which is independent of } \lambda, \operatorname{Re} \lambda>\omega
\end{array}\right.
$$

(iii) If B^{ω} satisfies (23) then $C^{-1} B^{\omega} C=A^{\omega}$, where

$$
D\left(C^{-1} B^{\omega} C\right)=\left\{x \in E_{\omega} ; C x \in D\left(B^{\omega}\right) \text { and } B^{\omega} C x \in \operatorname{Range}(C)\right\} .
$$

In particulary $C^{-1} A^{\omega} C=A^{\omega}$.
Proof. (see [11] Theorem 3.4)
Let $D(A)=\bigcup_{\omega>0} D\left(A^{\omega}\right)$, where A^{ω} is given in Theorem 4. For $x \in D(A)$ let $\omega>0$ such that $x \in D\left(A^{\omega}\right)$. There exists $y \in E_{\omega}$ such that $C x=$ $R^{\omega}(\lambda) y, \operatorname{Re} \lambda>\omega$. We define

$$
\begin{equation*}
A x:=\lambda x-y \tag{25}
\end{equation*}
$$

We call A the infinitesimal generator of the once integrated C-semigroup of unbounded linear operators $(S(t))_{t \geq 0}$.

It is clear that $x \in D(A)$ implies $x \in D\left(A^{\omega}\right)$ for some $\omega>0$ and

$$
A x=\lambda x-y=\lambda x-\left(R^{\omega}(\lambda)\right)^{-1} C x=A^{\omega} x
$$

For $y \in E_{\omega}$ we have $C x=R^{\omega}(\lambda) y$. Thus, the operator A is well defined and

$$
D\left(A \mid E_{\omega}\right)=A^{\omega}
$$

It is easy to show that $D(A)$ is a subspace of E and A is a linear operator.

Theorem 5.

(i) If $\omega_{1} \leq \omega_{2}$ then $A^{\omega_{1}} \subset A^{\omega_{2}}$.
(ii) For all $x \in E_{\omega}$ the resolvent equation

$$
(\lambda I-A) y=x, \quad \operatorname{Re} \lambda>\omega
$$

has a unique solution belonging to E_{ω} and $y=C^{-1} R^{\omega}(\lambda) x$.
(iii) Let $\omega>0$. Then for $t \geq 0, S(t)\left(D\left(A^{\omega}\right)\right) \subset D\left(A^{\omega}\right)$ and

$$
S(t) A^{\omega} x=A^{\omega} S(t) x, \quad x \in D\left(A^{\omega}\right) .
$$

(iv) The operator A is closed under the topology induced by the norm $\|\cdot\|_{\omega}$ and

$$
C A^{\omega} \subset A^{\omega} C .
$$

(v) For all $t \geq 0$ and $x \in D(A), \int_{0}^{t} S(r) x d r \in D(A)$. The function $t \rightarrow S(t) x$ is differentiable of t for $t>0$. It holds $S^{\prime}(t) x-C x=S(t) A x$, or equivalenty, $S(t) x-t C x=\int_{0}^{t} S(r) A x d r, t>0$.

Proof.
(i) Let $\omega_{1} \leq \omega_{2}$ and $x \in D\left(A^{\omega_{1}}\right)$. Then we have $x \in \operatorname{Range}\left(C^{-1} R^{\omega}(\lambda)\right)=$ C^{-1} Range $\left(R^{\omega}(\lambda)\right)$ and $x=C^{-1} R^{\omega}(\lambda) y$, for some $y \in E_{\omega_{1}}$ and $R e \lambda>\omega_{1}$. It is clear that $\omega_{1} \leq \omega_{2}$ implies $R^{\omega_{1}}(\lambda)<R^{\omega_{2}}(\lambda)$ and

$$
C^{-1} R^{\omega_{1}}(\lambda) y=C^{-1} R^{\omega_{2}}(\lambda) y
$$

Hence

$$
C x=R^{\omega_{2}}(\lambda) y, \quad x \in D\left(A^{\omega_{1}}\right)
$$

Then $A^{\omega_{1}} x=\lambda x-y=A^{\omega_{2}}(x), R e \lambda>\omega_{2}, x \in D\left(A^{\omega_{1}}\right)$. It implies $A^{\omega_{1}} \subset A^{\omega_{2}}$.
(ii) We will show that $y=C^{-1} R^{\omega}(\lambda) C x \in E_{\omega}$ is the unique solution of the resolvent equation. For $x \in E_{\omega}$ and $R e \lambda>\omega$ we have

$$
\left(\lambda I-A^{\omega}\right) C^{-1} R^{\omega}(\lambda) x=\left[\lambda I-\left(\lambda I-\left(R^{\omega}(\lambda) C\right)^{-1} C\right] C^{-1} R^{\omega}(\lambda) x=x .\right.
$$

