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INTEGRATED C-SEMIGROUPS OF UNBOUNDED
LINEAR OPERATORS IN BANACH SPACES

Ratko Kravarušić1, Milorad Mijatović2

Abstract. A family of unbounded linear operators (S(t))t≥0 in the
Banach space (E, ‖ · ‖) which satisfies the composition law for an inte-
grated C−semigroup on a domain D ⊂ E is introduced and investigated.
The Banach spaces (Eω, ‖ · ‖ω), ω > 0, are used for the construction of a
family of infinitesimal generators Aω, ω > 0 which determine an operator
A called the infinitesimal generator of (S(t))t≥0.
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1. Introduction

Integrated semigroups of unbounded linear operator in Banach spaces have been
studied in [7], [8]. This paper is a continuation of these studies. Here we use
also some results of [9], [15], for n−times integrated C−semigroups and mild
integrated C−existence families of bounded operators.

We proved in [7] that any integrated semigroup of unbounded linear oper-
ators under additional conditions is an exponentially bounded integrated semi-
group on a subspace with a possibly stronger norm. We obtain this result for
the integrated C−semigroups of unbounded operators with additional condition
for the operator C.

2. Structural properties

Let (S(t))t≥0 be a family of unbounded linear operators in a Banach space
(E, ‖ · ‖) and let C : D(C) → E be an unbounded liner operator. Denote by
D(S(t)) the domain of S(t) and set
(1)

D =





x ∈ ⋂
s,t≥0 D(S(s)S(t))

∣∣∣∣∣∣∣∣∣∣∣∣

S(0)x = 0
S(t)x is strongly continuous for t ≥ 0,
S(t)Cx = CS(t)x for t ≥ 0,

S(s)S(t)x =
s∫
0

(S(r + t)− S(r))Cxdr

= S(t)S(s)x for t ≥ 0.
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If D 6= {0}, then (S(t))t≥0 is said to be an integrated C−semigroup of unbounded
linear opetarors in E. Note that D ⊂ S(C).

The set
N = {x ∈ D; S(t)x = 0, t ≥ 0}

is called a degeneration space of an integrated C−semigroup of unbounded linear
operators (S(t))t≥0. A semigroup (S(t))t≥0 is called nondegenerate if N = {0}
and it is called degenerate otherwise.

Lemma 1. If an integrated C−semigroup of bounded linear operators (S(t))t≥0

is nondegenerate, then C is injective (cf. [15], the proof of Lemma 2.2).

Definition 1. For ω ∈ R+ = (0,∞), x ∈ ⋂
t≥0

D(S(t)), let

(2) ‖x‖ω := sup
t≥0

e−ωt‖S(t)x‖

and set

(3) Eω := {x ∈ D; ‖x‖ω < ∞} .

Then, ‖ · ‖ω is a norm on Eω.

Let Eω denote the closure of the set Eω under the norm ‖ · ‖ and S(t)|Eω is
the part of S(t) in Eω i.e.

(4) D(S(t)|Eω) = {x ∈ Eω; x ∈ D(S(t)) and S(t)x ∈ Eω} .

In this paper we assume that for all ω > 0, C is bounded linear operator
under the norm ‖ · ‖ and ‖C‖ω = Mω.

Proposition 1.
a) If ω1 ≤ ω2 and x ∈ D, then ‖x‖ω2 ≤ ‖x‖ω1 . Hence, if ω1 ≤ ω2 then

Eω1 ⊂ Eω2 .
b) If x ∈ Eω then S(t)x ∈ Eω and

(5) ‖S(t)x‖ω ≤ 2
ω

Mωeωt‖x‖ω .

Proof.
a) Let ω1 ≤ ω2 and x ∈ D. Then, we have

‖x‖ω2 = sup
t≥0

e−ω2t‖S(t)x‖
= sup

t≥0
e−ω1t · e(ω1−ω2)t‖S(t)x‖ ≤ sup

t≥0
eω1t‖S(t)x‖ = ‖x‖ω1 .

Thus, Eω1 ⊂ Eω2 if ω1 ≤ ω2.



