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SEMILATTICES WITH SECTIONALLY ANTITONE
BIJECTIONS

Ivan Chajda1, Sándor Radeleczki2

Abstract. We study ∨-semilattices with the greatest element 1 where
on each interval [a,1] an antitone bijection is defined. We characterize
these semilattices by means of two induced binary operations proving that
the resulting algebras form a variety. The congruence properties of this
variety and the properties of the underlying semilattices are investigated.
We show that this variety contains a single minimal subquasivariety.
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Join-semilattices, whose principal filters are Boolean lattices, were used by
J. C. Abbott [1] for a characterization of the logic connective implication in the
classical propositional logic. These semilattices also have the property that on
each principal filter of them an antitone involution is defined. Motivated by this
observation, the notion of a ∨- semilattice with sectionally antitone involutions
was defined in [3] and [5]. In this paper we introduce a further generalization
of this concept, defining the notion of a semilattice with sectionally antitone
bijections. Our aim is to obtain by means of these semilattices ”nice” algebraic
structures, i.e. a variety of algebras characterized by nice congruence properties.

Let S = (S,∨, 1) be a ∨- semilattice with the greatest element 1. For each
a ∈ S the interval [a, 1] (with respect to the induced order) will be called a
section. We say that S is a semilattice with sectionally antitone bijections if for
each a ∈ S there exists a bijection fa of [a, 1] into itself such that

x 5 y ⇔ fa(y) 5 fa(x), for all x, y ∈ [a, 1].

Of course, the inverse f−1
a of fa is also an antitone bijection on [a, 1]. If each

fa is an involution, i.e. f2
a (x) = x, for all x ∈ [a, 1], then S is called a semilattice

with sectionally antitone involutions (see [3]).
Given a semilattice S with sectionally antitone bijections, we can introduce

two new binary operations on S as follows:

x ◦ y = fy(x ∨ y) and x ∗ y = f−1
y (x ∨ y) (P )
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Since x∨ y ∈ [y, 1], ◦ and ∗ are everywhere defined operations on the set S.
Conversely, one can check immediately that for any a ∈ S and x ∈ [a, 1]

fa(x) = x ◦ a and f−1
a (x) = x ∗ a (A)

Clearly, if all the mappings fa are involutions, then x◦ y = x∗ y, for all x, y ∈ S
(since fa = f−1

a for each a ∈ S).

Lemma 1. Let S be a ∨-semilattice with sectionally antitone bijections and
◦, ∗ be operations defined by (P ). Then

(1) x ◦ x = x ∗ x = 1, x ◦ 1 = x ∗ 1 = 1, 1 ◦ x = 1 ∗ x = x

(2) (x ◦ y) ∗ y = (x ∗ y) ◦ y = (y ◦ x) ∗ x = (y ∗ x) ◦ x

(3) (((x ◦ y) ∗ y) ◦ z) ◦ (x ◦ z) = (((x ◦ y) ∗ y) ∗ z) ◦ (x ∗ z) = 1

Proof. Suppose a, b ∈ S and a 5 b. Then

{
a ◦ b = fb(a ∨ b) = fb(b) = 1 and
a ∗ b = f−1

b (a ∨ b) = f−1
b (b) = 1

}
(Q)

Hence x◦x = x∗x = 1 and x◦1 = x∗1 = 1. We also obtain 1◦x = fx(1) = x
and 1 ∗ x = f−1

x (1) = x. Thus (1) is satisfied.
(2) (x◦y)∗y = f−1

y (fy(x∨y)∨y) = f−1
y (fy(x∨y)) = x∨y since fy(x∨y) = y

and hence fy(x∨y)∨y = fy(x∨y). Analogously, we can check (x∗y)◦y = x∨y,
(y ◦ x) ∗ x = x ∨ y, and (y ∗ x) ◦ x = x ∨ y.