Then $A \mid E_{\omega}=A^{\omega}$ implies (ii).
(iii) For $x \in D(A)$, let $\omega>0$ such that $x \in D\left(A^{\omega}\right)$. Therefore we have

$$
S(t) A x=S(t) A^{\omega} x=S(t)(\lambda x-y)
$$

$$
=\lambda S(t) x-S(t) y=A^{\omega} S(t) x=A S(t) x
$$

where $C x=R^{\omega}(\lambda) y$ for $\operatorname{Re} \lambda>\omega$.
(iv) The operator A^{ω} is closed under the norm $\|\cdot\|_{\omega}$ (Theorem 4) and

$$
C A^{\omega} x=C(\lambda x-y)=\lambda C x-C y=A^{\omega} C x
$$

(v) Let $\omega>0$ and $t \geq 0$ be fixed. Then

$$
\begin{aligned}
& e^{-\omega s}\left\|S(s) C \int_{0}^{t} S(r) x d r\right\| \leq e^{-\omega s} \int_{0}^{t}\|S(s) S(r) C x\| d r \\
& \leq e^{-\omega s} \frac{2 M_{\omega} e^{\omega s}}{\omega}\|x\|_{\omega} \int_{0}^{t} d r \leq \frac{2 M_{\omega} e^{\omega t}}{\omega^{2}}\|x\|_{\omega}<\infty
\end{aligned}
$$

Hence, $\int_{0}^{t} S(r) x d r \in E_{\omega}$. There exists

$$
R^{\omega}(\lambda) \int_{0}^{t} S(r) x d r=\lambda \int_{0}^{\infty} e^{-\lambda s} S(s) \int_{0}^{t} S(r) x d r d s
$$

Let $y \in E_{\omega}$ such that $C x=R^{\omega}(\lambda) y$. The operator A^{ω} is closed and for $A^{\omega} x=$ $\lambda x-y$ we have

$$
\int_{0}^{\infty} S(r) A^{\omega} x d r=A^{\omega} \int_{0}^{t} S(r) x d r=\lambda \int_{0}^{t} S(r) x d r-\int_{0}^{t} S(r) y d r
$$

Therefore $\int_{0}^{t} S(r) x d r \in D\left(A^{\omega}\right)$ and $\int_{0}^{t} S(r) x d r \in D(A)$ because $A \mid E_{\omega}=A^{\omega}$.
We obtain, for $x \in D\left(A^{\omega}\right), C x=R^{\omega}(\lambda) y$ for some $y \in E_{\omega}$ with $R e \lambda>\omega$ and $A^{\omega} x=\lambda x-y$. By Fubini's theorem it holds (cf. [7])

$$
\begin{aligned}
& \frac{S(t+h)-S(t)}{h} C x=\frac{\lambda}{\mu}\left(S(t+h) \int_{0}^{\infty} e^{-\lambda r} S(r) y d r-S(t) \int_{0}^{\infty} e^{-\lambda r} S(r) y d r\right) \\
= & \frac{e^{\lambda h}-1}{h} e^{\lambda t} \int_{0}^{\infty} e^{-\lambda v} S(v) C y d v-\frac{e^{\lambda(t+h)}}{h} \int_{0}^{t+h} e^{-\lambda v} S(v) C y d v+\frac{e^{\lambda t}}{h} \int_{0}^{t} e^{-\lambda v} S(v) C y d v .
\end{aligned}
$$

