NOVI SAD J. MATH. VOL. 35, NO. 2, 2005, 41-55

COSINE OPERATOR FUNCTIONS AND HILBERT TRANSFORMS¹

Fikret Vajzović², Amina Šahović³

Abstract. In this paper we consider bounded cosine operator functions and their connection to Hilbert transforms.

AMS Mathematics Subject Classification (1991): 47D09(47A35-47D03) Key words and phrases: Cosine function, strictly convex space, Hilbert transform

1. Introduction

In this paper X denotes a complex Banach space and B(X) the complex Banach algebra of all bounded linear operators on X. A function $\mathbf{C}(t)$ from $\mathbb{R} = (-\infty, +\infty)$ into B(X) is a cosine operator function if $\mathbf{C}(0) = I$ (I – the identity operator on X) and if

(1)
$$\mathbf{C}(t+s) + \mathbf{C}(t-s) = 2\mathbf{C}(t)\mathbf{C}(s), \quad (t,s \in \mathbb{R}).$$

We will assume that $\mathbf{C}(t)$ is strongly continuous, i.e. that the vector function $\mathbf{C}(t)x$ is continuous on \mathbb{R} for all $x \in X$. It is well known that there exist constants $K \ge 1$ and $\omega \ge 0$ for which

(2)
$$||\mathbf{C}(t)|| \le K e^{\omega|t|}, \quad (t \in \mathbb{R}).$$

By A we will denote the infinitesimal operator of the function $\mathbf{C}(t)$, by $\mathcal{D}(A)$ its domain and by $\mathcal{R}(A)$ its rank. It is well known that $\mathcal{D}(A)$ is the set of all $x \in X$ for which

$$\lim_{t \to 0} 2 \frac{\mathbf{C}(t)x - x}{t^2}$$

exists. For $x \in \mathcal{D}(A)$ we define

$$Ax = \lim_{t \to 0} 2 \frac{\mathbf{C}(t)x - x}{t^2}.$$

The infinitesimal operator A of the strongly continuous cosine function $\mathbf{C}(t)$ is closed and $\overline{\mathcal{D}(A)} = X$. This operator is bounded only in the case that the

 $^{^1\}mathrm{The}$ work was supported by the Federal Ministry of Education, Science, Culture and Sport of Bosnia and Herzegovina

²University of Sarajevo, Bosnia and Herzegovina

³University "Džemal Bijedić" Mostar, Bosnia and Herzegovina

function $\mathbf{C}(t)$ is uniformly continuous. The spectrum of this operator is, as already known, included in the set

$$\{\lambda^2 \mid Re(\lambda) \leq \omega, \lambda \text{ - complex number}\}.$$

If $\omega = 0$ then we have to deal with a bounded cosine function:

$$||\mathbf{C}(t)|| \le K \quad (t \in \mathbb{R}).$$

In this case the spectrum of A is contained in the half-line $(-\infty, 0]$.

In Section 2 of this paper we consider a bounded, strongly continuous cosine operator function $\mathbf{C}(t)$ for which K = 1. In the Section 3 we give a relationship between cosine functions and Hilbert transforms.

2. The Family F_a , $a \ge 0$

Here we consider a strongly continuous cosine operator function $\mathbf{C}(t)$ for which

$$||\mathbf{C}(t)|| \leq 1, \quad (t \in \mathbb{R}).$$

The family F_a , $a \ge 0$ was introduced in [2], and a detailed investigation of its properties was given in [3] and [4]. In [3] F_a , $a \ge 0$ is defined by

$$F_a x = \lim_{\alpha \downarrow 0} F_{a,\alpha} x$$

where for $x \in X$

$$F_{a,\alpha} = \int_{0}^{a} E_{u,\alpha} x du = \frac{1}{\pi i} \int_{0}^{a} \left(\int_{\alpha+i0}^{\alpha+iu} [\lambda R(\lambda) + \overline{\lambda} R(\overline{\lambda})] x \, d\lambda \right) du, \quad \alpha + iy = \lambda.$$

Here $R(\lambda)$ denotes the resolvent of the operator $A : R(\lambda) = (\lambda^2 I - A)^{-1}$. It is easy to see that for all $a \ge 0$ $||F_a|| \le a$ and $\frac{F_a x}{a} \to x$ when $a \to +\infty$ (see [2], [3] and [4]).

Using this family we can define f(A) as follows:

(3)
$$f(A)F_a x = f(-a^2)F_a x + \int_0^a ((a-u)f(-u^2))''_{uu}F_u x \, du, \quad x \in X.$$

where $f(-u^2)$ $(u \ge 0)$ is a twice continuously differentiable function.

The operator f(A) is defined on the set of all those vectors that can be written in the form $F_a x, x \in X$ and $a \ge 0$. This set is dense in X.

Now we are going to prove that this definition is correct, namely that $f(A)F_ax$ does not depend on the form of the vector F_ax .