(3) As (x ◦ y) ∗ y = x ∨ y, we get ((x ◦ y) ∗ y) ◦ z = fz(x ∨ y ∨ z). Further,
x◦z = fz(x∨z). However, x∨z 5 x∨y∨z and fz is antitone, thus ((x◦y)∗y)◦z =
fz(x ∨ y ∨ z) 5 fz(x ∨ z) = x ◦ z. Analogously, we prove ((x ◦ y) ∗ y) ∗ z =
f−1

z (x ∨ y ∨ z) 5 f−1
z (x ∨ z) = x ∗ z

By (Q) we obtain (3) immediately. 2

Theorem 1. Let A = (A, ◦, ∗, 1) be an algebra of type (2, 2, 0) satisfying the
identities (1) and (2). Define a binary relation 5 on A as follows:

a 5 b if and only if a ◦ b = 1. (R)

Then the following assertions are equivalent:
(i) The algebra A satisfies identity (3).
(ii) For any x, y, z ∈ A the implications

(4) x 5 y ⇒ y ◦ z 5 x ◦ z and x 5 y ⇒ y ∗ z 5 x ∗ z are satisfied.
(iii) 5 is a partial order on A and (A, 5) is a ∨- semilattice with the greatest

element 1, where a ∨ b = (a ◦ b) ∗ b and for any a ∈ A the maps fa(x) = x ◦ a,
f−1

a (x) = x ∗ a are antitone bijections on [a, 1].
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Proof. (i)⇒(ii). Suppose x 5 y. Then using (1), (R) and (3) we obtain:
(y ◦ z) ◦ (x ◦ z) = ((1 ∗ y) ◦ z) ◦ (x ◦ z) = (((x ◦ y) ∗ y) ◦ z) ◦ (x ◦ z) = 1, and

hence y ◦ z 5 x ◦ z.
Analogously, we obtain:
(y ∗ z)◦ (x∗ z) = (((1∗y)∗ z)◦ (x∗ z) = (((x◦y)∗y)∗ z)◦ (x∗ z) = 1, whence

y ∗ z 5 x ∗ z.
(ii)⇒(iii). Assume that (1) (2) and (4) are satisfied. First we prove that

the relation 5 defined by (R) is a partial order.
Due to (1), 5 is reflexive. Suppose x 5 y and y 5 x. Then x ◦ y = 1 and

y ◦ x = 1 hence by (1) and (2),
x = 1 ∗ x = (y ◦ x) ∗ x = (x ◦ y) ∗ y = 1 ∗ y = y,

thus 5 is antisymmetrical.
Suppose x 5 y and y 5 z. Then we get y ◦ z = 1 by (R), and x ◦ z = y ◦ z,

by (4). Hence we obtain x ◦ z = 1, i.e. x 5 z. Thus 5 is transitive, i.e. it is a
partial order.

As for any x ∈ A we have x ◦ 1 = 1, we get x 5 1 for all x ∈ A. Therefore,
z = 1 ◦ z 5 x ◦ z, for all x, z ∈ A and hence

z ◦ (x ◦ z) = 1, for all x, z ∈ A (S)

Define a ∨ b = (a ◦ b) ∗ b for all a, b ∈ A. Then (2) and (S) implies
a ◦ ((a ◦ b) ∗ b) = a ◦ ((b ∗ a) ◦ a) = 1 and
b ◦ ((a ◦ b) ∗ b) = b ◦ ((a ∗ b) ◦ b) = 1,
thus a 5 a ∨ b and b 5 a ∨ b.
Suppose now a 5 c and b 5 c for some c ∈ A. Then b ◦ c = 1 and c = 1 ∗ c =

(b ◦ c) ∗ c = (c ◦ b) ∗ b by (2). This gets ((a ◦ b) ∗ b) ◦ c = ((a ◦ b) ∗ b) ◦ ((c ◦ b) ∗ b).
Due to (4) we infer a 5 c ⇒ c ◦ b 5 a ◦ b ⇒ (a ◦ b) ∗ b 5 (c ◦ b) ∗ b and hence
((a ◦ b) ∗ b) ◦ ((c ◦ b) ∗ b) = 1, i.e. ((a ◦ b) ∗ b) ◦ c = 1 proving a ∨ b 5 c. Thus
a ∨ b is sup{a, b} w.r.t. 5.

