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1. Introduction

In this paper X denotes a complex Banach space and B(X) the complex
Banach algebra of all bounded linear operators on X. A function C(t) from
R = (-∞, +∞) into B(X) is a cosine operator function if C(0) = I (I – the
identity operator on X) and if

C(t + s) + C(t− s) = 2C(t)C(s), (t, s ∈ R).(1)

We will assume that C(t) is strongly continuous, i.e. that the vector function
C(t)x is continuous on R for all x ∈ X. It is well known that there exist
constants K ≥ 1 and ω ≥ 0 for which

||C(t)|| ≤ Keω|t|, (t ∈ R).(2)

By A we will denote the infinitesimal operator of the function C(t), by D(A)
its domain and by R(A) its rank. It is well known that D(A) is the set of all
x ∈ X for which

lim
t→0

2
C(t)x− x

t2

exists. For x ∈ D(A) we define

Ax = lim
t→0

2
C(t)x− x

t2
.

The infinitesimal operator A of the strongly continuous cosine function C(t)
is closed and D(A) = X. This operator is bounded only in the case that the
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function C(t) is uniformly continuous. The spectrum of this operator is, as
already known, included in the set

{λ2 |Re(λ) ≤ ω, λ - complex number}.

If ω = 0 then we have to deal with a bounded cosine function:

||C(t)|| ≤ K (t ∈ R).

In this case the spectrum of A is contained in the half-line (−∞, 0].
In Section 2 of this paper we consider a bounded, strongly continuous cosine

operator function C(t) for which K = 1. In the Section 3 we give a relationship
between cosine functions and Hilbert transforms.

2. The Family Fa, a ≥ 0

Here we consider a strongly continuous cosine operator function C(t) for
which

||C(t)|| ≤ 1, (t ∈ R).

The family Fa, a ≥ 0 was introduced in [2], and a detailed investigation of its
properties was given in [3] and [4]. In [3] Fa , a ≥ 0 is defined by

Fax = lim
α↓0

Fa,αx

where for x ∈ X

Fa,α =

a∫

0

Eu,αxdu =
1
π i

a∫

0




α+iu∫

α+i0

[λR(λ) + λR(λ)]x dλ


du, α + iy = λ.

Here R(λ) denotes the resolvent of the operator A : R(λ) = (λ2I −A)−1.
It is easy to see that for all a ≥ 0 ||Fa|| ≤ a and Fax

a → x when a → +∞
(see [2], [3] and [4]).

Using this family we can define f(A) as follows:

f(A)Fax = f(−a2)Fax +

a∫

0

((a− u)f(−u2))′′uuFux du, x ∈ X.(3)

where f(−u2) (u ≥ 0) is a twice continuously differentiable function.
The operator f(A) is defined on the set of all those vectors that can be

written in the form Fax, x ∈ X and a ≥ 0. This set is dense in X.
Now we are going to prove that this definition is correct, namely that

f(A)Fax does not depend on the form of the vector Fax.
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First let us rewrite (3) in a somewhat different form. In [3] it is proved that
for 0 ≤ a ≤ b

FaFb = FbFa = 2

a∫

0

Fudu + (b− a)Fa.(4)

From there, dealing sightly freely, we get that for 0 ≤ u ≤ a

FadFu = dFuFa = Fudu + (a− u)dFu.(5)

But if we perform the partial integration in (3) we get

f(A)Fax = −
a∫

0

((a− u)f(−u2))′dFux

= −
a∫

0

(a− u)(f(−u2))′dFux +

a∫

0

f(−u2)dFux

which, together with (5), gives

f(A)Fax = f(−a2)Fax−
a∫

0

(f(−u2))′dFuFax.(6)

Let us now assume that Fax = Fby and let, for example, a ≤ b . Then from
(4) it follows that FadFu = Fadu for a ≤ u ≤ b.

Based on this and on (6) we have

f(A)Fby = f(−b2)Fby −
b∫

0

(f(−u2))′dFuFby

= f(−b2)Fax−
a∫

0

(f(−u2))′dFuFax−
b∫

a

(f(−u2))′dFuFax

= f(−b2)Fax−
a∫

0

(f(−u2))′dFuFax−
b∫

a

(f(−u2))′duFax

= f(−a2)Fax−
a∫

0

(f(−u2))′dFuFax

= f(A)Fax.