First let us rewrite (3) in a somewhat different form. In [3] it is proved that for $0 \le a \le b$

(4)
$$F_a F_b = F_b F_a = 2 \int_0^a F_u du + (b-a) F_a$$

From there, dealing sightly freely, we get that for $0 \le u \le a$

(5)
$$F_a dF_u = dF_u F_a = F_u du + (a-u)dF_u.$$

But if we perform the partial integration in (3) we get

$$f(A)F_a x = -\int_0^a ((a-u)f(-u^2))' dF_u x$$

= $-\int_0^a (a-u)(f(-u^2))' dF_u x + \int_0^a f(-u^2) dF_u x$

which, together with (5), gives

(6)
$$f(A)F_a x = f(-a^2)F_a x - \int_0^a (f(-u^2))' dF_u F_a x.$$

Let us now assume that $F_a x = F_b y$ and let, for example, $a \le b$. Then from (4) it follows that $F_a dF_u = F_a du$ for $a \le u \le b$.

Based on this and on (6) we have

$$\begin{aligned} f(A)F_{b}y &= f(-b^{2})F_{b}y - \int_{0}^{b} (f(-u^{2}))'dF_{u}F_{b}y \\ &= f(-b^{2})F_{a}x - \int_{0}^{a} (f(-u^{2}))'dF_{u}F_{a}x - \int_{a}^{b} (f(-u^{2}))'dF_{u}F_{a}x \\ &= f(-b^{2})F_{a}x - \int_{0}^{a} (f(-u^{2}))'dF_{u}F_{a}x - \int_{a}^{b} (f(-u^{2}))'duF_{a}x \\ &= f(-a^{2})F_{a}x - \int_{0}^{a} (f(-u^{2}))'dF_{u}F_{a}x \\ &= f(A)F_{a}x. \end{aligned}$$

This proves the correctness of the definition of the operator f(A).

It was shown in [4] that

$$(7)\mathbf{C}(t)F_a x = \cos atF_a x + \int_0^a \left((a-u)\cos ut\right)'' F_u x \, du \text{ for } a \ge 0, t \in \mathbb{R}, x \in X.$$

From here, by differentiating twice and by putting t = 0, we get

(8)
$$AF_a x = -a^2 F_a x + \int_0^a (6u - 2a) F_u x \, du.$$

This can be also proved by putting f(u) = u in (3).

Let us put $f(u) = \sqrt{u}$ in (3). We get an operator which we will denote by \sqrt{A} or $A^{\frac{1}{2}}$

(9)
$$A^{\frac{1}{2}}F_a x = iaF_a x - 2i\int_0^a F_u x \, du, \quad a \ge 0, x \in X.$$

Since according to (4), $F_a^2 = 2 \int_0^a F_u du$, we can write (9) in the form

(10)
$$A^{\frac{1}{2}}F_a x = i a F_a x - i F_a^2 x.$$

Let us show that the operator $A^{\frac{1}{2}}$ defined in this way can be closed. If we put in (3)

$$f(u) = \frac{1}{\lambda - \sqrt{u}}$$
, for $u \in (-\infty, 0]$ and $Re(\lambda) > 0$

then we get an operator B_{λ} defined by

$$B_{\lambda}F_{a}x = \frac{1}{\lambda - ia}F_{a}x + \int_{0}^{a} \left((a - u)\frac{1}{\lambda - iu}\right)''F_{u}x\,du.$$

By dividing this by a and letting $a \to +\infty$ we obtain the operator B_{λ} defined on the whole space X by

$$B_{\lambda}x = -2\int_{0}^{+\infty} \frac{F_{u}x}{(\lambda - iu)^{3}} du.$$

It is obvious that the operator B_{λ} is bounded and therefore it is closed. From (3) it is easy to see that for all $a \ge 0$ and for all $x \in X$

$$B_{\lambda}(\lambda I - A^{\frac{1}{2}})F_a x = (\lambda I - A^{\frac{1}{2}})B_{\lambda}F_a x = F_a x.$$

This means that the operator B_{λ} (on the set $\bigcup_{a \ge 0} F_a(X)$) is the inverse operator

of the operator $\lambda I - A^{\frac{1}{2}}$. Since the operator B_{λ} is closed, it follows that $\lambda I - A^{\frac{1}{2}}$ and therefore $A^{\frac{1}{2}}$ can be closed. The domain of the closure of the operator $A^{\frac{1}{2}}$ consists of all those $x \in X$ for which there exists

$$\lim_{a \to +\infty} (F_a x - \frac{F_a^2 x}{a}).$$

For all such x, $A^{\frac{1}{2}}x = i \lim_{a \to +\infty} (F_a x - \frac{F_a^2 x}{a})$, where the closure of the operator $A^{\frac{1}{2}}$ is denoted by $A^{\frac{1}{2}}$ too.

From [4] it is easy to see that for all $x \in \mathcal{D}((A^{\frac{1}{2}})^2)$, $(A^{\frac{1}{2}})^2 x = Ax$. In fact, it can be shown that $A = (A^{\frac{1}{2}})^2$.

The following lemma is easy to prove.