Now consider a ∈ A, fa, f−1
a defined by (A) and x ∈ [a, 1]. Then

f−1
a (fa(x)) = (x ◦ a) ∗ a = x ∨ a = x and

fa(f−1
a (x)) = (x ∗ a) ◦ a = x ∨ a = x,

thus fa and f−1
a are bijections on [a, 1] (and inverses each of other).

For x, y ∈ [a, 1] with x 5 y we have by (4)
fa(y) = y ◦ a 5 x ◦ a = fa(x) and
f−1

a (y) = y ∗ a 5 x ∗ a = f−1
a (x),

therefore fa and f−1
a are antitone bijections.

(iii)⇒(i). By the assumptions of (iii) (A, 5) is a ∨-semilattice with section-
ally antitone bijections. Take any x, y ∈ A. Since

fy(x ∨ y) = (x ∨ y) ◦ y = ((x ◦ y) ∗ y) ◦ y = fy(f−1
y (x ◦ y)) = x ◦ y and

f−1
y (x ∨ y) = (x ∨ y) ∗ y = ((x ∗ y) ◦ y) ∗ y = f−1

y (fy(x ∗ y)) = x ∗ y, ◦ and ∗
can be also defined using relation (P ). By applying Lemma 1, we obtain that
the algebra (A, ◦, ∗, 1) satisfies the identity (3). 2
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Corollary 1. Let A = (A, ◦, ∗, 1) be an algebra of type (2, 2, 0) satisfying the
identities (1), (2) and (3) and let 5 be the induced order (defined by (R)). Then

(i) (A,5) is a ∨- semilattice with 1, where for each a ∈ A the section [a, 1] is
a lattice and the maps fa, f−1

a (defined by (A)) are dual lattice automorphisms
of [a, 1]. Moreover, for any x, y ∈ [a, 1] we have:

x ∧ y = {[(x ◦ a) ◦ (y ◦ a)] ∗ (y ◦ a)} ∗ a

(ii) The algebra A′ = (A, ∗, ◦, 1) also satisfies the identities (1), (2) and (3).
(iii) For each x, y, z ∈ A there exists (x ◦ z)∧ (y ◦ z) and (x ∗ z)∧ (y ∗ z) and

it holds

(x ∨ y) ◦ z = (x ◦ z) ∧ (y ◦ z),
(x ∨ y) ∗ z = (x ∗ z) ∧ (y ∗ z).

Proof. In view of Theorem 1, we have x 5 1, for all x ∈ S and every section
[a, 1] is a ∨- semilattice with respect to 5. Since the poset ([a, 1],5) and its dual
([a, 1], =) are isomorphic via the mapping fa (and f−1

a ), the poset ([a, 1],=) is
a ∨- semilattice, too. However this means that ([a, 1], 5) is also ∧- semilattice,
and hence it is a lattice. Therefore, fa and f−1

a are dual lattice isomorphisms.
Let x, y ∈ [a, 1]. Then x ∧ y ∈ [a, 1], and by using Theorem 1(iii) we get
x∧y = f−1

a (fa(x)∨fa(y)) = [(x◦a)∨ (y ◦a)]∗a = {[(x◦a)◦ (y ◦a)]∗ (y ◦a)}∗a.
(ii) Clearly, the identities (1) and (2) are also satisfied by A′ = (A, ∗, ◦, 1).

To prove that the algebra A′ satisfies (3), in view of Theorem1(ii) it is enough
to show that for any x, y ∈ A, x 5 y ⇔ x ∗ y = 1. Using the above (i) we get

x 5 y ⇔ y = x ∨ y ⇔ f−1
y (x ∨ y) = f−1

y (y) = 1 ⇔ x ∗ y = 1.
(iii) Since x 5 1, we have z = 1 ◦ z 5 x ◦ z, also z 5 y ◦ z, thus x ◦ z,

y ◦ z ∈ [z, 1], and by (i), their meet exists. By the antitone property (4), we get
(x ∨ y) ◦ z 5 x ◦ z and (x ∨ y) ◦ z 5 y ◦ z, thus (x ∨ y) ◦ z 5 (x ◦ z) ∧ (y ◦ z).

Suppose a ∈ [z, 1] with a 5 (x ◦ z)∧ (y ◦ z). Then a 5 x ◦ z, a 5 y ◦ z imply
a ∗ z = (x ◦ z) ∗ z = x ∨ z,
a ∗ z = (y ◦ z) ∗ z = y ∨ z.