Integrated C-semigroups of unbounded linear operators in Banach spaces 3

b) Let x ∈ Eω. Then

‖S(t)x‖ω = sup
s≥0

e−ωs‖S(s)S(t)x‖ = eωt sup
s≥0

e−ω(t+s)‖S(s)S(t)x‖

= eωt sup
s≥0

e−ω(s+t)
∥∥∥

s∫
0

(S(r + t)− S(r))Cxdr
∥∥∥

≤ eωt sup
s≥0

e−ωs
( s∫

0

eωre−ω(r+t)‖S(r + t)Cx‖dr + e−ωt

s∫

0

eωre−ωr‖S(r)Cx‖dr
)

≤ eωt‖Cx‖ω sup
s≥0

e−ωs
( s∫

0

eωrdr + e−ωt

s∫

0

eωrdr
)

≤ Mωeωt‖x‖ω sup
s≥0

e−ωs(1 + e−ωt)

s∫

0

eωrdr

= Mωeωt‖x‖ω sup
s≥0

1
ω

e−ωs(1 + e−ωt)(eωs − 1)

= Mωeωt‖x‖ω sup
s≥0

1
ω

(1 + e−ωt)(1− e−ωs) ≤ 2
ω

Mωeωt‖x‖ω .

2

Remark 1. By the proof of Proposition 1 b), we have

e−ω(t+s)‖S(s)S(t)x‖ ≤ 2Mω

ω
‖x‖ω

and

‖S(s)S(t)x‖ ≤ 2Mωeω(t+s)

ω
‖x‖ω .

The following additional assumption will be needed throughout the paper.
(6) For every ω > 0 and for every x ∈ D, there exists Kω > 0 such that
‖x‖ω ≥ Kω‖x‖.
Remark 2. If for an integrated C−semigroup of unbounded linear operators
(S(t))t≥0 there exist t0 ≥ 0 and Kt0 > 0 such that

(7) ‖S(t0)x‖ ≥ Kt0‖x‖, x ∈ D ,

then, for every ω > 0

‖x‖ω = sup
t≥0

e−ωt‖S(t)x‖ ≥ e−ωt0‖S(t0)x‖ ≥ Kω‖x‖, x ∈ D ,

where Kω = e−ωt0Kt0 .
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Theorem 1. Let (S(t))t≥0 be an integrated C−semigroup of unbounded linear
operators in E such that:

(i) (S(t))t≥0 is nondegenerate,
(ii) C is the bounded linear operator under the norm ‖ · ‖ω in Eω,
(iii) condition (6) holds.
Then:

a) Let ω > 0 be fixed. Suppose that for every t ≥ 0, S(t)|Eω is a closed
operator in Eω.
Then (Eω, ‖ · ‖ω) is a Banach space.

b) If S(t) is a closed operator in E, then S(t)|Eω is a closed operator in Eω

for t ≥ 0 and ω > 0.

Proof.
a) Recall the assumption:
If {xn} ⊂ D(S(t)|Eω), ‖xn−x‖ → 0 and ‖S(t)xn− y‖ → 0 as n →∞, then

x ∈ D(S(t)|Eω) and S(t)x = y.
Suppose {xn} ⊂ Eω is a Cauchy sequence with respect to the norm ‖ · ‖ω.

For every ε > 0 there exists a number N > 0 such that

(8) ‖xm − xn‖ω = sup
t≥0

e−ωt‖S(t)xm − S(t)xn‖ < ε, m, n > N .

By (6) we have ‖xm − xn‖ <
ε

Kω
, m, n > N. Hence, there exists x ∈ E such

that ‖xn − x‖ → 0 as n →∞. By (8)

(9) e−ωt‖S(t)xm − S(t)xn‖ < ε, t ≥ 0, m, n > N ,

that is, for t ≥ 0, {e−ωtS(t)xn}t≥0 is a Cauchy sequence in the norm of E.
Therefore, for every t ≥ 0 there exists yt ∈ E such that ‖e−ωtS(t)xn − yt‖ → 0
as n →∞. Fix n > N in (9) and let m →∞. Then,

(10) ‖e−ωtS(t)xn − yt‖ ≤ ε .

In (10) N is independent of t.
Since S(t)|Eω is closed for t ≥ 0, the same holds for e−ωtS(t)|Eω, t ≥ 0.

This implies x ∈ D(e−ωtS(t)|Eω) = D(S(t)|Eω) and yt = e−ωtS(t)x. Now, by
(10)

(11) e−ωt‖S(t)xn − S(t)x‖ ≤ ε, n > N, t ≥ 0 .

This implies ‖xn − x‖ω ≤ ε, for n > N and ‖xn − x‖ω → 0 as n → ∞.
Consequently, ‖x‖ω < ∞.

It remains to prove that x ∈ D. Since xn ∈ D by (1), we have

(12) S(s)S(t)xn =

s∫

0

(S(r + t)− S(r))Cxndr ,
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By Remark 1 we have

‖S(s)S(t)xn − S(s)S(t)x‖ ≤ 2Mωeω(t+s)

ω
‖xn − x‖ω .

