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A GENERAL FIXED POINT THEOREM FOR TWO
PAIRS OF MAPPINGS ON TWO METRIC SPACES

Valeriu Popa1

Abstract. A general fixed point theorem for two pairs of mappings
on two metric spaces is proved. This result generalizes the main theorem
from [2].
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1. Introduction

The following fixed point theorem was proved by Fisher [1].

Theorem 1. [1] Let (X, d) and (Y, ρ) be complete metric spaces,let T be a
continuous mappings of X into Y, and let S be a mappings of Y into X satisfying
the inequalities

d(STx, STx′) ≤ c max{d(x, x′), d(x, STx), d(x′, STx′), ρ(Tx, Tx′)}
ρ(TSy, TSy′) ≤ c max{ρ(y, y′), ρ(y, TSy), ρ(y′, TSy′), d(Sy, Sy′)}

for all x, x′ in X and y, y′ in Y ,where 0 ≤ c < 1.
Then ST has a unique fixed point z in X and TS has a unique fixed point

w in Y . Further, Tz = w and Sw = z.

A generalization of Theorem 1 is proved by Fisher and Murthy in [2].

Theorem 2. [2] Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be
mappings of X into Y , and let S,T be mappings of Y into X satisfying the
inequalities

d(SAx, TBx′) ≤ c max{d(x, x′), d(x, SAx), d(x′, TBx′), ρ(Ax,Bx)},
d(BSy, ATy′) ≤ c max{ρ(y, y′), ρ(y, BSy), ρ(y, ATy), d(Sy, Ty′), d(Sy, Ty′)}

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. If one of the mappings A,B, S
and T is continuous then SA and TB have a common fixed point z in X and
BS and AT have a common fixed point w in Y . Further, Az = Bz = w and
Sw = Tw = z.

In this paper a generalization of Theorem 2 is proved for pairs of mappings
satisfying two implicit relations.
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2. Implicit relations

Let F5 be the set of all functions F : R5
+ → R such that

(Fc): F is continuous in each coordinate variable,

(Fh): there exists h ∈ [0, 1) such that for every u ≥ 0, v ≥ 0, w ≥ 0 satisfying
F (u, v, u, v, w) ≤ 0 or F (u, v, v, u, w) ≤ 0 we have u ≤ hmax{v, w}.

Example 1. F (t1, ..., t5) = t1 − c max{t2, t3, t4, t5}, where c ∈ [0, 1).

(Fc): Obviously.
(Fh): Let u > 0, v ≥ 0, w ≥ 0 and F (u, v, u, v, w) = u− c max{v, u, w} ≤ 0.

Then u ≤ c max{v, w}. If u > max{v, w} then u(1− c) ≤ 0, a contradiction.
Then u ≤ h max{v, w}, where h = c ∈ [0, 1). If u = 0, then u ≤ h max{v, w}.

Similarly, F (u, v, v, u, w) ≤ 0 implies u ≤ h max{v, w}.

Example 2. F (t1, ..., t5) = t21 − c max{t2t3, t2t4, t3t4, t25} where c ∈ [0, 1).

(Fc): Obviously.
(Fh): Let u > 0, v ≥ 0, w ≥ 0 and F (u, v, u, v, w) = u2−c max{uv, v2, w2} ≤

0.

Then u2 ≤ c max{uv, v2, w2}.
If u > max{v, w} then u2(1− c) ≤ 0, a contradiction.
Thus u ≤ h max{v, w}, where h =

√
c ∈ [0, 1). If u = 0, then u ≤ h max{v, w}.

Similarly, if F (u, v, v, u, w) ≤ 0 then u ≤ max{v, w}.

Example 3. F (t1, ..., t5) = t21 − (at1t2 + bt1t3 + ct1t4 + dt25) where a, b, c, d > 0
and 0 < a + b + c + d < 1.

(Fc): Obviously.
(Fh): Let u > 0, v ≥ 0, w ≥ 0 and F (u, v, u, v, w) = u2 − (auv + bu2 + cuv +

dw2) ≤ 0.

Put m = max{v, w}, then (1− b)u2 − (a + c)um− dm2 ≤ 0.

If m = 0, then (1 − b)u2 ≤ 0, a contradiction. Thus m 6= 0 and f(t) =
(1− b)t2 − (a + c)t− d ≤ 0, where t = u

m .

Since f(0) < 0 and f(1) = 1− (a + b + c + d) > 0, let h1 ∈ [0, 1) be the root
of equation f(t) = 0, then f(t) ≤ 0 for t ≤ h1 and u ≤ h1 max{v, w}.

If u = 0, then u ≤ h max{v, w}.
Similarly, if F (u, v, v, u, w) ≤ 0 then u ≤ h2 max{v, w}, where h2 ∈ [0, 1).

Thus u ≤ hmax{v, w}, where h = max{h1, h2}.

In this paper a general fixed point theorem for two pairs of mappings on two
metric spaces satisfying implicit relations is proved.