Lemma 1. If $x \in \mathcal{D}(A)$ then

(11)
$$A^{\frac{1}{2}}x = \frac{2i}{\pi} \int_{0}^{+\infty} \frac{(I - \mathbf{C}(t))x}{t^2} dt.$$

Proof. It is obvious that for all $x \in \mathcal{D}(A)$ the integral on the right side of (11) exists. Particularly, it exists for $F_a x$ $(a \ge 0, x \in \mathcal{D}(A))$. Using the equation (7), after some calculation we get

$$\frac{2i}{\pi} \int_{0}^{+\infty} \frac{(I - \mathbf{C}(t))F_a x}{t^2} dt = i a F_a x - i F_a^2 x$$

From here, using (10) and the fact that $\frac{F_a x}{a} \to x$ if $a \to +\infty$, (11) easily follows. \Box

Let $x, y \in X$. It is known that there exists

$$\langle x, y \rangle \stackrel{def}{=} \lim_{t \downarrow 0} \frac{\|x + ty\|^2 - \|x\|^2}{2t}$$

The following theorem was proved in [5]:

Theorem. Suppose X is a real Banach space. Then the "Riesz representation theorem" holds: Given $\delta \in X^*$ there exists $x_{\delta} \in X$ such that

(*)
$$||x_{\delta}|| = ||\delta||$$
 and $\langle x_{\delta}, y \rangle = \delta(y)$ for all $y \in X$

if and only if X is reflexive with a Gâteaux differentiable norm.

Furthermore x_{δ} is unique (and the mapping $\delta \to x_{\delta}$ is continuous from the norm topology on X^* to the weak topology on X) if and only if X is also strictly convex. In addition to that, the mapping $\delta \to x_{\delta}$ is also continuous from the norm topology on X^* to the norm on X if and only if X is also weakly uniformly convex.

From now on, let X be a complex Banach space. Let

$$(x,y) \stackrel{def}{=} \langle x,y \rangle - i \langle x,iy \rangle$$

Then a similar theorem holds for X. Here the role of the function $\langle x, y \rangle$ is taken by the function (x, y). Specifically, if X is a reflexive, strictly convex

space with a Gâteaux differentiable norm, then $|(x, y)| \leq ||x|| \cdot ||y||$ and (x, y) is a continuous linear functional relative to y (for fixed $x \in X$). If we denote by φ the transformation $\delta \to x_{\delta}$ we can introduce a new operation "+" in X by

$$x \stackrel{*}{+} y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y))$$

Then, the function (x, y) is antilinear in X relative to the operation "+". We will denote (if necessary) the space X provided with the operation "+" by (X, +), and by (X, +) we will denote the space X provided with the operation "+".

Lemma 2. Suppose that X is a reflexive, strictly convex Banach space with a Gâteaux differentiable norm and let A be the infinitesimal operator of the bounded cosine function $\mathbf{C}(t)$, $(\|\mathbf{C}(t)\| \leq 1)$. Then the point 0 is not contained in the residual spectrum of the operator A.

Proof. Suppose that the set $A(\mathcal{D}(A))$ is not dense in X. Then there exists $y \in X, y \neq 0$ such that

$$\langle y, Ax \rangle = 0, \quad x \in \mathcal{D}(A),$$

and we have (because of (8))

$$-a^{2} \langle y, F_{a}x \rangle + \int_{0}^{a} (6u - 2a) \langle y, F_{u}x \rangle du = 0, \quad x \in X, a \ge 0$$

If we put $\langle y, F_u x \rangle = \psi(u)$ we have $a^2 \psi(a) = \int_0^a (6u - 2a)\psi(u)du$.

Since $\psi(u)$ is a continuous function, it follows from here that ψ has derivatives of all orders (for a > 0). From the last equality we get $\psi''(a) = 0$. It follows from here that $\psi(a) = \alpha a + \beta$.

Since $\psi(0) = 0$, we have $\beta = 0$, and since $\frac{\psi(a)}{a} = \langle y, \frac{F_a x}{a} \rangle \rightarrow \langle y, x \rangle$ if $a \rightarrow +\infty$, we get $\alpha = \langle y, x \rangle$. It means that $\langle y, F_a x \rangle = \langle y, x \rangle a$ for all $x \in X$ and $a \geq 0$. This implies

$$\langle y, F_a y \rangle = a \left\| y \right\|^2$$

and further

$$a \|y\|^{2} \le \|y\| \cdot \|F_{a}y\| \le a \|y\|^{2}$$
, i.e. $\|F_{a}y\| = a \|y\|$.

We see that $\langle y, F_a y \rangle = ||y|| \cdot ||F_a y||$.

Since X is strictly convex, this gives $F_a y = ay$.

From this and from (8) we get $y \in \mathcal{D}(A)$ and Ay = 0.

So, the number 0 is a point of the point spectrum of the operator A. The lemma is proved.

For the dual cosine function $\mathbf{C}^*(t)$ of the function $\mathbf{C}(t)$ we have a similar result.

We still assume that X is a reflexive, strictly convex Banach space with a Gâteaux differentiable norm. It is known that in a reflexive space X the dual semigroup $T^*(t)$ of a \mathbf{C}_0 -semigroup T(t) is also a \mathbf{C}_0 -semigroup. It is true for the cosine operator functions too. In our case we can get it in the following way:

First, we are going to prove two lemmas.