Now, fix s, t ≥ 0. Then by (5)

‖S(t)Cxn − S(t)Cx‖ ≤ Mωeωt‖xn − x‖ω .

It implies

∥∥∥
s∫

0

(S(r + t)− S(r))Cxndr −
s∫

0

(S(r + t)− S(r))Cxdr
∥∥∥

≤
s∫

0

‖(S(r + t)− S(r))C(xn − x)‖dr

≤ Mω

ω
(eω(s+t) + eωs)‖xn − x‖ω → 0 as n →∞ .

Further

(13) ‖S(s)S(t)x−
s∫

0

(S(r + t)− S(r))Cxdr‖ → 0 as n →∞ .

Since ‖S(t)xn−S(t)x‖ ≤ eωt‖xn− x‖ω and ‖xn− x‖ω → 0 as n →∞, we have
‖S(t)xn − S(t)x‖ → 0 as n → ∞. On the other hand S(s)|Eω is closed in Eω,
by (13), we obtain

S(t)x ∈ D(S(s)) and S(s)S(t)x =

s∫

0

(S(r + t)− S(r))Cxdr .

Let t1 ≥ 0. Then,

(14)
‖S(t)x− S(t1)x‖ ≤ ‖S(t)x− S(t)xn‖+ ‖S(t)xn − S(t1)xn‖

+‖S(t1)xn − S(t1)x‖ ≤ eωt‖xn − x‖ω

+‖S(t)xn − S(t1)xn‖+ eωt1‖xn − x‖ω .

For ε > 0 and n sufficiently large choose δ > 0 such that eωt < eωt1 + ε and

‖S(t)xn − S(t1)xn‖ < ε, for 0 < |t− t1| < δ .

Then (14) follows that S(t)x is strongly continuous for t ≥ 0.
Clearly, it holds

‖S(t)Cx− CS(t)x‖ ≤ ‖S(t)Cx− S(t)Cxn‖+ ‖CS(t)xn − CS(t)x‖
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≤ Mωeωt‖xn − x‖ω +
2M2

ωeωt

ωKω
‖xn − x‖ω = Mωeωt

(
1 +

2Mω

ωKω

)
‖xn − x‖ω < ε

for n sufficiently large.
It is easy to see that

‖S(0)x‖ = ‖S(0)x− S(0)xn‖ ≤ ‖x− xn‖ω < ε

for n sufficiently large. Hence S(0)x = 0 and x ∈ D.
b) We have S(t)|Eω ⊂ S(t), t ≥ 0, so if S(t) is closed, then S(t)|Eω is

closable, with the closure S(t)|Eω. If x ∈ D(S(t)|Eω), then there is a sequence
{xn} ⊂ D(S(t)|Eω), and y ∈ Eω such that ‖xn−x‖ → 0 and ‖S(t)xn−y‖ → 0 as
n →∞. Then x ∈ Eω and since S(t) is closed, x ∈ D(S(t)) and S(t)x = y ∈ Eω.

Thus x ∈ D(S(t)|Eω), and S(t)|Eω is a closed operator in Eω. 2

3. Family of C−pseudoresolvents

In this section we suppose that for a nondegenerate integrated C−semigroups
(S(t))t≥0 of unbounded linear operators for every ω > 0 hold:

(i) The operator C is bounded under the norm ‖ · ‖ω in Eω.
(ii) There exists Kω > 0 such that

‖x‖ ≤ 1
Kω

‖x‖ω .

(iii) The operator S(t)|Eω is closed in Eω for t ≥ 0 and ω > 0.

Then, we have E
‖·‖ω

ω = Eω.

Definition 2. For fixed ω > 0 and λ ∈ C, Reλ > ω define

Rω(λ)x = λ

∞∫

0

e−λtS(t)xdt, x ∈ Eω .

Observe that

∥∥∥λ

∞∫

0

e−λtS(t)xdt
∥∥∥ ≤ |λ|

∞∫

0

e−tReλ‖S(t)x‖dt ≤ |λ|
Kω

∞∫

0

e−tReλ‖S(t)x‖ωdt

≤ 2Mω|λ|
ωKω

‖x‖ω

∞∫

0

e(ω−Reλ)tdt =
2Mω|λ|

ωKω(Reλ− ω)
‖x‖ω .

Thus, the integral is an improper Riemann integral converging absolutely in
the norm of E. Observe that Rω(λ) is in general unbounded in (E, ‖ · ‖) and
that its domain is Eω.
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Theorem 2. Fix ω > 0 and λ ∈ C with Reλ > ω.
a) (i) Rω(λ)(Eω) ⊂ Eω. Moreover,

ω(Reλ− ω)
2Mω|λ| ‖Rω(λ)x‖ω ≤ ‖x‖ω, x ∈ Eω .