This proves the correctness of the definition of the operator f(A).
It was shown in [4] that

C(t)Fax = cos atFax +

a∫

0

((a− u) cos ut)′′Fux du for a ≥ 0, t ∈ R, x ∈ X.(7)
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From here, by differentiating twice and by putting t = 0, we get

AFax = −a2Fax +

a∫

0

(6u− 2a)Fux du.(8)

This can be also proved by putting f(u) = u in (3).
Let us put f(u) =

√
u in (3). We get an operator which we will denote by√

A or A
1
2

A
1
2 Fax = iaFax− 2i

a∫

0

Fux du, a ≥ 0, x ∈ X.(9)

Since according to (4), F 2
a = 2

a∫
0

Fudu, we can write (9) in the form

A
1
2 Fax = iaFax− iF 2

a x.(10)

Let us show that the operator A
1
2 defined in this way can be closed. If we

put in (3)

f(u) =
1

λ−√u
, for u ∈ (−∞, 0] and Re(λ) > 0

then we get an operator Bλ defined by

BλFax =
1

λ− ia
Fax +

a∫

0

((a− u)
1

λ− iu
)′′ Fux du.

By dividing this by a and letting a → +∞ we obtain the operator Bλ defined
on the whole space X by

Bλx = −2

+∞∫

0

Fux

(λ− iu)3
du.

It is obvious that the operator Bλ is bounded and therefore it is closed. From
(3) it is easy to see that for all a ≥ 0 and for all x ∈ X

Bλ(λI −A
1
2 )Fax = (λI −A

1
2 )BλFax = Fax.

This means that the operator Bλ (on the set
⋃

a≥0

Fa(X)) is the inverse operator

of the operator λI−A
1
2 . Since the operator Bλ is closed, it follows that λI−A

1
2

and therefore A
1
2 can be closed. The domain of the closure of the operator A

1
2

consists of all those x ∈ X for which there exists

lim
a→+∞

(Fax− F 2
a x

a
).
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For all such x, A
1
2 x = i lim

a→+∞
(Fax− F 2

a x
a ), where the closure of the operatorA

1
2

is denoted by A
1
2 too.

From [4] it is easy to see that for all x ∈ D((A
1
2 )2), (A

1
2 )2x = Ax. In fact,

it can be shown that A = (A
1
2 )2.

The following lemma is easy to prove.

Lemma 1. If x ∈ D(A) then

A
1
2 x =

2i

π

+∞∫

0

(I −C(t))x
t2

dt.(11)

Proof. It is obvious that for all x ∈ D(A) the integral on the right side of (11)
exists. Particularly, it exists for Fax (a ≥ 0, x ∈ D(A)). Using the equation
(7), after some calculation we get

2 i

π

+∞∫

0

(I −C(t))Fax

t2
dt = iaFax− iF 2

a x

From here, using (10) and the fact that Fax
a → x if a → +∞, (11) easily follows.

2

Let x, y ∈ X. It is known that there exists

〈x, y〉 def
= lim

t↓0
‖x + ty‖2 − ‖x‖2

2t
.

The following theorem was proved in [5]:

Theorem. Suppose X is a real Banach space. Then the “Riesz representation
theorem” holds: Given δ ∈ X∗ there exists xδ ∈ X such that

(∗) ‖xδ‖ = ‖δ‖ and 〈xδ, y〉 = δ(y) for all y ∈ X

if and only if X is reflexive with a Gâteaux differentiable norm.
Furthermore xδ is unique (and the mapping δ → xδ is continuous from the

norm topology on X∗to the weak topology on X) if and only if X is also strictly
convex. In addition to that, the mapping δ → xδ is also continuous from the
norm topology on X∗to the norm on X if and only if X is also weakly uniformly
convex.

From now on, let X be a complex Banach space. Let

(x, y)
def
= 〈x, y〉 − i 〈x, iy〉

Then a similar theorem holds for X. Here the role of the function 〈x, y〉 is
taken by the function (x, y). Specifically, if X is a reflexive, strictly convex
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space with a Gâteaux differentiable norm, then |(x, y)| ≤ ‖x‖ · ‖y‖ and (x, y) is
a continuous linear functional relative to y (for fixed x ∈ X). If we denote by ϕ

the transformation δ → xδ we can introduce a new operation “
∗
+” in X by

x
∗
+ y = ϕ(ϕ−1(x) + ϕ−1(y)).