Lemma 3. Let X be the Banach space with the same properties as in Lemma 2. Then the set

$$X_1^* \stackrel{def}{=} \{ F_a^* \ f \mid \ a \ge 0, f \in X^* \}$$

is dense in X^* .

Proof. Let us assume that X_1^* is not dense in X^* . Then, because of reflexivity of the space X, there exists $x_0 \in X$, $x_0 \neq 0$ for which $(F_a^*f)(x_0) = 0$, $a \geq 0$, $f \in X^*$.

It means that $f(F_a x_0) = 0, a \ge 0, f \in X^*$.

From here and from $\frac{F_a x_0}{a} \to x_0$ if $a \to +\infty$ it follows $f(x_0) = 0 (\forall f \in X^*)$, i.e. $x_0 = 0$, which is a contradiction. It proves that X_1^* is dense in X^* . \Box

Lemma 4. For all sufficiently small h > 0, the following holds

$$||F_{a+h} - F_{a-h}|| \le \frac{4}{\pi}(a+e)h |\ln h|.$$

Proof. According to [2], we have

$$F_a = \frac{2}{\pi} \int_0^{+\infty} \frac{\sin^2 at}{t^2} \mathbf{C}(2t) dt$$

and further

$$\|F_{a+h} - F_{a-h}\| \le \frac{4}{\pi} \int_{0}^{1} \frac{|\sin at \sin ht|}{t^2} dt + \frac{4}{\pi} \int_{1}^{+\infty} \frac{|\sin at \sin ht|}{t^2} dt$$

(here we used $\|\mathbf{C}(t)\| \le 1$).

From here, for all $\alpha \in (0,1)$ we obtain

$$\|F_{a+h} - F_{a-h}\| \le \frac{4ah}{\pi} + \frac{4h^{\alpha}}{\pi} \int_{1}^{+\infty} \frac{dt}{t^2} = \frac{4ah}{\pi} + \frac{4h^{\alpha}}{\pi(1-\alpha)}$$

For all $h \in (0, e^{-1})$ the function $\frac{h^{\alpha}}{1-\alpha}$ has a minimum $eh |\ln h|$ at the point $\alpha = 1 + \frac{1}{\ln h} \in (0, 1)$ and from the last inequality we get

$$||F_{a+h} - F_{a-h}|| \le \frac{4}{\pi} (a+e)h |\ln h|.$$

.

From Lemma 4 it immediately follows that

$$\left\|F_{a+h}^* - F_{a-h}^*\right\| \le \frac{4}{\pi}(a+e)h \left|\ln h\right|$$

(for small h > 0), and the function $F_a^*, a \ge 0$ is uniformly continuous.

We can identify the space X^* with (X, +) and we will do so in the sequel. Now, from (7) we have, for $x \in X$ and $a \ge 0$

$$\mathbf{C}^{*}(t)F_{a}^{*}x = \cos at \ F_{a}^{*}x + \int_{0}^{a} ((a-u)\cos ut)''F_{u}^{*}xdt$$

where \int_{0}^{a} means that the integration was performed relative to the operation "+".

Now, the uniform continuity of the function F_a^* , the boundedness of the function $\mathbf{C}^*(t)$ and Lemma 3 show that the function $\mathbf{C}^*(t)$ is strongly continuous.

It is not difficult to see that X = (X, +) is strictly convex. Namely, let us put

$$\langle x, y \rangle^* = \lim_{t \downarrow 0} \frac{\|x + ty\|^2 - \|x\|^2}{2t} = \|x\| \lim_{t \downarrow 0} \frac{\|x + ty\| - \|x\|}{t}.$$

Then for ||x|| = 1 we have

$$\langle x,y\rangle^* = \lim_{t\downarrow 0} \frac{\|x + ty\| - \|x\|}{t} \ge \lim_{t\downarrow 0} \frac{\langle x + ty, x\rangle - 1}{t} = \langle y,x\rangle.$$

If we put here -y instead of y we get $\langle x, y \rangle^* \leq \langle y, x \rangle$ and further $\langle x, y \rangle^* = \langle y, x \rangle$. Now we see that from $|\langle x, y \rangle^*| = ||x|| \cdot ||y||$, because of strict convexity of the space X (see [5]), follows that $y = \lambda x, \lambda \in \mathbb{R}$. But this is equivalent to the strict convexity of the space X^* .

From the equality $\langle x, y \rangle^* = \langle y, x \rangle$ it follows that the space $X^* = (X, +)$ has a Gâteaux differentiable norm (see [5], Theorem 2).

We have seen that the space X^* and the function $\mathbf{C}^*(t)$ satisfy all conditions of Lemma 2, so the number 0 is not a point of the residual spectrum of the infinitesimal operator A^* of the cosine function $\mathbf{C}^*(t)$.

It is obvious now that the point 0 belongs to the point spectrum of the operator A iff 0 belongs to the point spectrum of the operator A^* .

For the linear operator $A: X \to X$ which is defined on a dense set in X we say that it is Hermitian if the operator A is the infinitesimal generator of the group of isometries $\|e^{itA}x\| = \|x\|$ for all $x \in X$ and $t \in \mathbb{R}$.