(ii) Rω(λ)x ∈ D(S(t)C) and

S(t)CRω(λ)x = Rω(λ)S(t)Cx = Rω(λ)CS(t)x, t ≥ 0, x ∈ Eω .

b) (i) For every x ∈ Eω, ‖x‖Rω < ∞, where

(15) ‖x‖Rω := sup
n∈N0

sup
λ>0

(λ− ω)n+1

n!

∥∥∥
(Rω(λ)

λ

)(n)

Cx
∥∥∥, λ > ω .

The norm ‖ · ‖Rω is equivalent to the norm ‖ · ‖ω.
(ii) If ω1 ≤ ω2 and Reλ > ω2, then Rω1(λ)x = Rω2(λ)x, x ∈ Eω. Thus,

as operators in E, Rω1(λ) ⊂ Rω2(λ) if Reλ > ω2.

Proof.
a) (i) Let t ≥ 0 and x ∈ Eω. Then,

‖S(s)x‖ω ≤ 2Mωeωs

ω
‖x‖ω < ∞

which implies

∥∥∥λ

∞∫

0

e−λtS(t)xdt
∥∥∥

ω
≤ |λ|

∞∫

0

e−tReλ‖S(t)x‖ωdt

≤ |λ|
∞∫

0

e(ω−Reλ)t 2Mω

ω
‖x‖ωdt ≤ 2Mω|λ|

ω(Reλ− ω)
‖x‖ω < ∞ .

(ii) We obtain Rω(λ)x ∈ Eω ⊂ D(S(t)C). Since S(t) is closed under the
norm ‖ · ‖ and S(t)C = CS(t), then holds

S(t)CRω(λ)x = Rω(λ)S(t)Cx = Rω(λ)CS(t)x, x ∈ Eω .

b) (i) We will show that, for every x ∈ Eω, Rω(λ)x ∈ D. Theorem 2a) implies
that Rω(λ)x ∈ ⋂

t≥0

D(S(t)) and S(t)Rω(λ)x = Rω(λ)S(t)x, t ≥ 0.

It follows Rω(λ)S(t)x ∈ ⋂
s≥0

D(S(s)) and also S(t)Rω(λ)x ∈ ⋂
s≥0

D(S(s)).

Thus, Rω(λ)x ∈ ⋂
s,t≥0

D(S(s)S(t)).

Therefore
S(s)S(t)Rω(λ)x = Rω(λ)S(s)S(t)x
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= λ

∞∫

0

e−λpS(p)S(s)S(t)xdp = λ

∞∫

0

e−λpS(p)

s∫

0

(S(r + t)− S(r))Cxdr dp

=

s∫

0

(S(r + t)− S(r))CRω(λ)x dr .

Moreover, S(t)Rω(λ)x = Rω(λ)S(t)x implies

S(0)Rω(λ)x =

∞∫

0

e−λsS(0)S(s)x ds = 0 .

We will prove lim
t→t1

S(t)Rω(λ)x = S(t1)Rω(λ)x, x ∈ Eω. For x ∈ Eω and

s ≥ 0, using strong continuity, we have

‖S(t)S(s)x− S(t1)S(s)x‖ → 0 as t → t1 .

Remark 1 implies

‖S(t)S(s)x‖ ≤ 2Mωeωs

ω
eωt‖x‖ω ≤ 2Mωeωs

ω
(eωt1 + ε)‖x‖ω ,

for sufficiently small |t − t1|. The dominated convergence theorem for vector
valued integrals implies

lim
t→t1

S(t)Rω(λ)x = lim
t→t1

λ

∞∫

0

e−λsS(t)S(s)xds = λ

∞∫

0

e−λs lim
t→t1

S(t)S(s)xds

= λ

∞∫

0

e−λsS(t1)S(s)xds = λS(t1)

∞∫

0

e−λsS(s)xds = S(t1)Rω(λ)x.