Thus (x ∨ y) ◦ z = (x ∨ y ∨ z) ◦ z = (a ∗ z) ◦ z = a ∨ z = a.
Hence, (x∨ y) ◦ z is the infimum of x ◦ z and y ◦ z. The second equality can

be proven similarly. 2

Examples. (1) A typical semilattice with sectionally antitone bijections is
M3 (see Figure 1), where f0(a) = b, f0(b) = c, f0(c) = a, f0(1) = 0 and for
x ∈ {a, b, c} fx(x) = 1, fx(1) = x and finally f1(1) = 1. Clearly, f0 is not an
involution.

(2) Another example, where the underlying semilattice is a distributive lat-
tice, is presented in Figure 2.

We set f0(a) = p, f0(b) = r, f0(c) = q, f0(p) = b, f0(q) = a, f0(r) = c,
f0(0) = 1, f0(1) = 0, and for x ∈ {a, b, c, p, q, r} we take fx(y) the complement
of y in [x, 1]. Of course, f0 is an antitone bijection which is neither an involution
nor the complementation.
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Figure 1:

Figure 2:

(3) Let C : a0 < a1 < ... < ak be a finite chain (with k = 1) and f : C → C
an antitone bijection. Then

f(ak) < f(ak−1) < ... < f(a1) < f(a0), whence we get

f(ai) = ak−i, for all i ∈ {0, ..., k}. (T )

Therefore, f is unique and f2 = f ◦ f is the identity mapping on C. Thus f
is an involution and f = f−1. It is also easy to see that the formula (T ) defines
an antitone involution on any finite chain C. From here it follows that any finite
chain is a ∨−semilattice with antitone involutions, and these involutions can be
defined in a unique way.

We say that a poset (P, 5) with the greatest element 1 is a tree, if for any
element p ∈ P the section [p, 1] is a chain. If every section [p, 1] is a finite chain,
then (P, 5) is called a locally finite tree. Clearly, any locally finite tree is a
join-semilattice, too.

(4) Now let S = (S, 5) be a locally finite tree. As for any p ∈ S [p, 1]
is finite chain, an antitone involution fp : [p, 1] → [p, 1] can be defined by
formula (T ) (and by f1(1) = 1). Thus S is a semilattice with antitone bijections.
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By Theorem 1, (S, 5) determines an algebra (S, ◦, ∗, 1) of type (2, 2, 0) which
satisfies the identities (1), (2) and (3). As each fp is an involution, we have
x ◦ y = x ∗ y for all x, y ∈ S.

An element m ∈ P of a poset (P, 5) is called completely meet-irreducible, if
for any xi ∈ P , i ∈ I whenever the meet

∧
i∈I

xi there exists and equals to m then

m = xi0 for some i0 ∈ I. (The completely join-irreducible elements of (P, 5) are
defined dually.) Let M(P ) stand for the set of the completely meet-irreducible
elements of (P, 5). If (P, 5) has a greatest element 1 then we will consider
1 ∈ M(P ) (although the top of a poset usually is not considered to be meet
irreducible).
A semilattice (lattice) is called discrete if any chain of it is finite. It is well-known
that any discrete lattice is complete (see e.g. [6]).

Proposition 1. Let (S,∨, 1) be a discrete semilattice with sectional antitone
bijections. Then for every m ∈ M(S) the section [m, 1] is a finite chain and
(M(S), 5) is a locally finite tree. Moreover, for any m ∈ M(S) and any x ∈ S
we have x ◦m = x ∗m and (M(S), ◦, ∗, 1) is a subalgebra of (S, ◦, ∗, 1).

Proof. Take an m ∈ M(S) \ {1}. First, we prove that the section [m, 1] is a
chain. As [m, 1] is a complete lattice and m is completely meet-irreducible we
have m < m̂ =

∧{x ∈ S | m < x}. Hence any x ∈ S with x > m satisfies
x = m̂. In view of (A) we obtain:

x ◦m 5 m̂ ◦m < m ◦m = 1. (V )

Now, take any element z ∈ S with m < z < 1. Then f−1
m (z) > f−1

m (1) = m
implies z ∗m > m. Substituting x = z ∗m in (V ) we obtain (z ∗m)◦m 5 m̂◦m.