From Lemma 2 we get the following theorem:

Theorem 5. Let the space X satisfy the same conditions as in Lemma 2 and let $A : X \to X$ be a Hermitian operator. Then the residual spectrum of A is empty.

Proof. Let $\lambda_0 \in \mathbb{R}$ be any number. It is obvious that the operator $A - \lambda_0 I$ is Hermitian too. It follows that $-(A - \lambda_0 I)^2$ is the infinitesimal generator of the bounded cosine function $\mathbf{C}(t)$:

$$\mathbf{C}(t) = \frac{e^{it(A-\lambda_0 I)} + e^{-it(A-\lambda_0 I)}}{2}, \|\mathbf{C}(t)\| \le 1$$

According to Lemma 2 the number 0 is not a point of the residual spectrum of the operator $(A - \lambda_0 I)^2$. But then the number λ_0 is not a point of the residual spectrum of the operator A.

The theorem is proved.

Let us assume that the space (X, +) has the same properties as in Lemma 2 and let L be some closed subspace of X. Then for all $x \in X$ we can find a sequence $u_n \in L$ for which

$$\|x - u_n\| \to d$$

where d is the distance of the vector x from the subspace L. The sequence $\{u_n\}$ is obviously bounded and there exists a subsequence of that sequence which weakly converges to some $x_0 \in L$. Because of this we assume that $\{u_n\}$ weakly converges to x_0 . Then we have

$$\langle x - x_0, x - u_n \rangle \rightarrow \|x - x_0\|^2$$
.

Because of $||x - x_0|| \cdot ||x - u_n|| \ge \langle x - x_0, x - u_n \rangle$ and because of $||x - u_n|| \to d$ we have $||x - x_0|| = d$ and from here

$$\frac{\|x - x_0 + tu\|^2 - \|x - x_0\|^2}{2t} \ge 0 \text{ for all } u \in L \text{ and } t > 0.$$

Hence, for all $u \in L$ we have $\langle x - x_0, u \rangle = \lim_{t \downarrow 0} \frac{\|x - x_0 + tu\|^2 - \|x - x_0\|^2}{2t} \ge 0$. This immediately gives $\langle x - x_0, u \rangle = 0 (\forall u \in L)$.

It will be denoted as follows $(x - x_0) \perp u \ (\forall u \in L)$ and we will say that $x - x_0$ is orthogonal to L. We can formulate these considerations into the next theorem:

Theorem 6. Let X be a (complex) reflexive and strictly convex Banach space that has a Gâteaux differentiable norm. For every closed linear subspace L of the space (X, +) there exists a subspace L^* of the space (X, +) such that

$$X = L \oplus L^*$$

(i.e. every $x \in X$ can be written in a unique way in the form $x = l + l^*, l \in$ $L, l^* \in L^*$ and $\langle l^*, l \rangle = 0$.

Obviously, we proved the following theorem too:

Theorem 6'. Let X be the same as in Theorem 6 and let L^* be a closed subspace of the space $X^* = (X, +)$. Then there exists a closed subspace L of the space (X, +) such that

$$X = L^* \oplus L$$

(i.e. every $x \in X$ can be written in a unique way in the form $x = l^* + l$, $l^* \in L^*$, $l \in L$ and $\langle l^*, l \rangle = 0$).

Let us go back to the function $\mathbf{C}(t)$ and its generator A. Let the number 0 be a point of the point spectrum of the operator A. Then, as we have already seen, this number is a point of the point spectrum of the operator A^* too. By L we will denote the null-subspace of the operator A and by M^* the null-subspace of the operator A^* . For $m^* \in M^*$ one has $A^*m^* = 0$, and therefore

$$\langle A^*m^*, x \rangle = 0 \qquad (\forall x \in \mathcal{D}(A)).$$

It means that

$$\langle m^*, Ax \rangle = 0 \qquad (\forall x \in \mathcal{D}(A)).$$

But from the proof of Lemma 2 we see that this relation implies $Am^* = 0$, so we see that $M^* \subseteq L$. Obviously, it is also $L \subseteq M^*$, and therefore $M^* = L$. The subspace L is linear in (X, +) and M^* is linear in (X, +). Therefore $L = M^*$ is linear in (X, +) and (X, +).

Let L^* and M be such that

$$X=L\oplus L^*\,,\;X=L \oplus M\;(=M^*\oplus M)$$

(see Theorem 6 and Theorem 6').

Let us prove that :

- 1) $X = L + M, L \cap M = \{0\}$ i.e. X is the direct sum of the subspaces L and M.
- 2) The subspace M is invariant relative to all operators $\mathbf{C}(t), t \in \mathbb{R}$.

If $l \in L \cap M$ then (because of $L = M^*$) $l \in M^* \cap M$ and we have l = 0 (because of $\langle l, l \rangle = 0$). It means that $L \cap M = \{0\}$.

Let y be a vector that is orthogonal to L + M (i.e. $\langle y, l + m \rangle = 0$ for all $l \in L$ and $m \in M$). Then $y \in M^* \cap L^* = L \cap L^*$ and therefore y = 0.