By (i), ‖Rω(λ)x‖ω < ∞ and
ω(Reλ− ω)

2|λ|Mω
‖Rω(λ)x‖ω ≤ ‖x‖ω. Thus Rω(λ) is a

bounded linear operator with respect to the norm ‖ · ‖ω.
(ii) Let x ∈ Eω and λ > ω. Then, for n ∈ N0,

(16)
(Rω(λ)

λ

)(n)

Cx = (−1)n

∞∫

0

tne−λtS(t)Cxdt ,

and

∥∥∥
(Rω(λ)

λ

)(n)

Cx
∥∥∥ ≤

∞∫

0

tne−λt‖S(t)Cx‖dt ≤
∞∫

0

tne−λt 1
Kω

‖S(t)Cx‖ωdt
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≤ 2Mω

ωKω

∞∫

0

tne−(λ−ω)t‖x‖ωdt =
2Mω

ωKω

n!
(λ− ω)n+1

‖x‖ω.

This implies

ωKω

2Mω
sup
n∈N0

sup
λ>ω

(λ− ω)n+1

n!

∥∥∥
(Rω(λ)

λ

)(n)

Cx
∥∥∥ ≤ ‖x‖ω .

We will use the following assertion (cf. [3]):
Let f(t) be continuous and bounded. If λ →∞, ;n →∞ so that

n

λ− ω
→ t,

then,

(λ− ω)n+1

n!

∞∫

0

e−(λ−ω)ssnf(s)ds → f(t) .

By (16)

(λ− ω)n+1

n!

(Rω(λ)
λ

)(n)

Cx = (−1)n (λ− ω)n+1

n!

∞∫

0

e−(λ−ω)ssne−ωsS(s)Cxds

and by using the preceding statement, we obtain

e−ωtS(t)Cx = lim
λ→∞
n→∞

(−1)n (λ− ω)n+1

n!

(Rω(λ)
λ

)(n)

Cx .

For t ≥ 0

e−ωt‖S(t)Cx‖ ≤ lim
n→∞

sup
λ>ω

∥∥∥ (λ− ω)n+1

n!

(Rω(λ)
λ

)(n)

Cx
∥∥∥

≤ sup
n∈N0

sup
λ>ω

(λ− ω)n+1

n!

∥∥∥
(Rω(λ)

λ

)(n)

Cx
∥∥∥

and

‖x‖ω ≤ sup
n∈N0

sup
λ>ω

(λ− ω)n+1

n!

∥∥∥
(Rω(λ)

λ

)(n)

Cx
∥∥∥ .

(ii) Obviously, Eω1 ⊆ Eω2 if ω1 ≤ ω2. For x ∈ Eω1 and Reλ > ω2 the oper-
ators Rω1(λ) and Rω2(λ) are defined and Rω1(λ)x = Rω2(λ)x. Thus Rω1(λ) ⊂
Rω2(λ). 2

4. Family of infinitesimal generators

Definition 3. A function R(·) defined on a subset D(R) of the complex plane
with values in L(E) is called C−pseudoresolvent if it comutes with C and sat-
isfies the equation

(17) (µ− λ)R(λ)R(µ) = R(λ)C −R(µ)C, (λ, µ ∈ D(R)) .

R(·) is said to be nondegenerate if R(λ)x = 0 for all λ ∈ D(R) implies x = 0.



10 R. Kravarušić, M. Mijatović

Theorem 3. The family of operators (Rω(λ))Reλ>ω on Eω, ω > 0 is the
C−pseudoresolvent i.e.

(µ− λ)Rω(λ)Rω(µ) = Rω(λ)C −Rω(µ)C, Reλ > ω, Reµ > ω .

Proof. Note that the operator C is bounded under the norm ‖ · ‖ω and

CRω(λ) = Rω(λ)C .

Fix ω > 0. We will show that the family of operators (Rω(λ))Reλ>ω satisfies
equation (17). Let λ, µ ∈ C, λ 6= µ, Reλ, Reµ > ω, and x ∈ Eω. Then
Rω(λ)Rω(µ) is well defined because ((Rω(µ))(Eω) ⊂ Eω. We have

(18) Rω(λ)Rω(µ)x = λ

∞∫

0

e−λsS(s)Rω(µ)xds

= λµ

∞∫

0

e−λs

∞∫

0

e−µtS(s)S(t)x dt ds

= λµ

∞∫

0

e−λs

∞∫

0

e−µt

s∫

0

(S(r + t)− S(r))Cxdrdtds

=
1

λ− µ

[
λµ(λ− µ)

( ∞∫

0

e−λs

∞∫

0

e−µt

s∫

0

S(r + t)Cxdrdtds

−
∞∫

0

e−λs

∞∫

0

e−µt

s∫

0

S(r)Cxdrdtds
)]

=
1

λ− µ
[λµ(λ− µ)(I1 − I2)] .