Then, the function (x, y) is antilinear in X relative to the operation “
∗
+”. We will

denote (if necessary) the space X provided with the operation “
∗
+” by (X,

∗
+ ),

and by (X, +) we will denote the space X provided with the operation “+”.

Lemma 2. Suppose that X is a reflexive, strictly convex Banach space with
a Gâteaux differentiable norm and let A be the infinitesimal operator of the
bounded cosine function C(t), (‖C(t)‖ ≤ 1). Then the point 0 is not contained
in the residual spectrum of the operator A.

Proof. Suppose that the set A(D(A)) is not dense in X. Then there exists
y ∈ X, y 6= 0 such that

〈y, Ax〉 = 0, x ∈ D(A),

and we have (because of (8))

−a2 〈y, Fax〉+

a∫

0

(6u− 2a) 〈y, Fux〉 du = 0, x ∈ X, a ≥ 0.

If we put 〈y, Fux〉 = ψ(u) we have a2ψ(a) =
a∫
0

(6u− 2a)ψ(u)du.

Since ψ(u) is a continuous function, it follows from here that ψ has deriv-
atives of all orders (for a > 0). From the last equality we get ψ′′(a) = 0. It
follows from here that ψ(a) = αa + β.

Since ψ(0) = 0, we have β = 0, and since ψ(a)
a =

〈
y, Fax

a

〉 → 〈y, x〉 if
a → +∞ , we get α = 〈y, x〉. It means that 〈y, Fax〉 = 〈y, x〉 a for all x ∈ X
and a ≥ 0. This implies

〈y, Fay〉 = a ‖y‖2

and further

a ‖y‖2 ≤ ‖y‖ · ‖Fay‖ ≤ a ‖y‖2 , i.e. ‖Fay‖ = a ‖y‖ .

We see that 〈y, Fay〉 = ‖y‖ · ‖Fay‖.
Since X is strictly convex, this gives Fay = ay.
From this and from (8) we get y ∈ D(A) and Ay = 0.
So, the number 0 is a point of the point spectrum of the operator A. The

lemma is proved. 2

For the dual cosine function C∗(t) of the function C(t) we have a similar
result.
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We still assume that X is a reflexive, strictly convex Banach space with a
Gâteaux differentiable norm. It is known that in a reflexive space X the dual
semigroup T ∗(t) of a C0−semigroup T (t) is also a C0-semigroup. It is true for
the cosine operator functions too. In our case we can get it in the following way:

First, we are going to prove two lemmas.

Lemma 3. Let X be the Banach space with the same properties as in Lemma
2. Then the set

X∗
1

def
= {F ∗a f | a ≥ 0, f ∈ X∗}

is dense in X∗.

Proof. Let us assume that X∗
1 is not dense in X∗. Then, because of reflexivity

of the space X, there exists x0 ∈ X, x0 6= 0 for which (F ∗a f)(x0) = 0, a ≥ 0,
f ∈ X∗.

It means that f(Fax0) = 0, a ≥ 0, f ∈ X∗.
From here and from Fax0

a → x0 if a → +∞ it follows f(x0) = 0(∀f ∈ X∗),
i.e. x0 = 0, which is a contradiction. It proves that X∗

1 is dense in X∗. 2

Lemma 4. For all sufficiently small h > 0, the following holds

‖Fa+h − Fa−h‖ ≤ 4
π

(a + e)h |ln h| .

Proof. According to [2], we have

Fa =
2
π

+∞∫

0

sin2 at

t2
C(2t)dt

and further

‖Fa+h − Fa−h‖ ≤ 4
π

1∫

0

|sin at sin ht|
t2

dt +
4
π

+∞∫

1

|sin at sin ht|
t2

dt

(here we used ‖C(t)‖ ≤ 1).
From here, for all α ∈ (0, 1) we obtain

‖Fa+h − Fa−h‖ ≤ 4ah

π
+

4hα

π

+∞∫

1

dt

t2
=

4ah

π
+

4hα

π(1− α)
.