Now let us prove that L + M is a closed subspace of (X, +). Let $x_n \to x_0$ and $x_n \in L + M$. Then $x_n = l_n + m_n$, $(l_n \in L, m_n \in M)$.

From here (because of $l_n \in M^*$, $X = M^* \oplus M$) it follows that $\langle l_n, x_n \rangle = ||l_n||^2$.

Hence we have $||l_n|| \leq ||x_n||$.

The sequence $\{x_n\}$ is bounded, so the sequence $\{l_n\}$ is bounded too. Therefore the sequence $\{m_n\}$ is also bounded. Because of this we can assume that the sequences $\{l_n\}$ and $\{m_n\}$ are weakly convergent, i.e. $m_n \to m_0$, $l_n \to l_0$ weakly. From $l_n \in L$, $m_n \in M$ and from the previous relations it follows that $l_0 \in L$, $m_0 \in M$. Moreover $x_n \to x_0$ weakly and we have $x_0 = l_0 + m_0 \in L + M$. This proves our statement 1).

Now we take $x \in M$. For any $l \in M^* (= L)$ we have $\mathbf{C}^*(t)l = l$ and therefore $\langle \mathbf{C}^*(t)l, x \rangle = 0$. This means that $\langle l, \mathbf{C}(t)x \rangle = 0$ for all $l \in M^*$ and $t \in \mathbb{R}$. Hence $\mathbf{C}(t)x \in M$, so the statement 2) is also proved.

From these considerations we get the following theorem:

Theorem 7. Let X be a Banach space with the same properties as in Theorem 6 and let $\mathbf{C}(t)$ be a bounded cosine operator function ($\|\mathbf{C}(t)\| \leq 1$). If the point 0 belongs to the point spectrum of the infinitesimal generator of the function $\mathbf{C}(t)$, then X is a direct sum of the subspaces L and M of the space (X, +) for which we have:

- $\alpha) \ \mathbf{C}(t)x = x \qquad (\forall x \in L, \, \forall t \in \mathbb{R}).$
- β) The subspace M is invariant relative to all operators $\mathbf{C}(t), t \in \mathbb{R}$.
- γ) If we consider the function $\mathbf{C}(t)$ and its generator A on M then the point 0 does not belong to the point spectrum of the operator A.

It is evident that a similar theorem is true for the dual function $\mathbf{C}^*(t)$ too.

3. Hilbert Transforms

Let U(t) be a strongly continuous group of bounded operators on X. For $0 < \varepsilon < N$ and $x \in X$ we put

(12)
$$H_{\varepsilon,N}x = \frac{1}{\pi} \int_{\varepsilon \le |t| \le N} \frac{U(t)x}{t} dt$$

If $\lim_{\varepsilon \to 0, N \to +\infty} H_{\varepsilon,N} x$ exists then we will call it the Hilbert transform of the element x and denote it by Hx, i.e. $Hx = \lim_{\varepsilon \to 0, N \to +\infty} H_{\varepsilon,N} x$ (see [6]).

If we put $\mathbf{C}(t) = \frac{1}{2} [U(t) + U(-t)]$, $t \in \mathbb{R}$, then $\mathbf{C}(t)$ is a strongly continuous cosine operator function with the infinitesimal generator A^2 , where A is the infinitesimal generator of the group U(t).

If U(t) is a bounded group, i.e. if there exists a constant K with

(13)
$$||U(t)|| \le K \qquad (\forall t \in \mathbb{R})$$

then $\mathbf{C}(t)$ is bounded on \mathbb{R} , i.e. $\|\mathbf{C}(t)\| \leq K$, $(\forall t \in \mathbb{R})$.

In the sequel we assume that K = 1. From here it easily follows that U(t) is an isometry for all $t \in \mathbb{R}$:

$$||U(t)x|| = ||x||$$
 $(t \in \mathbb{R}, x \in X).$

In that case the generator A of the group U(t) has the form A = iB, where B is a Hermitian linear operator. For the cosine function $\mathbf{C}(t)$ we have $\|\mathbf{C}(t)\| \leq 1$, $t \in \mathbb{R}$.

It is obvious that (12) can be written in the form

(14)
$$H_{\varepsilon,N}x = \frac{1}{\pi} \int_{\varepsilon}^{N} \frac{U(t)x - U(-t)x}{t} dt$$

It is well known that

$$U(t)x = x + A \int_{0}^{t} U(s)x \, ds, \quad U(-t)x = x - A \int_{0}^{t} U(-s)x \, ds.$$