By using Theorem 2a) and the change of variables, we obtain
(19)

I1 =

∞∫

0

e−λs

∞∫

0

eµt

s∫

0

S(r + t)Cxdrdtds =

∞∫

0

e−λs

∞∫

0

e−µt

s+t∫

t

S(v)Cxdvdtds

=

∞∫

0

v∫

0

∞∫

v−t

e−λse−µtS(v)Cxdsdtdv =
1
λ

∞∫

0

v∫

0

e−λ(v−t)e−µtS(v)Cxdtdv

=
1

λ(λ− µ)

∞∫

0

e−λv(e(λ−µ)v−1)S(v)Cxdv =
1

λ(λ− µ)

(Rω(µ)Cx

µ
− Rω(λ)Cx

λ

)
,

(20) I2 =

∞∫

0

e−λs

∞∫

0

e−µt

s∫

0

S(r)Cxdrdtds =
1
µ

∞∫

0

e−λs

s∫

0

S(r)Cxdrds
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=
1
µ

∞∫

0

S(r)Cx

∞∫

r

e−λsdsdr =
1
µ

∞∫

0

e−λrS(r)Cx

∞∫

r

e−λ(s−r)dsdr

=
1

λµ

∞∫

0

e−λrS(r)Cxdr =
Rω(λ)Cx

λ2µ
.

Thus (18), (19) and (20) imply

(21) Rω(λ)Rω(µ)x

=
1

λ− µ

[
λµ(λ− µ)

( 1
λ(λ− µ)

(Rω(µ)Cx

µ
− Rω(λ)Cx

λ

)
− Rω(λ)Cx

λ2µ

)]

=
1

λ− µ

[
µ
(Rω(µ)Cx

µ
− Rω(λ)Cx

λ

)
− λ− µ

λ
Rω(λ)Cx

]

=
1

µ− λ

(
Rω(λ)Cx−Rω(µ)Cx

)

and the family of operators (Rω(λ))Reλ>ω satisfies equation (17). 2

Lemma 2.
(i) The null space

N (Rω(λ)) = {x ∈ Eω; Rω(λ)x = 0}
is independent of the choice of λ with Reλ > ω.

(ii) The inverse C−1(Range(Rω(λ)), Reλ > ω, is independent of the choice
of λ.

Proof.
(i) Let x ∈ N (Rω(λ)). Then (17) implies

CRω(µ)x = CRω(λ)x + (λ− µ)Rω(µ)Rω(λ)x = 0, x ∈ Eω, Reλ, Reµ > ω .

The operator C is injective and we have Rω(µ)x = 0 for Reµ > ω. Then
N (Rω(λ)) = N (Rω(µ)).

(ii) Let x ∈ C−1(Range(Rω(λ))). Then there exists y ∈ Eω such that Cx =
Rω(λ)y for Reλ > ω. For Reµ > ω (λ 6= µ) we have

C2x = CRω(λ)y = CRω(µ)y − (λ− µ)Rω(µ)Rω(λ)y

= Rω(µ)(Cy−(λ−µ)Rω(λ)y) = Rω(µ)(Cy−(λ−µ)Cx) = CRω(µ)(y−(λ−µ)x) .

Since C is injective, we obtain

Cx = Rω(µ)z for z = y − (λ− µ)x .

Therefore,
x ∈ C−1(Range(Rω(µ)), Reµ > ω .

2



12 R. Kravarušić, M. Mijatović

Lemma 3.
(i) The null space N (C − λRω(λ)) is independent of λ with Reλ > ω.
(ii) The inverse C−1(Range(C−λRω(λ))) is independent of λ with Reλ > ω.

Proof.
(i) For N (C − λRω(λ)) we have Cx− λRω(λ)x = 0. Hence,

Rω(µ)Cx− λRω(µ)Rω(λ)x = 0

and
CRω(µ)x− λ

λ− µ
(CRω(µ)x− CRω(λ)x) = 0 .

Since C is injective, we have Rω(µ)x− λ

λ− µ
(Rω(µ)x−Rω(λ)x = 0, λ 6= µ. By

multiplying both sides of the equality by λ− µ it follows

λRω(µ)x− µRω(µ)x− λRω(µ)x + λRω(λ)x = 0

and
λRω(λ)x = µRω(µ)x .

Therefore,
Cx− µRω(µ)x = 0, Reµ > ω .

(ii) Let x ∈ C−1(Range(C − λRω(λ))). Then

(22) Cx = Cy − λRω(λ)y

for some y ∈ Eω and Reλ > ω. We will show that for z = x +
µ

λ
(y − x) the

following holds
Cx = Cz − µRω(µ)z, Reµ > ω .

