A GENERAL FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS ON TWO METRIC SPACES

Valeriu Popa ${ }^{1}$

Abstract

A general fixed point theorem for two pairs of mappings on two metric spaces is proved. This result generalizes the main theorem from [2].

AMS Mathematics Subject Classification (2000): 54H25
Key words and phrases: fixed point, implicit relation,complete metric space

1. Introduction

The following fixed point theorem was proved by Fisher [1].
Theorem 1. [1] Let (X, d) and (Y, ρ) be complete metric spaces,let T be a continuous mappings of X into Y , and let S be a mappings of Y into X satisfying the inequalities

$$
\begin{gathered}
d\left(S T x, S T x^{\prime}\right) \leq c \max \left\{d\left(x, x^{\prime}\right), d(x, S T x), d\left(x^{\prime}, S T x^{\prime}\right), \rho\left(T x, T x^{\prime}\right)\right\} \\
\rho\left(T S y, T S y^{\prime}\right) \leq c \max \left\{\rho\left(y, y^{\prime}\right), \rho(y, T S y), \rho\left(y^{\prime}, T S y^{\prime}\right), d\left(S y, S y^{\prime}\right)\right\}
\end{gathered}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $0 \leq c<1$.
Then $S T$ has a unique fixed point z in X and $T S$ has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

A generalization of Theorem 1 is proved by Fisher and Murthy in [2].
Theorem 2. [2] Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y, and let S,T be mappings of Y into X satisfying the inequalities

$$
\begin{gathered}
d\left(S A x, T B x^{\prime}\right) \leq c \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), d\left(x^{\prime}, T B x^{\prime}\right), \rho(A x, B x)\right\} \\
d\left(B S y, A T y^{\prime}\right) \leq c \max \left\{\rho\left(y, y^{\prime}\right), \rho(y, B S y), \rho(y, A T y), d\left(S y, T y^{\prime}\right), d\left(S y, T y^{\prime}\right)\right\}
\end{gathered}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $0 \leq c<1$. If one of the mappings A, B, S and T is continuous then $S A$ and $T B$ have a common fixed point z in X and $B S$ and $A T$ have a common fixed point w in Y. Further, $A z=B z=w$ and $S w=T w=z$.

In this paper a generalization of Theorem 2 is proved for pairs of mappings satisfying two implicit relations.

[^0]
2. Implicit relations

Let \mathcal{F}_{5} be the set of all functions $F: R_{+}^{5} \rightarrow R$ such that
$(\mathrm{Fc}): \mathrm{F}$ is continuous in each coordinate variable,
(Fh): there exists $h \in[0,1)$ such that for every $u \geq 0, v \geq 0, w \geq 0$ satisfying $F(u, v, u, v, w) \leq 0$ or $F(u, v, v, u, w) \leq 0$ we have $u \leq h \max \{v, w\}$.

Example 1. $F\left(t_{1}, \ldots, t_{5}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}$, where $c \in[0,1)$.
(Fc): Obviously.
(Fh): Let $u>0, v \geq 0, w \geq 0$ and $F(u, v, u, v, w)=u-c \max \{v, u, w\} \leq 0$. Then $u \leq c \max \{v, w\}$. If $u>\max \{v, w\}$ then $u(1-c) \leq 0$, a contradiction. Then $u \leq h \max \{v, w\}$, where $h=c \in[0,1)$. If $u=0$, then $u \leq h \max \{v, w\}$.
Similarly, $F(u, v, v, u, w) \leq 0$ implies $u \leq h \max \{v, w\}$.
Example 2. $F\left(t_{1}, \ldots, t_{5}\right)=t_{1}^{2}-c \max \left\{t_{2} t_{3}, t_{2} t_{4}, t_{3} t_{4}, t_{5}^{2}\right\}$ where $c \in[0,1)$.
(Fc): Obviously.
(Fh): Let $u>0, v \geq 0, w \geq 0$ and $F(u, v, u, v, w)=u^{2}-c \max \left\{u v, v^{2}, w^{2}\right\} \leq$
0.