We can write (14) in the form

$$H_{\varepsilon,N}x = \frac{2}{\pi} \int_{\varepsilon}^{N} \frac{AS(t)x}{t} dt = \frac{2}{\pi} A \int_{\varepsilon}^{N} \frac{S(t)x}{t} dt$$

where $S(t) = \int_{0}^{t} \mathbf{C}(s) ds$. For $x \in \mathcal{D}(A^2)$ we have

$$\begin{split} H_{\varepsilon,N}Ax &= \frac{2}{\pi} \int_{\varepsilon}^{N} \frac{S(t)A^{2}x}{t} dt = \frac{2}{\pi} \frac{\int_{0}^{t} S(s)A^{2}x}{t} ds \mid_{\varepsilon}^{N} + \int_{\varepsilon}^{N} \frac{dt}{t^{2}} \int_{0}^{t} S(s)A^{2}x ds = \\ &= \frac{2}{\pi} \left. \frac{\mathbf{C}(t)x - x}{t} \mid_{\varepsilon}^{N} + \frac{2}{\pi} \int_{\varepsilon}^{N} \frac{\mathbf{C}(t)x - x}{t^{2}} dt = \right. \\ &= \frac{2}{\pi} \left[\frac{\mathbf{C}(N)x - x}{N} - \frac{\mathbf{C}(\varepsilon)x - x}{\varepsilon} + \int_{\varepsilon}^{N} \frac{\mathbf{C}(t)x - x}{t^{2}} dt \right]. \end{split}$$

From the boundedness of the function $\mathbf{C}(t)$ it follows

$$\frac{\mathbf{C}(N)x - x}{N} \to 0 \qquad \text{if } N \to +\infty$$

and from $x \in \mathcal{D}(A^2)$ it follows

$$\frac{\mathbf{C}(\varepsilon)x-x}{\varepsilon} = \varepsilon \frac{\mathbf{C}(\varepsilon)x-x}{\varepsilon^2} \to 0 \text{ if } \varepsilon \to 0.$$

In this way we get

$$\lim_{\varepsilon \to 0, N \to +\infty} H_{\varepsilon,N} A x = \frac{2}{\pi} \int_{0}^{+\infty} \frac{\mathbf{C}(t)x - x}{t^2} dt.$$

Therefore

(15)
$$HAx = \frac{2}{\pi} \int_{0}^{+\infty} \frac{\mathbf{C}(t)x - x}{t^2} dt, \quad x \in \mathcal{D}(A^2).$$

Now we are going to apply Lemma 1 to our present situation (in which $A^2 = -B^2$ is the infinitesimal generator of the function $\mathbf{C}(t)$).

If we denote by A_+ a closed extension of the operator A_0 which is defined by

$$A_0F_a = aF_ax - F_a^2x,$$

then (15) becomes

(16)

 $HAx = -A_+x, \quad x \in \mathcal{D}(A^2).$

We know that $A_{+}^{2} = B^{2}$ for $x \in \mathcal{D}(A^{2})$. Besides, we have

$$\begin{aligned} \langle F_a x, A_+ F_a x \rangle &= a \, \|F_a x\|^2 - \langle F_a x, F_a^2 x \rangle \ge a \, \|F_a x\|^2 - \|F_a x\| \cdot \|F_a^2 x\| \ge \\ &\ge a \, \|F_a x\|^2 - \|F_a x\|^2 \cdot \|F_a\| \ge a \, \|F_a x\|^2 - a \, \|F_a x\|^2 = 0 \end{aligned}$$

The set $\bigcup_{a\geq 0}F_a(X)$ is the core of the operator $A_+,$ and from that we have

 $\langle x, A_+x \rangle \ge 0 \qquad (x \in \mathcal{D}(A_+))$

Because of that we will call the operator A_+ the positive square root of $B^2 = -A^2$.

Now, let us apply Theorem 7 to our present situation.

We have U(t)x + U(-t)x = 2x for $x \in L, t \in \mathbb{R}$.

From here, because of strict convexity of the space X and because of isometry of the operators U(t) and U(-t), it follows that U(t)x = U(-t)x = x.

Using the fact that $\langle Vy, Vx \rangle = \langle y, x \rangle$ for all isometric operators V, which is obvious from the definition of $\langle x, y \rangle$, we have $\langle y, U(t)x \rangle = \langle U(t)y, U(t)x \rangle = \langle y, x \rangle = 0$ for $y \in L$, $x \in M$ and $t \in \mathbb{R}$.

We see that $U(t)x \in M$ for all $x \in M$ and $t \in \mathbb{R}$.

So, $U_1(t)$ $(t \in \mathbb{R})$ is a group of isometric operators on M, where $U_1(t)$ $(t \in \mathbb{R})$ denotes the restriction of the operator U(t) $(t \in \mathbb{R})$ on M.

Now, from Theorem 7, we can conclude that the rank $\mathcal{R}(A_1^2(M))$ of the operator A_1^2 is dense in M, where A_1 is the infinitesimal generator of the group $U_1(t)$.

Now, we see that the operator H is defined at least on the set $L \oplus A_1^2(M)$, which is dense in X.

So, we get the following theorem.

Theorem 8. Let X be a reflexive, strictly convex space with a Gâteaux differentiable norm. Then the above Hilbert transform is defined on some set which is dense in X. It can be extended to a linear bounded operator on the whole Xiff there exists a constant P for which

$$||A_+x|| \le P ||Ax|| \qquad (\forall x \in \mathcal{D}(A^2)).$$

Moreover, for $x \in \mathcal{D}(A^2)$ we have $HAx = -A_+x$, where A_+ is the positive square root of $-A^2$.