By using (22) we obtain

C2x = C2y − λRω(λ)Cy

= C2y − λ[Rω(µ)Cy − (λ− µ)Rω(µ)Rω(λ)y]

= C2y − λRω(µ)(Cy − (λ− µ)Rω(λ)y)

= C2y − λRω(µ)
(
Cy − λ− µ

λ
C(y − x)

)
= C

(
Cy − λRω(µ)

(
x +

µ

λ
(y − x)

))
.

Since C is injective, we have

Cx = Cy − λRω(µ)
(
x +

µ

λ
(y − x)

)

and after multiplication with
µ

λ
we obtain

0 =
µ

λ
C(y − x)− µRω(µ)

(
x +

µ

λ
(y − x)

)
.
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Finally
Cx = C

(
λ +

µ

λ
(y − x)− µRω(µ)

(
x +

µ

λ
(y − x)

))

and therefore

Cx = Cz − µRωµ(z), for z = x +
µ

λ
(y − x), µ 6= λ, Reλ > ω .

Note that

‖Rω(λ)Cx‖ω ≤ 2|λ|Mω

ω(Reλ− ω)
‖x‖ω, Reλ > ω, ω ∈ Eω .

and the operators Rω(λ)C are bounded under the norm ‖ · ‖ω. 2

Theorem 4. For the family of operators (Rω(λ))Reλ>ω it holds:
(i) There exists some linear operator Bω such that λI −Bω is injective and

(23)





Range(Rω(λ)) ⊂ D(Bω),
Rω(λ)(λI −Bω) ⊂ (λI −Bω)Rω(λ) = C,
for all λ with Reλ > ω,

if and only if
N (Rω(λ)) = {0} .

(ii) The largest operator which satisfies (23) is the closed linear operator Aω

defined by

(24)





D(Aω) := C−1[Range(Rω(λ)] = {x ∈ Eω;
Cx ∈ Range(Rω(λ))},

Aωx := (λ− ((Rω(λ))−1)Cx, x ∈ D(Aω),
which is independent of λ,Reλ > ω .

(iii) If Bω satisfies (23) then C−1BωC = Aω, where

D(C−1BωC) = {x ∈ Eω; Cx ∈ D(Bω) and BωCx ∈ Range(C)}.

In particulary C−1AωC = Aω.

Proof. (see [11] Theorem 3.4) 2

Let D(A) =
⋃

ω>0
D(Aω), where Aω is given in Theorem 4. For x ∈ D(A)

let ω > 0 such that x ∈ D(Aω). There exists y ∈ Eω such that Cx =
Rω(λ)y, Reλ > ω. We define

(25) Ax := λx− y .

We call A the infinitesimal generator of the once integrated C−semigroup
of unbounded linear operators (S(t))t≥0.
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It is clear that x ∈ D(A) implies x ∈ D(Aω) for some ω > 0 and

Ax = λx− y = λx− (Rω(λ))−1Cx = Aωx .

For y ∈ Eω we have Cx = Rω(λ)y. Thus, the operator A is well defined and

D(A|Eω) = Aω .

It is easy to show that D(A) is a subspace of E and A is a linear operator.

Theorem 5.
(i) If ω1 ≤ ω2 then Aω1 ⊂ Aω2 .
(ii) For all x ∈ Eω the resolvent equation

(λI −A)y = x, Reλ > ω

has a unique solution belonging to Eω and y = C−1Rω(λ)x.
(iii) Let ω > 0. Then for t ≥ 0, S(t)(D(Aω)) ⊂ D(Aω) and

S(t)Aωx = AωS(t)x, x ∈ D(Aω) .

(iv) The operator A is closed under the topology induced by the norm ‖ · ‖ω

and
CAω ⊂ AωC .

(v) For all t ≥ 0 and x ∈ D(A),
t∫
0

S(r)xdr ∈ D(A). The function t → S(t)x

is differentiable of t for t > 0. It holds S′(t)x − Cx = S(t)Ax, or equivalenty,

S(t)x− tCx =
t∫
0

S(r)Axdr, t > 0.

Proof.
(i) Let ω1 ≤ ω2 and x ∈ D(Aω1). Then we have x ∈ Range(C−1Rω(λ)) =

C−1Range(Rω(λ)) and x = C−1Rω(λ)y, for some y ∈ Eω1 and Reλ > ω1. It is
clear that ω1 ≤ ω2 implies Rω1(λ) < Rω2(λ) and

C−1Rω1(λ)y = C−1Rω2(λ)y.

Hence
Cx = Rω2(λ)y, x ∈ D(Aω1).