For all h ∈ (0, e−1) the function hα

1−α has a minimum eh |ln h| at the point
α = 1 + 1

ln h ∈ (0, 1) and from the last inequality we get

‖Fa+h − Fa−h‖ ≤ 4
π

(a + e)h |ln h| . 2
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From Lemma 4 it immediately follows that
∥∥F ∗a+h − F ∗a−h

∥∥ ≤ 4
π

(a + e)h |ln h|

(for small h > 0), and the function F ∗a , a ≥ 0 is uniformly continuous.

We can identify the space X∗ with (X,
∗
+) and we will do so in the sequel.

Now, from (7) we have, for x ∈ X and a ≥ 0

C∗(t)F ∗a x = cos at F ∗a x +

a∫

0

∗
((a− u) cos ut)′′F ∗uxdt

where
a∫
0

∗ means that the integration was performed relative to the operation

“
∗
+”.

Now, the uniform continuity of the function F ∗a , the boundedness of the
function C∗(t) and Lemma 3 show that the function C∗(t) is strongly continu-
ous.

It is not difficult to see that X = (X,
∗
+) is strictly convex. Namely, let us

put

〈x, y〉∗ = lim
t↓0

‖x ∗
+ ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t↓0
‖x ∗

+ ty‖ − ‖x‖
t

.

Then for ‖x‖ = 1 we have

〈x, y〉∗ = lim
t↓0

‖x ∗
+ ty‖ − ‖x‖

t
≥ lim

t↓0
〈x ∗

+ ty, x〉 − 1
t

= 〈y, x〉 .

If we put here –y instead of y we get 〈x, y〉∗ ≤ 〈y, x〉 and further 〈x, y〉∗ = 〈y, x〉.
Now we see that from

∣∣〈x, y〉∗∣∣ = ‖x‖ · ‖y‖, because of strict convexity of the
space X (see [5]), follows that y = λx, λ ∈ R. But this is equivalent to the strict
convexity of the space X∗.

From the equality 〈x, y〉∗ = 〈y, x〉 it follows that the space X∗ = (X,
∗
+) has

a Gâteaux differentiable norm (see [5], Theorem 2).
We have seen that the space X∗ and the function C∗(t) satisfy all conditions

of Lemma 2, so the number 0 is not a point of the residual spectrum of the
infinitesimal operator A∗ of the cosine function C∗(t).

It is obvious now that the point 0 belongs to the point spectrum of the
operator A iff 0 belongs to the point spectrum of the operator A∗.

For the linear operator A : X → X which is defined on a dense set in X we
say that it is Hermitian if the operator A is the infinitesimal generator of the
group of isometries

∥∥ei tAx
∥∥ = ‖x‖ for all x ∈ X and t ∈ R.

From Lemma 2 we get the following theorem:

Theorem 5. Let the space X satisfy the same conditions as in Lemma 2 and
let A : X → X be a Hermitian operator. Then the residual spectrum of A is
empty.
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Proof. Let λ0 ∈ R be any number. It is obvious that the operator A − λ0I is
Hermitian too. It follows that −(A− λ0I)2 is the infinitesimal generator of the
bounded cosine function C(t):

C(t) =
eit(A−λ0I) + e−it(A−λ0I)

2
, ‖C(t)‖ ≤ 1.

According to Lemma 2 the number 0 is not a point of the residual spectrum of
the operator (A− λ0I)2. But then the number λ0 is not a point of the residual
spectrum of the operator A.

The theorem is proved. 2

Let us assume that the space (X, +) has the same properties as in Lemma
2 and let L be some closed subspace of X. Then for all x ∈ X we can find a
sequence un ∈ L for which

‖x− un‖ → d

where d is the distance of the vector x from the subspace L. The sequence
{ un } is obviously bounded and there exists a subsequence of that sequence
which weakly converges to some x0 ∈ L. Because of this we assume that { un }
weakly converges to x0. Then we have

〈x− x0, x− un〉 → ‖x− x0‖2 .

Because of ‖x− x0‖ · ‖x− un‖ ≥ 〈x− x0, x− un〉 and because of ‖x− un‖ → d
we have ‖x− x0‖ = d and from here

‖x− x0 + tu‖2 − ‖x− x0‖2
2t

≥ 0 for all u ∈ L and t > 0.

Hence, for all u ∈ L we have 〈x− x0, u〉 = lim
t↓0

‖x−x0+tu‖2−‖x−x0‖2
2t ≥ 0 .