Then $u^{2} \leq c \max \left\{u v, v^{2}, w^{2}\right\}$.
If $u>\max \{v, w\}$ then $u^{2}(1-c) \leq 0$, a contradiction.
Thus $u \leq h \max \{v, w\}$, where $h=\sqrt{c} \in[0,1)$. If $u=0$, then $u \leq h \max \{v, w\}$.
Similarly, if $F(u, v, v, u, w) \leq 0$ then $u \leq \max \{v, w\}$.
Example 3. $F\left(t_{1}, \ldots, t_{5}\right)=t_{1}^{2}-\left(a t_{1} t_{2}+b t_{1} t_{3}+c t_{1} t_{4}+d t_{5}^{2}\right)$ where $a, b, c, d>0$ and $0<a+b+c+d<1$.
(Fc): Obviously.
(Fh): Let $u>0, v \geq 0, w \geq 0$ and $F(u, v, u, v, w)=u^{2}-\left(a u v+b u^{2}+c u v+\right.$ $\left.d w^{2}\right) \leq 0$.

Put $m=\max \{v, w\}$, then $(1-b) u^{2}-(a+c) u m-d m^{2} \leq 0$.
If $m=0$, then $(1-b) u^{2} \leq 0$, a contradiction. Thus $m \neq 0$ and $f(t)=$ $(1-b) t^{2}-(a+c) t-d \leq 0$, where $t=\frac{u}{m}$.

Since $f(0)<0$ and $f(1)=1-(a+b+c+d)>0$, let $h_{1} \in[0,1)$ be the root of equation $f(t)=0$, then $f(t) \leq 0$ for $t \leq h_{1}$ and $u \leq h_{1} \max \{v, w\}$.

If $u=0$, then $u \leq h \max \{v, w\}$.
Similarly, if $F(u, v, v, u, w) \leq 0$ then $u \leq h_{2} \max \{v, w\}$, where $h_{2} \in[0,1)$. Thus $u \leq h \max \{v, w\}$, where $h=\max \left\{h_{1}, h_{2}\right\}$.

In this paper a general fixed point theorem for two pairs of mappings on two metric spaces satisfying implicit relations is proved.

This result generalizes the main result from [2].

3. Main result

Theorem 3. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities
(1) $\quad F\left(d\left(S A x, T B x^{\prime}\right), d\left(x, x^{\prime}\right), d(x, S A x), d\left(x^{\prime}, T B x^{\prime}\right), \rho\left(A x, B x^{\prime}\right)\right) \leq 0$
(2) $\quad G\left(\rho\left(B S y, A T y^{\prime}\right), \rho\left(y, y^{\prime}\right), \rho(y, B S y), \rho\left(y^{\prime}, A T y^{\prime}\right), d\left(S y, T y^{\prime}\right)\right) \leq 0$
for all x, x^{\prime} in X and y, y^{\prime} in Y, where $F, G \in \mathcal{F}_{5}$. If one of the mappings A, B, S and T is continuous then $S A$ and $T B$ have a common fixed point z in X and $B S$ and $A T$ have a common fixed point w in Y.

Further, $A z=B z=w$ and $S w=T w=z$.
Proof. Let x be an arbitrary point in X and $A x=y_{1}, S y_{1}=x_{1}, B x_{1}=y_{2}$, $T y_{2}=x_{2}, A x_{2}=y_{3}$ and in general let

$$
S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n}, T y_{2 n}=x_{2 n}, A x_{2 n}=y_{2 n+1}
$$

for $n=1,2, \ldots$ Let $h=\max \left\{h_{1}, h_{2}\right\}$, where h_{1} and h_{2} are real constants satisfying conditions (Fh) and (Gh), respectively.

Using inequalities (1) we have succesively

$$
\begin{gathered}
F\left(d\left(S A x_{2 n}, T B x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, S A x_{2 n}\right)\right. \\
\left.d\left(x_{2 n-1}, T B x_{2 n-1}\right), \rho\left(A x_{2 n}, B x_{2 n-1}\right)\right) \leq 0 \\
F\left(d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right) \leq 0 .
\end{gathered}
$$

which implies by (Fh) that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n}\right) \leq h \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\} . \tag{3}
\end{equation*}
$$

Using inequality (1) again, it follows that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n-1}\right) \leq h \max \left\{d\left(x_{2 n-1}, x_{2 n-2}\right), \rho\left(y_{2 n}, y_{2 n-1}\right)\right\} . \tag{4}
\end{equation*}
$$

Similarly, using inequality (2) we get

$$
\begin{equation*}
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq h \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \tag{5}
\end{equation*}
$$

and
(6) $\quad \rho\left(y_{2 n-1}, y_{2 n}\right) \leq h \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-2}, y_{2 n-1}\right)\right\}$.