Suppose now that the operator B is positive, i.e. that $\langle x, Bx \rangle \geq 0$ for all $x \in \mathcal{D}(A^2)$. We claim that $A_+x = Bx$ for all $x \in \mathcal{D}(A^2)$. Let us take any $\varepsilon > 0$. We have

(17)
$$\langle x, (B + \varepsilon I)x \rangle \ge \varepsilon ||x||^2 \quad (x \in \mathcal{D}(A^2)).$$

Let $\mathbf{C}_{\varepsilon}(t)$ denote the cosine operator function defined by

$$\mathbf{C}_{\varepsilon}(t) = \frac{e^{i\varepsilon t}U(t) + e^{-i\varepsilon t}U(-t)}{2}$$

Then $\|\mathbf{C}_{\varepsilon}(t)\| \leq 1, t \in \mathbb{R}$. The infinitesimal generator of the function $\mathbf{C}_{\varepsilon}(t)$ is $-(B+\varepsilon I)^2$. Let $F_{a,\varepsilon}, a \geq 0$ be the family of operators that corresponds to the function $\mathbf{C}_{\varepsilon}(t)$ in the same way the family F_a corresponds to the function $\mathbf{C}(t)$, and let $(B+\varepsilon I)_+$ be the positive square root of $(B+\varepsilon I)^2$:

$$(B + \varepsilon I)_+ F_{a,\varepsilon} x = a F_{a,\varepsilon} x - F_{a,\varepsilon}^2 x$$

It is clear that $B + \varepsilon I$ commutes with $F_{a,\varepsilon}$ and therefore with $(B + \varepsilon I)_+$. Now from $(B + \varepsilon I)^2 - (B + \varepsilon I)^2_+ = 0$ it follows that $\langle y, (B + \varepsilon I)y \rangle + \varepsilon I \rangle = 0$

 $\langle y, (B + \varepsilon I)_+ y \rangle = 0$, where $y = (B + \varepsilon I)F_{a,\varepsilon}x - (B + \varepsilon I)_+F_{a,\varepsilon}x$.

Since $\langle y, (B + \varepsilon I)y \rangle \geq 0$ and $\langle y, (B + \varepsilon I)_+y \rangle \geq 0$, we conclude that $\langle y, (B + \varepsilon I)y \rangle = 0$, which together with (17), gives y = 0.

Therefore $(B + \varepsilon I)F_{a,\varepsilon}x = (B + \varepsilon I)_+F_{a,\varepsilon}x$.

It is easy to see that $F_{a,\varepsilon} \to F_a$ uniformly, if $\varepsilon \to 0$, and that for all $x \in \mathcal{D}(A^2)$

 $(B + \varepsilon I)x \to Bx$ and $(B + \varepsilon I)_+ x \to A_+ x$ if $\varepsilon \to 0$.

From the last equality it now follows $BF_a x = A_+F_a x$, $(x \in X)$.

From this equality, because of the fact that A and A_+ commute with F_a we conclude that $Bx = A_+x$ for all $x \in \mathcal{D}(A^2)$.

In this way, using Theorem 8, we get the following theorem:

Theorem 9. Let X satisfy the conditions of Theorem 8 and let the infinitesimal generator A have the form A = iB where B is positive and let the point 0 not belong to the point spectrum of the operator A. Then the Hilbert transform is defined on the whole X and it is equal to iI.

Let us now consider the case when $X = \mathcal{H}$, where \mathcal{H} is a Hilbert space. Then the operator A can be written in the form $A = i(B_+ - B_-)$, where B_+ and $B_$ are positive operators and $B_+B_- = B_-B_+ = 0$ on $\mathcal{D}(A)$.

Let E_{\pm} denote the orthogonal projection of the space X onto the closed linear span of the range of the operator B_{\pm} . Then $E_{+}E_{-} = E_{-}E_{+} = 0$.

From Theorem 9 (applied to $E_{\pm}(\mathcal{H})$) we immediately get the following theorem: **Theorem 10.** Let \mathcal{H} be a Hilbert space and let U(t) be a group of isometric operators on \mathcal{H} , and let the point 0 not belong to the point spectrum of the operator A. Then the Hilbert transform is defined on the whole \mathcal{H} and

$$Hx = i(E_+x - E_-x) \qquad (\forall x \in \mathcal{H})$$

References

- [1] Sova, M., Cosine Operator Functions. Rozprawy Mathematyczne 49 (1966), 3-47.
- [2] Vajzović, F., On the Cosine Operator Functions. Glasnik Matematički, Ser. III 22(42) (1987), 381-406.
- [3] Radić, M. V., Vajzović, F., On the Bounded Cosine Operator Functions in Banach Space. Mat. Vesnik 39 (1987) 187-204.
- [4] Vajzović, F., Radić, M. V., Two Mean Ergodic Theorems for Cosine Operator Functions and Semigroups. Glas Mat. Vol. 24(44) (1989), 305-321.
- [5] Tapia, R. A., A Characterization of Inner Product Spaces. Proc. Amer. Math. Soc. 41 (1973), 569-574.
- [6] Shiro Ishikawa, Hilbert Transforms on One-parameter Groups of Operators. Tokyo, J. Math. 9 (1986), 383-393.

Received by the editors July 12, 2004