This immediately gives 〈x− x0, u〉 = 0(∀u ∈ L).
It will be denoted as follows (x − x0)⊥u (∀u ∈ L) and we will say that

x− x0 is orthogonal to L. We can formulate these considerations into the next
theorem:

Theorem 6. Let X be a (complex) reflexive and strictly convex Banach space
that has a Gâteaux differentiable norm. For every closed linear subspace L of
the space (X, +) there exists a subspace L∗ of the space (X,

∗
+) such that

X = L⊕ L∗

(i.e. every x ∈ X can be written in a unique way in the form x = l + l∗, l ∈
L, l∗ ∈ L∗ and 〈l∗, l〉 = 0).

Obviously, we proved the following theorem too:
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Theorem 6’. Let X be the same as in Theorem 6 and let L∗ be a closed
subspace of the space X∗ = (X,

∗
+). Then there exists a closed subspace L of the

space (X, +) such that
X = L∗ L

(i.e. every x ∈ X can be written in a unique way in the form x = l∗
∗
+ l,

l∗ ∈ L∗, l ∈ L and 〈l∗, l〉 = 0 ).

Let us go back to the function C(t) and its generator A. Let the number 0
be a point of the point spectrum of the operator A. Then, as we have already
seen, this number is a point of the point spectrum of the operator A∗ too. By L
we will denote the null-subspace of the operator Aand by M∗ the null-subspace
of the operator A∗. For m∗ ∈ M∗ one has A∗m∗ = 0, and therefore

〈A∗m∗, x〉 = 0 (∀x ∈ D(A)).

It means that
〈m∗, Ax〉 = 0 (∀x ∈ D(A)).

But from the proof of Lemma 2 we see that this relation implies Am∗ = 0, so
we see that M∗ ⊆ L. Obviously, it is also L ⊆ M∗, and therefore M∗ = L. The
subspace L is linear in (X, +) and M∗ is linear in (X,

∗
+ ). Therefore L = M∗

is linear in (X, +) and (X,
∗
+ ).

Let L∗and M be such that

X = L⊕ L∗ , X = L M (= M∗ M)

(see Theorem 6 and Theorem 6’).

Let us prove that :

1) X = L+M , L∩M = {0} i.e. X is the direct sum of the subspaces L and
M .

2) The subspace M is invariant relative to all operators C(t), t ∈ R.

If l ∈ L ∩ M then (because of L = M∗) l ∈ M∗ ∩ M and we have l = 0
(because of 〈l, l〉 = 0). It means that L ∩M = {0}.

Let y be a vector that is orthogonal to L + M (i.e. 〈y, l + m〉 = 0 for all
l ∈ L and m ∈ M). Then y ∈ M∗ ∩ L∗ = L ∩ L∗ and therefore y = 0.

Now let us prove that L + M is a closed subspace of (X, +). Let xn → x0

and xn ∈ L + M . Then xn = ln + mn, (ln ∈ L, mn ∈ M).
From here (because of ln ∈ M∗, X = M∗ M) it follows that 〈ln, xn〉 =

‖ln‖2.
Hence we have ‖ln‖ ≤ ‖xn‖ .
The sequence { xn } is bounded, so the sequence { ln } is bounded too.

Therefore the sequence { mn } is also bounded. Because of this we can assume
that the sequences { ln } and { mn } are weakly convergent, i.e. mn → m0

, ln → l0 weakly. From ln ∈ L, mn ∈ M and from the previous relations
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it follows that l0 ∈ L, m0 ∈ M . Moreover xn → x0 weakly and we have
x0 = l0 + m0 ∈ L + M . This proves our statement 1).

Now we take x ∈ M . For any l ∈ M∗(= L) we have C∗(t)l = l and therefore
〈C∗(t)l, x〉 = 0. This means that 〈l,C(t)x〉 = 0 for all l ∈ M∗ and t ∈ R. Hence
C(t)x ∈ M , so the statement 2) is also proved.

From these considerations we get the following theorem:

Theorem 7. Let X be a Banach space with the same properties as in Theorem
6 and let C(t) be a bounded cosine operator function (‖C(t)‖ ≤ 1). If the point
0 belongs to the point spectrum of the infinitesimal generator of the function
C(t), then X is a direct sum of the subspaces L and M of the space (X, +) for
which we have:

α) C(t)x = x (∀x ∈ L , ∀t ∈ R).

β) The subspace M is invariant relative to all operators C(t), t ∈ R.

