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ON THE ULAM PROBLEM FOR EULER QUADRATIC
MAPPINGS

John Michael Rassias1

Abstract. In 1940 and in 1968 S. M. Ulam proposed the general prob-
lem:”When is it true that by changing a little the hypotheses of a theorem
one can still assert that the thesis of the theorem remains true or approxi-
mately true?”. In 1941 D. H. Hyers solved this stability problem for linear
mappings. In 1951 D. G. Bourgin was the second author to treat the same
problem for additive mappings. According to P. M. Gruber (1978) this
kind of stability problems are of particular interest in probability theory
and in the case of functional equations of different types. In 1982-2002
we solved the above Ulam problem for linear and non-linear mappings
and established analogous stability problems even on restricted domains.
Besides, we applied some of our recent results to the asymptotic behavior
of functional equations of different types. In this paper we investigate the
Euler quadratic mappings Q : X → Y , satisfying the functional equation

Q(x0 − x1) + Q(x1 − x2) + Q(x2 − x3) + Q(x3 − x0)
= Q(x0 − x2) + Q(x1 − x3) + Q(x0 − x1 + x2 − x3)

and then solve the corresponding Ulam stability problem.
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1. EULER QUADRATIC EQUATION

Definition 1. Let X be a normed linear space and let Y be a complete normed
linear space. Then a mapping Q : X → Y , is called Euler quadratic, if the
functional equation

Q(x0 − x1) + Q(x1 − x2) + Q(x2 − x3) + Q(x3 − x0)
= Q(x0 − x2) + Q(x1 − x3) + Q(x0 − x1 + x2 − x3)

(1)

holds for all (x0, x1, x2, x3) ∈ X4 ( [16]-[22]).

Note that Q is called Euler quadratic because the following quadratic vector
identity

|x0 − x1|2 + |x1 − x2|2 + |x2 − x3|2 + |x3 − x0|2 =

= |x0 − x2|2 + |x1 − x3|2 + |x0 − x1 + x2 − x3|2
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holds for all real vectors x0, x1, x2, x3, whose geometric interpretation leads to
the Euler theorem on quadrilaterals A1A2A3A4 with position vectors x0, x1,x2,
x3 of vertices A1, A2, A3, A4, respectively, and because the functional equation

Q(2nx) = (2n)2Q(x)(2)

holds for all x ∈ X and all n ∈ N ([21]).
In fact, substitution of x0 = x1 = x2 = x3 = 0 in equation(1) yields that

Q(0) = 0 (1a)

Lemma 1. Let Q : X → Y be an Euler quadratic mapping satisfying equation
(1). Then Q is an even mapping; that is the equation

Q(−x) = Q(x)(3)

holds for all x ∈ X.

Proof. Substituting x0 = x1 = x2 = 0 and x3 = x in the equation (1) and
employing (1a) one gets that equation

2Q(0) + Q(−x) + Q(x) = Q(0) + Q(−x) + Q(−x),

or
Q(−x) + Q(x) = 2Q(−x),

or the required equation (3), completing the proof of Lemma 1. 2

Lemma 2. Let Q : X → Y be an Euler quadratic mapping satisfying equation
(1). Then Q satisfies the equation

Q(x) = 2−2nQ(2nx) (2a)

for all x ∈ X and all n ∈ N .

Proof. Substituting x0 = x, x1= 0, x2 = x, x3 = 0 in equation (1) and employing
equations (1a) and (3) one gets the equation

2Q(x) + 2Q(−x) = 2Q(0) + Q(2x),

or
4Q(x) = Q(2x),

or
Q(x) = 2−2Q(2x)(4)

for all x ∈ X.
Then induction on n ∈ N with x → 2n−1x in the equation (4) yields equation

(2a). In fact, the equation (4) with x → 2n−1x yield that the functional equation

Q(2n−1x) = 2−2Q(2nx) (4a)
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holds for all x ∈ X.
Moreover by induction hypothesis with n → n− 1 in equation (2a) one gets

that
Q(x) = 2−2(n−1)Q(2n−1x) (4b)

holds for all x ∈ X.
Thus functional equations (4a)-(4b) imply

Q(x) = 2−2(n−1)2−2Q(2nx),

or
Q(x) = 2−2nQ(2nx),

for all x ∈ X and all n ∈ N , completing the proof of the required functional
equation (2a) and hence the proof of Lemma 2. 2

2. EULER QUADRATIC INEQUALITY

Definition 2. Let X be a normed linear space and let Y be a real complete
normed linear space. Then a mapping f : X → Y , is called approximately Euler
quadratic, if the new Euler quadratic functional inequality

‖f(x0 − x1) + f(x1 − x2) + f(x2 − x3) + f(x3 − x0)
− [f(x0 − x2) + f(x1 − x3) + f(x0 − x1 + x2 − x3)]‖ ≤ c,

(1)′

holds for all (x0, x1, x2, x3) ∈ X4 with a constant c (independent of x0, x1,x2,
x3) ≥ 0.