As by Theorem 1(iii) z = m ∨ z = (z ∗m) ◦m, we deduce

z 5 m̂ ◦m, for all z ∈ S with m < z < 1. (∗)

Assume now by contradiction that u, v are incomparable elements in [m, 1].
Then clearly, m 5 u ∧ v < u, v < 1 and hence

1 = fu∧v(u ∧ v) > fu∧v(u) > fu∧v(1) = u ∧ v = m and
1 = fu∧v(u ∧ v) > fu∧v(v) > fu∧v(1) = u ∧ v = m.
In view of (∗) m < fu∧v(u) < 1 and m < fu∧v(v) < 1 imply

fu∧v(u), fu∧v(v) 5 m̂ ◦m.

From here it follows:
1 = fu∧v(u ∧ v) = fu∧v(u) ∨ fu∧v(v) 5 m̂ ◦m < 1, a contradiction. Thus

for any m ∈ M(S) the section [m, 1] is a chain. As (S, 5) is discrete, [m, 1]
is a finite chain. Hence (M(S), 5) is a locally finite tree and any z ∈ [m, 1] is
completely meet-irreducible, as well. Thus [m, 1] j M(S). In view of Corollary
1(i) f2

m : [m, 1] → [m, 1] is a bijection and x 5 y ⇔ f2
m(x) 5 f2

m(y), i.e.f2
m is

an automorphism of the lattice ([m, 1], 5). Since any finite chain admits as a
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lattice automorphism only the identity map, we get fm = f−1
m . Hence for each

x ∈ S we obtain
x ◦m = fm(x ∨m) = f−1

m (x ∨m) = x ∗m.
As for every x ∈ M(S) x ∗m = x ◦m = fm(x ∨m) ∈ [m, 1] j M(S), the

algebra (M(S), ◦, ∗, 1) is a subalgebra of (S, ◦, ∗, 1). 2

An implication algebra is an algebra (A, ◦) satisfying the identities
(I1) (x ◦ y) ◦ x = x,

(I2) (x ◦ y) ◦ y = (y ◦ x) ◦ x,

(I3) x ◦ (y ◦ z) = y ◦ (x ◦ z).
It is well-known that any implication algebra (A, ◦) contains an element

1 ∈ A such that x ◦ x = 1, for all x ∈ A (see e.g. [1]). The algebra (A, ◦, ◦, 1) of
type (2, 2, 0) will be called a double implication algebra.

It is easy to see that any double implication algebra satisfies the identities
(1),(2) and (3).

Indeed, for the algebra A = (A, ◦, ◦, 1) the identity (2) is the same as (I2) and
we have x◦x = 1, 1◦x = x and x◦1 = (1◦x)◦(1◦1) = 1◦((1◦x)◦1) = 1◦1 = 1,
i.e. (1) is also satisfied by A. In view of [1], relation (R) defines a partial order
5 with the antitone property (4) on any implication algebra (A, ◦). Hence, by
Theorem 1, we obtain that (A, ◦, ◦, 1) satisfies the identity (3), as well.

Now, observe that for a two-element chain ({0, 1},5) the algebra S2 =
({0, 1}, ◦, ∗), constructed as in Example 3 (or 4), is a double implication al-
gebra. Indeed, x ∗ y = x ◦ y, for all x, y ∈ {0, 1}, i.e. ◦ and ∗ are the same and
hence (I2) is satisfied. As 0 ◦ 0 = 1 ◦ 1 = 0 ◦ 1 = 1 and 1 ◦ 0 = 0, one can easily
check that (I1) and (I3) hold on S2.

In [9] is proved that the implication algebras form a minimal quasivariety
which is generated by the two element implication algebra ({0, 1}, ◦). Hence it
is not hard to see that the variety generated by the algebra S2 is also a minimal
quasivariety and it coincides to the variety of all double implication algebras.

Proposition 2. The variety V of the algebras (A, ◦, ∗, 1)of type (2, 2, 0) sat-
isfying the identities (1), (2) and (3) contains a single minimal quasivariety,
namely the variety of double implication algebras.