Using inequalities (3) and (5) we have

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n}\right) \leq h \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \tag{7}
\end{equation*}
$$

and similarly, from inequalities (4) and (6), we have

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n-1}\right) \leq h \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-2}, y_{2 n-1}\right)\right\} . \tag{8}
\end{equation*}
$$

It now follows from inequalities (5),(6),(7) and (8) that

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & \leq h \max \left\{d\left(x_{n}, x_{n-1}\right), \rho\left(y_{n}, y_{n-1}\right)\right\}, \\
\rho\left(y_{n+1}, y_{n}\right) & \leq h \max \left\{d\left(x_{n}, x_{n-1}\right), \rho\left(y_{n}, y_{n-1}\right)\right\}
\end{aligned}
$$

and easy induction argument shows that

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n}\right) & \leq h^{n-1} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right)\right\}, \\
\rho\left(y_{2 n+1}, y_{2 n}\right) & \leq h^{n-1} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right)\right\}
\end{aligned}
$$

for $n=1,2, \ldots$. Since $0 \leq h<1$, it follows that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are the Cauchy sequences with the limits z in X and w in Y, respectively.

Now suppose that A is continuous. Then

$$
\lim A x_{2 n}=A z=\lim y_{2 n+1}=w
$$

and so $A z=w$.
Using inequality (1) we have successively

$$
\begin{gathered}
F\left(d\left(S A z, T B x_{2 n-1}\right), d\left(z, x_{2 n-1}\right), d(z, S A z)\right. \\
\left.d\left(x_{2 n-1}, T B x_{2 n-1}\right), \rho\left(A z, B x_{2 n-1}\right)\right) \leq 0 \\
F\left(d\left(S w, x_{2 n}\right), d\left(z, x_{2 n-1}\right), d(z, S w), d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(w, y_{2 n}\right)\right) \leq 0 .
\end{gathered}
$$

Letting n tend to infinity, we have

$$
F(d(S w, z), 0, d(z, S w), 0,0) \leq 0
$$

which implies by (Fh) that $z=S w=S A z$.
Now using inequality (2) we have successively

$$
\begin{gathered}
G\left(\rho\left(B S w, A T y_{2 n}\right), \rho\left(w, y_{2 n}\right), \rho(w, B S w), \rho\left(y_{2 n}, A T y_{2 n}\right), d\left(S w, T y_{2 n}\right)\right) \leq 0 \\
G\left(\rho\left(B z, y_{2 n+1}\right), \rho\left(w, y_{2 n}\right), \rho(w, B z), \rho\left(y_{2 n}, y_{2 n+1}\right), d\left(z, x_{2 n}\right)\right) \leq 0 .
\end{gathered}
$$

Letting n tend to infinity, we have

$$
G(\rho(B z, w), 0, \rho(w, B z), 0,0) \leq 0
$$

which implies by (Gh) that $w=B z=B S w$.
Using inequality (1) we have successively

$$
\begin{gathered}
F(d(S A z, T B z), d(z, z), d(z, S A z), d(z, T B z), \rho(A z, B z)) \leq 0, \\
F(d(z, T w), 0,0, d(z, T w), 0) \leq 0
\end{gathered}
$$

which implies by (Fh) that $z=T w$ and $z=T w=T B z$.
Using inequality (2) we have succesively

$$
\begin{gathered}
G(\rho(B S w, A T w), \rho(w, w), \rho(w, B S w), \rho(w, A T w), d(S w, T w)) \leq 0 \\
G(\rho(w, A T w), 0,0, \rho(w, A T w), 0) \leq 0
\end{gathered}
$$

which implies by (Fh) that $w=A T w$.
The same results hold also if one of the mappings B,S,T is continuous.

Corollary 1. Theorem 2[2].
Proof. The proof follows from Theorem 3 and Example 1.

References

[1] Fisher, B., Related fixed points on two metric spaces. Math. Sci. Notes, Kobe Univ. 10 (1982), 17-26.
[2] Fisher, B., Murthy, P.P., Related fixed point theorems for two pairs of mappings on two metric spaces. Kyungpook Math. J. 37 (1997), 343-347.

Received by the editors March 28, 2005

[^0]: ${ }^{1}$ Department of Mathematics, University of Bacāu, Str.Spiru Haret nr.8, 600114 Bacāu, ROMANIA, e-mail: vpopa@ub.ro