Definition 3. Let X be a normed linear space and let Y be a real complete
normed linear space. Assume in addition that there exists a constant c (inde-
pendent of x ∈ X) ≥ 0. Then an Euler quadratic mapping Q : X → Y , is said
that exists near an approximately Euler quadratic mapping f : X → Y , if the
following inequality

‖f(x)−Q(x)‖ ≤ c, (1)′′

holds for all x ∈ X.

Theorem 1. Let X be a normed linear space and let Y be a real complete
normed linear space. Assume in addition the above-mentioned mappings Q, f
and the three definitions. Then the limit

Q(x) = lim
n→∞

2−2nf(2nx)(5)

exists for all x ∈ X and all n ∈ N and Q : X → Y is the unique Euler
quadratic mapping near the approximately Euler quadratic mapping f : X → Y .
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Proof of Existence in Theorem. Substitution of xi = 0 (i = 0, 1, 2, 3) in inequal-
ity (1)′ yields

‖4f(0)− 3f(0)‖ ≤ c,

or
‖f(0)‖ ≤ c (1a)′

Lemma 3. Let f : X → Y be an approximately Euler quadratic mapping sat-
isfying inequality (1)′. Then f is an approximately even mapping; that is
the inequality

‖f(−x)− f(x)‖ ≤ c (3)′

holds for all x ∈ X with constant c (independent of x ∈ X) ≥ 0.

Proof. Substitution of x0 = x1 = x2 = 0, x3 = x in inequality (1)′ one gets that
the inequality

‖2f(0) + f(−x) + f(x)− [f(0) + 2f(−x)]‖ ≤ c,

or
‖f(−x)− f(x)− f(0)‖ ≤ c (3)′′

holds for all x ∈ X.
Similarly, substituting x0 = x1 = x2 = x, x3 = 0 in inequality (1)′ we

establish
‖f(−x)− f(x) + f(0)‖ ≤ c (3)′′′

Note that the substitution of x with −x in inequality (3)′′ also yields in-
equality (3)′′′ for all x ∈ X.

Thus employing Ineqs. (3)′′- (3)′′′ and triangle inequality one finds that

2 ‖f(−x)− f(x)‖ ≤ ‖f(−x)− f(x)− f(0)‖+ ‖f(−x)− f(x) + f(0)‖

≤ c + c = 2c,

or
‖f(−x)− f(x)‖ ≤ c

holds for all x ∈ X, completing the proof of Lemma 3. 2

Lemma 4. Let f : X → Y be an approximately Euler quadratic mapping sat-
isfying inequality (1)′. Then f satisfies the inequality

∥∥f(x)− 2−2nf(2nx)
∥∥ ≤ (1− 2−2n)c, (2a)′

for all x ∈ X and all n ∈ N with constant c (independent of x ∈ X) ≥ 0.
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Proof. Substituting x0 = x, x1 = 0, x2 = x, x3 = 0 in inequality (1)′ one gets
that the inequality

‖2f(x) + 2f(−x)− [2f(0) + f(2x)]‖ ≤ c,

or
‖f(2x)− 2f(−x)− 2f(x) + 2f(0)‖ ≤ c (3a)′′

holds for all x ∈ X.
inequality (3)′′ yields the functional inequality

‖2f(−x)− 2f(x)− 2f(0)‖ ≤ 2c (3b)′′

for all x ∈ X.
Applying inequlities (3a)′′-(3b)′′ and triangle inequality we find that the in-

equality
4

∥∥f(x)− 2−2f(2x)
∥∥ = ‖−4f(x) + f(2x)‖ =

= ‖[f(2x)− 2f(−x)− 2f(x) + 2f(0)] + [2f(−x)− 2f(x)− 2f(0)]‖
≤ ‖f(2x)− 2f(−x)− 2f(x) + 2f(0)‖+ 2 ‖f(−x)− f(x)− f(0)‖

≤ c + 2c = 3c

or ∥∥f(x)− 2−2f(2x)
∥∥ ≤ 3

4
c,

or ∥∥f(x)− 2−2f(2x)
∥∥ ≤ (1− 2−2)c (4)′

holds for all x ∈ X with constant c (independent of x) ≥ 0.
Replacing now x with 2x in inequality (4)′ one concludes that