γ) If we consider the function C(t) and its generator A on M then the point
0 does not belong to the point spectrum of the operator A.

It is evident that a similar theorem is true for the dual function C∗(t) too.

3. Hilbert Transforms

Let U(t) be a strongly continuous group of bounded operators on X. For
0 < ε < N and x ∈ X we put

Hε,Nx =
1
π

∫

ε≤|t |≤N

U(t)x
t

dt(12)

If lim
ε→0, N→+∞

Hε,Nx exists then we will call it the Hilbert transform of the element x

and denote it by Hx, i.e. Hx = lim
ε→0, N→+∞

Hε,Nx (see [6]).

If we put C(t) = 1
2 [U(t) + U(−t)] , t ∈ R, then C(t) is a strongly continuous

cosine operator function with the infinitesimal generator A2, where A is the
infinitesimal generator of the group U(t).

If U(t) is a bounded group, i.e. if there exists a constant K with

‖U(t)‖ ≤ K (∀t ∈ R)(13)

then C(t) is bounded on R, i.e. ‖C(t)‖ ≤ K, (∀t ∈ R) .
In the sequel we assume that K = 1. From here it easily follows that U(t)

is an isometry for all t ∈ R:

‖U(t)x‖ = ‖x‖ (t ∈ R , x ∈ X).

In that case the generator A of the group U(t) has the form A = iB, where B is
a Hermitian linear operator. For the cosine function C(t) we have ‖C(t)‖ ≤ 1,
t ∈ R .
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It is obvious that (12) can be written in the form

Hε,Nx =
1
π

N∫

ε

U(t)x− U(−t)x
t

dt.(14)

It is well known that

U(t)x = x + A

t∫

0

U(s)x ds, U(−t)x = x−A

t∫

0

U(−s)x ds.

We can write (14) in the form

Hε,Nx =
2
π

N∫

ε

AS(t)x
t

dt =
2
π

A

N∫

ε

S(t)x
t

dt

where S(t) =
t∫
0

C(s)ds .

For x ∈ D(A2) we have

Hε,NAx =
2
π

N∫

ε

S(t)A2x

t
dt =

2
π

t∫
0

S(s)A2x

t
ds |Nε +

N∫

ε

dt

t2

t∫

0

S(s)A2xds =

=
2
π

C(t)x− x

t

∣∣∣∣
N

ε

+
2
π

N∫

ε

C(t)x− x

t2
dt =

=
2
π


C(N)x− x

N
− C(ε)x− x

ε
+

N∫

ε

C(t)x− x

t2
dt


 .

From the boundedness of the function C(t) it follows

C(N)x− x

N
→ 0 if N → +∞

and from x ∈ D(A2) it follows

C(ε)x− x

ε
= ε

C(ε)x− x

ε2
→ 0 if ε → 0.

In this way we get

lim
ε→0, N→+∞

Hε,NAx =
2
π

+∞∫

0

C(t)x− x

t2
dt.
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Therefore

HAx =
2
π

+∞∫

0

C(t)x− x

t2
dt, x ∈ D(A2).(15)

Now we are going to apply Lemma 1 to our present situation (in which
A2 = −B2 is the infinitesimal generator of the function C(t)).

If we denote by A+ a closed extension of the operator A0 which is defined
by

A0Fa = aFax− F 2
a x,

then (15) becomes
HAx = −A+x, x ∈ D(A2).(16)

We know that A2
+ = B2 for x ∈ D(A2). Besides, we have

〈Fax,A+Fax〉 = a ‖Fax‖2 − 〈
Fax, F 2

a x
〉 ≥ a ‖Fax‖2 − ‖Fax‖ ·

∥∥F 2
a x

∥∥ ≥
≥ a ‖Fax‖2 − ‖Fax‖2 · ‖Fa‖ ≥ a ‖Fax‖2 − a ‖Fax‖2 = 0

The set
⋃

a≥0

Fa(X) is the core of the operator A+, and from that we have

〈x,A+x〉 ≥ 0 (x ∈ D(A+))

Because of that we will call the operator A+ the positive square root of B2 =
−A2.