Then Aω1x = λx− y = Aω2(x), Reλ > ω2, x ∈ D(Aω1). It implies Aω1 ⊂ Aω2 .
(ii) We will show that y = C−1Rω(λ)Cx ∈ Eω is the unique solution of the

resolvent equation. For x ∈ Eω and Reλ > ω we have

(λI −Aω)C−1Rω(λ)x = [λI − (λI − (Rω(λ)C)−1C]C−1Rω(λ)x = x.

Then A|Eω = Aω implies (ii).
(iii) For x ∈ D(A), let ω > 0 such that x ∈ D(Aω). Therefore we have

S(t)Ax = S(t)Aωx = S(t)(λx− y)
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= λS(t)x− S(t)y = AωS(t)x = AS(t)x,

where Cx = Rω(λ)y for Reλ > ω.
(iv) The operator Aω is closed under the norm ‖ · ‖ω (Theorem 4) and

CAωx = C(λx− y) = λCx− Cy = AωCx.

(v) Let ω > 0 and t ≥ 0 be fixed. Then

e−ωs
∥∥∥S(s)C

t∫

0

S(r)xdr
∥∥∥ ≤ e−ωs

t∫

0

∥∥∥S(s)S(r)Cx
∥∥∥dr

≤ e−ωs 2Mωeωs

ω
‖x‖ω

t∫

0

dr ≤ 2Mωeωt

ω2
‖x‖ω < ∞ .

Hence,
t∫
0

S(r)xdr ∈ Eω. There exists

Rω(λ)

t∫

0

S(r)xdr = λ

∞∫

0

e−λsS(s)

t∫

0

S(r)xdrds .

Let y ∈ Eω such that Cx = Rω(λ)y. The operator Aω is closed and for Aωx =
λx− y we have

∞∫

0

S(r)Aωxdr = Aω

t∫

0

S(r)xdr = λ

t∫

0

S(r)xdr −
t∫

0

S(r)ydr .

Therefore
t∫
0

S(r)xdr ∈ D(Aω) and
t∫
0

S(r)xdr ∈ D(A) because A|Eω = Aω.

We obtain, for x ∈ D(Aω), Cx = Rω(λ)y for some y ∈ Eω with Reλ > ω
and Aωx = λx− y. By Fubini’s theorem it holds (cf. [7])

S(t + h)− S(t)
h

Cx =
λ

µ

(
S(t + h)

∞∫

0

e−λrS(r)ydr − S(t)

∞∫

0

e−λrS(r)ydr
)

=
eλh − 1

h
eλt

∞∫

0

e−λvS(v)Cydv−eλ(t+h)

h

t+h∫

0

e−λvS(v)Cydv+
eλt

h

t∫

0

e−λvS(v)Cydv.

Let h → 0. We have

(26) S′(t)x = eλtC2x− f ′(t)
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where

f(t) = eλt

t∫

0

e−λvS(v)Cydv.

Differentiating, it follows

f ′(t) = λeλt

t∫

0

e−λvS(v)Cydv + eλt · e−λtS(t)Cy

and (26) implies

(27) S′(t)Cx = eλtC2x− λeλt

t∫

0

e−λvS(v)Cydv − S(t)Cy .

Therefore,

eλtC2x−λeλt

t∫

0

e−λvS(v)Cydv = λeλt
( ∞∫

0

e−λvS(v)Cydv−
t∫

0

e−λvS(v)Cydv
)

λ

∞∫

0

e−λpS(p + t)Cydp = λ

∞∫

0

e−λp(S′(p)S(t)y + S(p)Cy)dv

= λS(t)

∞∫

0

e−λpS′(p)ydp + λ

∞∫

0

e−λpS(p)Cydp = λS(t)Cx + C2x.

Since S(t)C = CS(t) and by using (27) we obtain

CS′(t)x = C2x + λCS(t)x− CS(t)y .

The operator C is injective and we have

S′(t)x = Cx + λS(t)x− S(t)y.

Therefore
S′(t)x = Cx + S(t)Aωx, ω > 0,

and
S(t)Aωx = S′(t)x− Cx .

Since A = Aω on Eω, it implies

t∫

0

S(r)Axdr = S(t)x− tCx, t > 0.

2
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[8] Kravarušić, R., Mijatović, M., Pilipović, S., Integrated semigroups of unbounded
linear operators in a Banach spaces, Part II. Novi Sad J. Math., 28 (1998), 107-
122.

[9] Li, Y.-C., Shaw, S.-Y., N-Times integrated C−semigroups and the abstract
Cauchy problem. Taiwanese J. of Math., 26 (1997), 75-102.
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