Let $h \rightarrow 0$. We have

$$
\begin{equation*}
S^{\prime}(t) x=e^{\lambda t} C^{2} x-f^{\prime}(t) \tag{26}
\end{equation*}
$$

where

$$
f(t)=e^{\lambda t} \int_{0}^{t} e^{-\lambda v} S(v) C y d v
$$

Differentiating, it follows

$$
f^{\prime}(t)=\lambda e^{\lambda t} \int_{0}^{t} e^{-\lambda v} S(v) C y d v+e^{\lambda t} \cdot e^{-\lambda t} S(t) C y
$$

and (26) implies

$$
\begin{equation*}
S^{\prime}(t) C x=e^{\lambda t} C^{2} x-\lambda e^{\lambda t} \int_{0}^{t} e^{-\lambda v} S(v) C y d v-S(t) C y \tag{27}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
& e^{\lambda t} C^{2} x-\lambda e^{\lambda t} \int_{0}^{t} e^{-\lambda v} S(v) C y d v=\lambda e^{\lambda t}\left(\int_{0}^{\infty} e^{-\lambda v} S(v) C y d v-\int_{0}^{t} e^{-\lambda v} S(v) C y d v\right) \\
& \lambda \int_{0}^{\infty} e^{-\lambda p} S(p+t) C y d p=\lambda \int_{0}^{\infty} e^{-\lambda p}\left(S^{\prime}(p) S(t) y+S(p) C y\right) d v \\
&=\lambda S(t) \int_{0}^{\infty} e^{-\lambda p} S^{\prime}(p) y d p+\lambda \int_{0}^{\infty} e^{-\lambda p} S(p) C y d p=\lambda S(t) C x+C^{2} x
\end{aligned}
$$

Since $S(t) C=C S(t)$ and by using (27) we obtain

$$
C S^{\prime}(t) x=C^{2} x+\lambda C S(t) x-C S(t) y
$$

The operator C is injective and we have

$$
S^{\prime}(t) x=C x+\lambda S(t) x-S(t) y
$$

Therefore

$$
S^{\prime}(t) x=C x+S(t) A^{\omega} x, \quad \omega>0
$$

and

$$
S(t) A^{\omega} x=S^{\prime}(t) x-C x
$$

Since $A=A^{\omega}$ on E_{ω}, it implies

$$
\int_{0}^{t} S(r) A x d r=S(t) x-t C x, \quad t>0
$$

References

[1] Arendt, W., Resolvent positive operators and integrated semigroups. Proc. London Math. Soc., (3) 54 (1987), 321-349.
[2] Arendt, W., Vector valued Laplace tranfsorms and Cauchy problems. Israel J. Math., 59 (1987), 327-352.
[3] Feller, W., On the generation of unbounded semigroups of bounded linear operators. Ann. Math., (2) 58 (1953), 166-174.
[4] Hille, E., Philips, R. S., Functional Analysis and Semigroups. Providence, R.I.: Amer. Math. Soc. Colloquium Publications, Vol 31, 1957.
[5] Hughes, R. J., Semigroups of unbounded linear operators in Banach space. Trans. of the Amer. Math. Soc., 230 (1977), 113-145.
[6] Kellermann, H., Hieber, M., Integrated semigroups. J. Func. Anal., 84 (1989), 160-180.
[7] Kravarušić, R., Mijatović, M., Pilipović, S., Integrated semigroups of unbounded linear operators in a Banach spaces, Part I. Bull. TCXVI Acad. Serb. Sci. Math., 23 (1998), 45-62.
[8] Kravarušić, R., Mijatović, M., Pilipović, S., Integrated semigroups of unbounded linear operators in a Banach spaces, Part II. Novi Sad J. Math., 28 (1998), 107122.
[9] Li, Y.-C., Shaw, S.-Y., N-Times integrated C-semigroups and the abstract Cauchy problem. Taiwanese J. of Math., 26 (1997), 75-102.
[10] Mijatović, M., Pilipović, S., Vajzović, E., α-times integrated semigroup ($\alpha \in$ $\left.\mathbb{R}^{+}\right)$,. J. Math. Anal. Appl., 210 (1997), 790-803.
[11] Neubrander, F., Integrated semigroups and their applications to the abstract Cauchy problem. Pac. J. Math., 135 (1988), 111-155.
[12] Oharu, S., Semigroups of linear operators in Banavh spaces. Publ. Res. Inst. Math. Sci., 204 (1973), 189-198.
[13] Tanaka, N., Okazawa, N., Local C-semigroups and local integrated semigroups. Proc. London Math. Soc., 61 (1990), 63-90.
[14] Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl., 152 (1990), 416-447.
[15] Wang, S. W., Mild integrated C-existence families. Stud. Math., 112 (1995), 251-266.

Received by the editors March 1, 2004

[^0]: ${ }^{1}$ Faculty of Economics, University of Banja Luka Bosnia and Hercegovina
 ${ }^{2}$ Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, Novi Sad, Serbia and Montenegro e-mail: mijatm@uns.ns.ac.yu