Now, let us apply Theorem 7 to our present situation.
We have U(t)x + U(−t)x = 2x for x ∈ L, t ∈ R.
From here, because of strict convexity of the space X and because of isometry

of the operators U(t) and U(−t), it follows that U(t)x = U(−t)x = x.
Using the fact that 〈V y, V x〉 = 〈y, x〉 for all isometric operators V , which

is obvious from the definition of 〈x, y〉, we have 〈y, U(t)x〉 = 〈U(t)y, U(t)x〉 =
〈y, x〉 = 0 for y ∈ L, x ∈ M and t ∈ R.

We see that U(t)x ∈ M for all x ∈ M and t ∈ R.
So, U1(t) (t ∈ R) is a group of isometric operators on M , where U1(t) (t ∈ R)

denotes the restriction of the operator U(t) (t ∈ R) on M .
Now, from Theorem 7, we can conclude that the rank R(A2

1(M)) of the
operator A2

1 is dense in M , where A1 is the infinitesimal generator of the group
U1(t).

Now, we see that the operator H is defined at least on the set L A2
1(M),

which is dense in X.
So, we get the following theorem.

Theorem 8. Let X be a reflexive, strictly convex space with a Gâteaux differ-
entiable norm. Then the above Hilbert transform is defined on some set which
is dense in X. It can be extended to a linear bounded operator on the whole X
iff there exists a constant P for which

‖A+x‖ ≤ P ‖Ax‖ (∀x ∈ D(A2)).
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Moreover, for x ∈ D(A2) we have HAx = −A+x, where A+ is the positive
square root of -A2.

Suppose now that the operator B is positive, i.e. that 〈x,Bx〉 ≥ 0 for all
x ∈ D(A2). We claim that A+x = Bx for all x ∈ D(A2). Let us take any ε > 0.
We have

〈x, (B + εI)x〉 ≥ ε ‖x‖2 (x ∈ D(A2)).(17)

Let Cε(t) denote the cosine operator function defined by

Cε(t) =
eiε tU(t) + e−iε tU(−t)

2
.

Then ‖Cε(t)‖ ≤ 1, t ∈ R. The infinitesimal generator of the function Cε(t) is
−(B + εI)2. Let Fa,ε, a ≥ 0 be the family of operators that corresponds to the
function Cε(t) in the same way the family Fa corresponds to the function C(t),
and let (B + εI)+ be the positive square root of (B + εI)2:

(B + εI)+Fa,εx = aFa,εx− F 2
a,εx.

It is clear that B + εI commutes with Fa,ε and therefore with (B + εI)+.
Now from (B + εI)2 − (B + εI)2+ = 0 it follows that 〈y, (B + εI)y〉 +

〈y, (B + εI)+ y〉 = 0, where y = (B + εI)Fa,εx− (B + εI)+Fa,εx.
Since 〈y, (B + εI)y〉 ≥ 0 and 〈y, (B + εI)+y〉 ≥ 0, we conclude that

〈y, (B + εI)y〉 = 0, which together with (17), gives y = 0.
Therefore (B + εI)Fa,εx = (B + εI)+Fa,εx .
It is easy to see that Fa,ε → Fa uniformly, if ε → 0, and that for all x ∈ D(A2)

(B + εI)x → Bx and (B + εI)+x → A+x if ε → 0.

From the last equality it now follows BFax = A+Fax, (x ∈ X).
From this equality, because of the fact that A and A+ commute with Fa we

conclude that Bx = A+x for all x ∈ D(A2).
In this way, using Theorem 8, we get the following theorem:

Theorem 9. Let Xsatisfy the conditions of Theorem 8 and let the infinitesimal
generator A have the form A = iB where B is positive and let the point 0 not
belong to the point spectrum of the operator A. Then the Hilbert transform is
defined on the whole X and it is equal to iI.

Let us now consider the case when X = H, where H is a Hilbert space. Then
the operator A can be written in the form A = i(B+ −B−), where B+ and B−
are positive operators and B+B− = B−B+ = 0 on D(A).

Let E± denote the orthogonal projection of the space X onto the closed
linear span of the range of the operator B±. Then E+E− = E−E+ = 0.

From Theorem 9 (applied to E±(H)) we immediately get the following the-
orem:
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Theorem 10. Let H be a Hilbert space and let U(t) be a group of isometric
operators on H, and let the point 0 not belong to the point spectrum of the
operator A. Then the Hilbert transform is defined on the whole H and

Hx = i(E+x− E−x) (∀x ∈ H).
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