∥∥f(2x)− 2−2f(22x)
∥∥ ≤ (1− 2−2)c,

or ∥∥2−2f(2x)− 2−4f(22x)
∥∥ ≤ (2−2 − 2−4)c(6)

holds for all x ∈ X.
Functional inequalities (4)′ - (6) and the triangle inequality yield
∥∥f(x)− 2−4f(22x)

∥∥ ≤ ∥∥f(x)− 2−2f(2x)
∥∥ +

∥∥2−2f(2x)− 2−4f(22x)
∥∥

≤ [
(1− 2−2) + (2−2 − 2−4)

]
c,

or that the functional inequality
∥∥f(x)− 2−4f(22x)

∥∥ ≤ (1− 2−4)c, (6a)

holds for all x ∈ X.
Similarly, by induction on n ∈ N with x → 2n−1x in inequality (4)′ claim

that (2a)′ holds for all x ∈ X and all n ∈ N with constant c (independent of
x ∈ X)≥ 0.
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In fact, inequality (4)′ with x → 2n−1x yield the functional inequality
∥∥f(2n−1x)− 2−2f(2nx)

∥∥ ≤ (1− 2−2)c,

or that the functional inequality
∥∥∥2−2(n−1)f(2n−1x)− 2−2nf(2nx)

∥∥∥ ≤ (2−2(n−1) − 2−2n)c, (7a)

holds for all x ∈ X.
Moreover, by induction the hypothesis with n → n − 1 in inequality (2a)′

one gets that
∥∥∥f(x)− 2−2(n−1)f(2n−1x)

∥∥∥ ≤ (1− 2−2(n−1))c, (7b)

holds for all x ∈ X.
Thus functional inequalities (7a)-(7b) and the triangle inequality imply

∥∥f(x)− 2−2nf(2nx)
∥∥ ≤

∥∥∥f(x)− 2−2(n−1)f(2n−1x)
∥∥∥ +

+
∥∥∥2−2(n−1)f(2n−1x)− 2−2nf(2nx)

∥∥∥

≤
[
(1− 2−2(n−1)) + (2−2(n−1) − 2−2n)

]
c

or ∥∥f(x)− 2−2nf(2nx)
∥∥ ≤ (1− 2−2n)c,

completing the proof of the required functional inequality (2a)′, and thus the
proof of Lemma 4. 2

Lemma 5. Let f : X → Y be an approximately Euler quadratic mapping sat-
isfying inequality (1)′. Then the sequence

{
2−2nf(2nx)

}
(8)

converges.

Proof. Note that from the functional inequality (2a)′ and the completeness of
Y , one proves that the above-mentioned sequence (8) is a Cauchy sequence.

In fact, if i > j > 0, then

∥∥2−2if(2ix)− 2−2jf(2jx)
∥∥ = 2−2j

∥∥∥2−2(i−j)f(2ix)− f(2jx)
∥∥∥ ,(9)

holds for all x ∈ X , and all i, j ∈ N .
Setting h = 2jx in (9) and employing the functional inequality (2a)′ one

concludes that
∥∥2−2if(2ix)− 2−2jf(2jx)

∥∥ = 2−2j
∥∥∥2−2(i−j)f(2i−jh)− f(h)

∥∥∥
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≤ 2−2j(1− 2−2(i−j))c,

or ∥∥2−2if(2ix)− 2−2jf(2jx)
∥∥ ≤ (2−2j − 2−2i)c < 2−2jc,

or
lim

j→∞
∥∥2−2if(2ix)− 2−2jf(2jx)

∥∥ = 0, (9a)

which yields that the sequence (8) is a Cauchy sequence, and thus the proof of
Lemma 5 is complete. 2

Lemma 6. Let f : X → Y be an approximately Euler quadratic mapping sat-
isfying inequality (1)′. Assume in addition a mapping Q : X → Y given by the
above formula (5). Then Q = Q(x) is a well-defined mapping and that Q is
an Euler quadratic mapping in X.

Proof. Employing Lemma 5 and formula (5), one gets that Q is a well-defined
mapping. This means that the limit (5) exists for all x ∈ X.

In addition, let us prove that Q satisfies the functional equation (1) for all
vectors (x0, x1, x2, x3) ∈ X4. In fact, it is clear from (1)′ and the limit (5) that
the following inequality

2−2n ‖f(2nx0 − 2nx1)+ f(2nx1 − 2nx2) + f(2nx2 − 2nx3) + f(2nx3 − 2nx0)
− [f(2nx0 − 2nx2) + f(2nx1 − 2nx3) + f(2nx0 − 2nx1 + 2nx2 − 2nx3)]‖
≤ 2−2nc,

(10)
holds for all (x0, x1, x2, x3) ∈ X4 and all n ∈ N .