This result generalizes the main result from [2].
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3. Main result

Theorem 3. Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be map-
pings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

F (d(SAx, TBx′), d(x, x′), d(x, SAx), d(x′, TBx′), ρ(Ax,Bx′)) ≤ 0(1)

G(ρ(BSy, ATy′), ρ(y, y′), ρ(y, BSy), ρ(y′, ATy′), d(Sy, Ty′)) ≤ 0(2)

for all x, x′ in X and y, y′ in Y, where F, G ∈ F5. If one of the mappings A,B, S
and T is continuous then SA and TB have a common fixed point z in X and
BS and AT have a common fixed point w in Y .

Further, Az = Bz = w and Sw = Tw = z.

Proof. Let x be an arbitrary point in X and Ax = y1, Sy1 = x1, Bx1 = y2,
Ty2 = x2, Ax2 = y3 and in general let

Sy2n−1 = x2n−1, Bx2n−1 = y2n, T y2n = x2n, Ax2n = y2n+1

for n = 1, 2, .... Let h = max{h1, h2}, where h1 and h2 are real constants
satisfying conditions (Fh) and (Gh), respectively.

Using inequalities (1) we have succesively

F (d(SAx2n, TBx2n−1), d(x2n, x2n−1), d(x2n, SAx2n),
d(x2n−1, TBx2n−1), ρ(Ax2n, Bx2n−1)) ≤ 0,

F (d(x2n+1, x2n), d(x2n, x2n−1), d(x2n, x2n+1), d(x2n−1, x2n), ρ(y2n, y2n+1)) ≤ 0.

which implies by (Fh) that

d(x2n+1, x2n) ≤ h max{d(x2n, x2n−1), ρ(y2n, y2n+1)}.(3)

Using inequality (1) again, it follows that

d(x2n, x2n−1) ≤ h max{d(x2n−1, x2n−2), ρ(y2n, y2n−1)}.(4)

Similarly, using inequality (2) we get

ρ(y2n, y2n+1) ≤ h max{d(x2n−1, x2n), ρ(y2n−1, y2n)}(5)

and
ρ(y2n−1, y2n) ≤ h max{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1)}.(6)

Using inequalities (3) and (5) we have

d(x2n+1, x2n) ≤ h max{d(x2n, x2n−1), ρ(y2n−1, y2n)}(7)

and similarly, from inequalities (4) and (6), we have

d(x2n, x2n−1) ≤ h max{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1)}.(8)
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It now follows from inequalities (5),(6),(7) and (8) that

d(xn+1, xn) ≤ h max{d(xn, xn−1), ρ(yn, yn−1)},
ρ(yn+1, yn) ≤ h max{d(xn, xn−1), ρ(yn, yn−1)}

and easy induction argument shows that

d(x2n+1, x2n) ≤ hn−1 max{d(x1, x2), ρ(y1, y2)},
ρ(y2n+1, y2n) ≤ hn−1 max{d(x1, x2), ρ(y1, y2)}

for n = 1, 2, ... . Since 0 ≤ h < 1, it follows that {xn} and {yn} are the Cauchy
sequences with the limits z in X and w in Y , respectively.

Now suppose that A is continuous. Then

lim Ax2n = Az = lim y2n+1 = w

and so Az = w.
Using inequality (1) we have successively

F (d(SAz, TBx2n−1), d(z, x2n−1), d(z, SAz),
d(x2n−1, TBx2n−1), ρ(Az, Bx2n−1)) ≤ 0,

F (d(Sw, x2n), d(z, x2n−1), d(z, Sw), d(x2n−1, x2n), ρ(w, y2n)) ≤ 0.

Letting n tend to infinity, we have

F (d(Sw, z), 0, d(z, Sw), 0, 0) ≤ 0

which implies by (Fh) that z = Sw = SAz.
Now using inequality (2) we have successively

G(ρ(BSw,ATy2n), ρ(w, y2n), ρ(w, BSw), ρ(y2n, ATy2n), d(Sw, Ty2n)) ≤ 0,

G(ρ(Bz, y2n+1), ρ(w, y2n), ρ(w, Bz), ρ(y2n, y2n+1), d(z, x2n)) ≤ 0.

Letting n tend to infinity, we have

G(ρ(Bz,w), 0, ρ(w, Bz), 0, 0) ≤ 0

which implies by (Gh) that w = Bz = BSw.
Using inequality (1) we have successively

F (d(SAz, TBz), d(z, z), d(z, SAz), d(z, TBz), ρ(Az, Bz)) ≤ 0,

F (d(z, Tw), 0, 0, d(z, Tw), 0) ≤ 0

which implies by (Fh) that z = Tw and z = Tw = TBz.
Using inequality (2) we have succesively

G(ρ(BSw,ATw), ρ(w, w), ρ(w, BSw), ρ(w, ATw), d(Sw, Tw)) ≤ 0,

G(ρ(w,ATw), 0, 0, ρ(w, ATw), 0) ≤ 0

which implies by (Fh) that w = ATw.
The same results hold also if one of the mappings B,S,T is continuous. 2
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Corollary 1. Theorem 2[2].

Proof. The proof follows from Theorem 3 and Example 1. 2
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