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A GENERAL FIXED POINT THEOREM FOR TWO
PAIRS OF MAPPINGS ON TWO METRIC SPACES
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Abstract. A general fixed point theorem for two pairs of mappings
on two metric spaces is proved. This result generalizes the main theorem
from [2].
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1. Introduction
The following fixed point theorem was proved by Fisher [1].

Theorem 1. [1] Let (X,d) and (Y, p) be complete metric spaces,let T be a
continuous mappings of X into Y, and let S be a mappings of Y into X satisfying
the inequalities

d(STx,STx") < cmax{d(z,2"),d(z, STxz),d(z', STz"), p(Tx, Tz")}

p(TSy, TSy') < cmax{p(y,y'), p(y, TSy), p(y', TSy'),d(Sy, Sy')}

for all z, 2’ in X and y,3’ in Y,where 0 < ¢ < 1.
Then ST has a unique fixed point z in X and 7'S has a unique fixed point
w in Y. Further, Tz = w and Sw = z.

A generalization of Theorem 1 is proved by Fisher and Murthy in [2].

Theorem 2. [2] Let (X,d) and (Y, p) be complete metric spaces, let A, B be
mappings of X into Y, and let S,T be mappings of Y into X satisfying the
inequalities

d(SAz, TBz') < cmax{d(z,z'),d(x, SAz),d(z', TBz'), p(Az, Bx)},

d(BSy, ATy') < cmax{p(y,y'), p(y, BSy), p(y, ATy),d(Sy, Ty'),d(Sy, Ty')}

for all z,2' in X and y,y’ in Y, where 0 < ¢ < 1. If one of the mappings A, B, S
and T is continuous then SA and T'B have a common fixed point z in X and
BS and AT have a common fixed point w in Y. Further, Az = Bz = w and
Sw=Tw = z.

In this paper a generalization of Theorem 2 is proved for pairs of mappings
satisfying two implicit relations.

1Department of Mathematics, University of Bacau, Str.Spiru Haret nr.8, 600114 Bacau,
ROMANTIA, e-mail: vpopa@ub.ro



80 V. Popa
2. Implicit relations

Let F5 be the set of all functions F : Ri — R such that

(Fc): F is continuous in each coordinate variable,

(Fh): there exists h € [0,1) such that for every u > 0,v > 0,w > 0 satisfying
F(u,v,u,v,w) <0 or F(u,v,v,u,w) <0 we have u < hmax{v, w}.

Example 1. F(t1,...,t5) = t1 — cmax{ta, t3,t4,t5}, where c € [0,1).

(Fe): Obviously.

(Fh): Let u > 0,v > 0,w > 0 and F(u,v,u,v,w) =u — cmax{v,u, w} < 0.

Then u < ecmax{v,w}. If u > max{v,w} then u(1 —¢) <0, a contradiction.

Then u < hmax{v,w}, where h = ¢ € [0,1). If u = 0, then u < hmax{v, w}.
Similarly, F'(u,v,v,u,w) < 0 implies v < hmax{v, w}.

Example 2. F(ti,....t5) = t3 — cmax{tats, taty, tsts, t2} where c € [0,1).

(Fc): Obviously.
(Fh): Let u > 0,v > 0,w > 0 and F(u,v,u,v,w) = u? —cmax{uv, v?, w?} <

Then u? < cmax{uv,v? w?}.

If u > max{v, w} then u?(1 — ¢) < 0, a contradiction.

Thus u < hmax{v, w}, where h = \/c € [0,1). If u = 0, then u < hmax{v, w}.
Similarly, if F(u,v,v,u,w) <0 then u < max{v,w}.

Example 3. F(t1,....t5) = t3 — (atits + bt1tz + ctity + dt?) where a,b,c,d > 0
and0<a+b+c+d<l1.

(Fc): Obviously.

(Fh): Let u > 0,v > 0,w > 0 and F(u,v,u,v,w) = u? — (auv + bu® + cuv +
dw?) < 0.

Put m = max{v,w}, then (1 — b)u? — (a + c)um — dm? < 0.

If m = 0, then (1 — b)u? < 0, a contradiction. Thus m # 0 and f(¢) =
(1-b)t* —(a+c)t —d <0, where t = .

Since f(0) <0and f(1)=1—(a+b+c+d) >0, let hy € [0,1) be the root
of equation f(t) = 0, then f(¢t) <0 for ¢t < hy and u < hy max{v, w}.

If u =0, then v < hmax{v,w}.

Similarly, if F(u,v,v,u,w) < 0 then u < hy max{v,w}, where hy € [0,1).
Thus v < hmax{v,w}, where h = max{hq, ho}.