Therefore from inequality (10) one gets
∥∥∥ lim

n→∞
2−2nf [2n(x0 − x1)]+ lim

n→∞
2−2nf [2n(x1 − x2)]+

+ lim
n→∞

2−2nf [2n(x2 − x3)] + lim
n→∞

2−2nf [2n(x3 − x0)]−

−
{

lim
n→∞

2−2nf [2n(x0 − x2)] + lim
n→∞

2−2nf [2n(x1 − x3)] +

+ lim
n→∞

2−2nf [2n(x0 − x1 + x2 − x3)]
}∥∥∥ ≤

(
lim

n→∞
2−2n

)
c = 0,

or
‖Q(x0 − x1) + Q(x1 − x2) + Q(x2 − x3) + Q(x3 − x0)
− [Q(x0 − x2) + Q(x1 − x3) +Q(x0 − x1 + x2 − x3)]‖ = 0 (10a)

or mapping Q satisfies the quadratic equation (1) for all (x0, x1, x2, x3) ∈ X.
Thus Q is an Euler quadratic mapping, completing the proof of Lemma 6.

It is clear now from Lemmas 1-6 and especially from inequality (2a)′, n →∞
, and formula (5) that inequality (1)′′ holds in X. Thus the proof of existence
in this Theorem is complete.
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Proof of Uniqueness in Theorem. Let Q′ : X → Y be another Euler
quadratic mapping satisfying the new quadratic functional equation (1), such
that the inequality

‖f(x)−Q′(x)‖ ≤ c, (1a)′′

holds for allx ∈ X. If there exists an Euler quadratic mapping Q : X → Y
satisfying the new quadratic functional equation (1), then

Q(x) = Q′(x)(11)

holds for allx ∈ X.
To prove the uniqueness one employs equation (2a) for Q and Q′, as well,

so that
Q′(x) = 2−2nQ′(2nx), (2a)′′

holds for all x ∈ X, and all n ∈ N . Moreover, the triangle inequality and
inequalities (1)′′-(1a)′′ yield

‖Q (2nx)−Q′(2nx)‖ ≤ ‖Q (2nx)− f(2nx)‖+ ‖f(2nx)−Q′(2nx)‖

≤ c + c = 2c,

or
‖Q (2nx)−Q′(2nx)‖ ≤ 2c,(12)

for all x ∈ X, and all n ∈ N . Then from equations (2a)-(2a)′′ , and inequality
(12), one proves that

‖Q (x)−Q′(x)‖ =
∥∥2−2nQ (2nx)− 2−2nQ′(2nx)

∥∥ =

= 2−2n ‖Q (2nx)−Q′(2nx)‖ ≤ 2(2−2n)c, (12a)

holds for all x ∈ X and all n ∈ N . Therefore, from the above inequality (12a),
and n →∞ , one establishes

lim
n→∞

‖Q (x)−Q′(x)‖ ≤ 2
(

lim
n→∞

2−2n
)

c = 0,

or
‖Q (x)−Q′(x)‖ = 0,

or
Q(x) = Q′(x),

for all x ∈ X, completing the proof of uniqueness and thus the stability of this
Theorem ([1]-[15]) and ([23]-[28]).

Example 1 Take f : R → R be a real function such that f(x) = lx2 + k, l =
real constant ( 6= 0), k = constant : |k| ≤ c, in order that f satisfies inequality
(1).
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Moreover, there exists a unique Euler quadratic mapping Q : R → R such
that from the limit (5) one gets

Q(x) = lim
n→∞

2−2nf(2nx) = lim
n→∞

2−2n
[
l(2nx)2 + k

]
= lx2.

Finally let us prove that inequality (1)′′ holds. In fact, the above condition
on k : |k| ≤ c, implies

‖f(x)−Q(x)‖ =
∥∥(

lx2 + k
)− lx2

∥∥ = |k| ≤ c,

satisfying inequality (1)′′ , because from inequality (1)′ one gets that
∥∥[

l(x0 − x1)2 + k
]
+

[
l(x1 − x2)2 + k

]
+

[
l(x2 − x3)2 + k

]
+

[
l(x3 − x0)2 + k

]

− {[
l(x0 − x2)2 + k

]
+

[
l(x1 − x3)2 + k

]
+

[
l(x0 − x1 + x2 − x3)2 + k

]}∥∥ ≤ c

or
|k + k + k + k − [k + k + k]| = |k| ≤ c.
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