In this paper a general fixed point theorem for two pairs of mappings on two
metric spaces satisfying implicit relations is proved.
This result generalizes the main result from [2].
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3. Main result

Theorem 3. Let (X,d) and (Y, p) be complete metric spaces, let A, B be map-
pings of X intoY and let S, T be mappings of Y into X satisfying the inequalities

(1)  F(d(SAz,TBz'),d(x,x),d(x,SAx),d(z', TBz'), p(Az, Bx")) <0

(2)  G(p(BSy, ATY'), p(y,y), p(y, BSy), p(y', ATY'),d(Sy, Ty')) < 0

forallz,z’ in X andy,y’ in Y, where F,G € Fs5. If one of the mappings A, B, S
and T is continuous then SA and T B have a common fized point z in X and
BS and AT have a common fized point w in Y.

Further, Az = Bz =w and Sw =Tw = z.

Proof. Let x be an arbitrary point in X and Az = yy, Sy1 = x1, Bxy = yo,
Ty, = x9, Axo = y3 and in general let

SYon—1 = Ton—1, BTan—1 = Yon, TYon = Ton, AT2n = Yon+1
for n = 1,2,.... Let h = max{hy, ha}, where hy and hy are real constants
satisfying conditions (Fh) and (Gh), respectively.

Using inequalities (1) we have succesively

F(d(SAMm Tszn—l), d($2n7 $2n—1)7 d($2n7 SA$2n),
d(x2n—1,TBxon_1), p(Axy, Bra,—1)) <0,

F(d(z2n+1,%on), d(Ton, Tan—1), d(Z2n, Tant1), d(T2n—1, Ton), p(Y2n, Y2n+1)) < 0.

which implies by (Fh) that

(3) d(@2n+1, 22n) < hmax{d(z2n, T2n-1), p(Y2n, Y2n+1)}-
Using inequality (1) again, it follows that

(4) d(xon, Tan—1) < hmax{d(za,—1, Tan—2), P(Y2n; Y2n—1) }-

Similarly, using inequality (2) we get

(5) P(Y2n, Yon+1) < hmax{d(on—1,Ton), P(Y2n—1,Y2n)}
and
(6) p(Yon—1,Y2n) < hmax{d(xon—2, Ton—1), P(Y2n—2, Y2n—1)}-

Using inequalities (3) and (5) we have
(7) d(IQn—i—l» IQn) S h max{d(zgn, IQn—1)7 p(an—h y2n)}
and similarly, from inequalities (4) and (6), we have

(8) d(22n, Ton—1) < h maX{d(QTQn—Q, Ton—1), P(Y2n—2, y2n—1)}-
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It now follows from inequalities (5),(6),(7) and (8) that
d(xni1,2n) < hmax{d(zn, Tn-1), P(Yn, Yn-1)},
P(Ynt1,yn) < hmax{d(zn, ©n—1); p(Yn; Yn-1)}
and easy induction argument shows that
d(B2ns1, T2n) < B max{d(z1,22), p(y1,y2)},

p(y2n+1, y2n) S hnil ma’X{d(xlv £U2), p(ylv y?)}

forn=1,2,.... Since 0 < h < 1, it follows that {z,} and {y,} are the Cauchy
sequences with the limits z in X and w in Y, respectively.
Now suppose that A is continuous. Then

lim Azo, = Az =limys, 11 = w

and so Az = w.
Using inequality (1) we have successively

F(d(SAz,TBxoy—1),d(z,x2,-1),d(z, SAz),
d(w2n—1, TBran_1), p(Az, Bran-1)) <0,
F(d(Sw7 $2n), d(Z, 37271—1)7 d(Z, SUJ), d($2n—17 xQH)a p(wa y2n)) S 0.
Letting n tend to infinity, we have
F(d(Sw,z2),0,d(z, Sw),0,0) <0
which implies by (Fh) that z = Sw = SAz.
Now using inequality (2) we have successively

G(p(BSw, ATy2n), p(w, y2n), p(w, BSw), p(y2n, ATYa2n), d(Sw, Ty2n)) < 0,

G(p(Bz, y2n+1), p(w, y2n), p(w, B2), p(y2n, Y2n+1), d(2, 22n)) < 0.
Letting n tend to infinity, we have
G(p(Bz,w),0, p(w, Bz),0,0) <0
which implies by (Gh) that w = Bz = BSw.
Using inequality (1) we have successively
F(d(SAz,TBz),d(z,z),d(z,SAz),d(z,TBz), p(Az, Bz)) <0,
F(d(z,Tw),0,0,d(z,Tw),0) <0

which implies by (Fh) that z = Tw and z = Tw = T Bz.
Using inequality (2) we have succesively

G(p(BSw, ATw), p(w,w), p(w, BSw), p(w, ATw), d(Sw, Tw)) <0,

G(p(w, ATw), 0,0, p(w, ATw),0) <0

which implies by (Fh) that w = ATw.
The same results hold also if one of the mappings B,S,T is continuous. O
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Corollary 1. Theorem 2[2].

Proof. The proof follows from Theorem 3 and Example 1. O
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