Proof. Let W be a nontrivial subquasivariety of V and A = (A, ◦, ∗, 1) a non-
trivial algebra in W. In view of Theorem 1, the corresponding poset (A,5) is a
∨-semilattice with sectionally antitone bijections. As | A |= 2, there exists an
element a ∈ A with a 6= 1. In view of Lemma 1 we have a ◦ a = a ∗ a = 1 ◦ 1 =
1 ∗ 1 = 1, a ◦ 1 = a ∗ 1 = 1 and 1 ◦ a = 1 ∗ a = a. Hence ({a, 1}, ◦, ∗, 1) is a
subalgebra of (A, ◦, ∗, 1). Since ({a, 1},5) is a two-element chain, the algebra
S2 = ({a, 1}, ◦, ∗, 1) is a double implication algebra with two elements. Denote
the variety generated by it as V2. We already shown that V2 is the variety of all
double implication algebras. Since V2 is a minimal quasivariety as well, we have
V2 = Q(S2), where Q(S2) denotes the quasivariety generated by the algebra S2.
As S2 ∈ W we get V2 = Q(S2) j W, and this proves that V2 is the unique
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minimal quasivariety contained in variety the V. 2

Corollary 2. Any nontrivial algebra A = (A, ◦, ∗, 1) satisfying the identities
(1), (2) and (3) contains a nontrivial subalgebra which satisfies the identity
x ∗ y = x ◦ y.

LetA = (A, ◦, ∗, 1) be an algebra of type (2, 2, 0). A nonempty subset K j A
is called a congruence kernel of A if K = [1]θ = {x ∈ a | (x, 1) ∈ θ} for some
congruence θ of A. Recall that A is called 3-permutable if θ1◦θ2◦θ1 j θ2◦θ1◦θ2

holds for every θ1, θ2 ∈ConA (see e.g. [2]). According to J. Hagemann and A.
Mitschke [8], a variety V of algebras is congruence 3-permutable if and only if
there exists ternary terms p0, p1,p2 and p3 in V such that the identities below
hold in V:

{
p0(x, y, z) = x, p3(x, y, z) = z

pi(x, x, y) = pi+1(x, y, y) for i ∈ {0, 1, 2}.
}

(B)

An algebra A with a constant 1 is called weakly regular if every θ ∈ConA is
determined by its kernel, i.e. if [1]θ = [1]φ implies θ = φ for every φ, θ ∈ConA.
A variety V is weakly regular if every algebra A ∈ V has this property. The
following characterization of weakly regular varieties was given by B. Csákány
in [7].

Proposition 3. ([7]) A variety V with 1 is weakly regular if and only if there
exist n ∈ N and binary terms q1(x, y), q2(x, y), ..., qn(x, y) such that

q1(x, y) = q2(x, y) = ... = qn(x, y) = 1 ⇔ x = y (C)

is satisfied for every algebra A ∈ V.

Theorem 2. The variety V of the algebras (A, ◦, ∗, 1) of type (2, 2, 0) satisfying
the identities (1), (2) and (3) is weakly regular, 3-permutable, arithmetical at 1
and congruence distributive.

Proof. Consider the terms q1(x, y) = x ◦ y and q2(x, y) = y ◦x. Then q1(x, x) =
q2(x, x) = x ◦x = 1. If q1(x, y) = 1 and q2(x, y) = 1, then by (R) we have x 5 y
and y 5 x thus x = y. In view of Proposition 3, we conclude that V is weakly
regular (at 1).

Now, let p0(x, y, z) = x, p3(x, y, z) = z and p1(x, y, z) = (z ∗ y) ◦ x,
p2(x, y, z) = (x ∗ y) ◦ z. It is easy to see that these terms satisfy the identi-
ties from (B). Consequently, V is congruence 3-permutable.

In [4] is proved that a variety is arithmetical at 1 if and only if there exists
a binary term b(x, y) of it such that b(x, x) = b(1, x) = 1 and b(x, 1) = x.
Obviously, in our case we can take b(x, y) = y ◦ x.

Since V is arithmetical at 1 it is congruence distributive at 1, i.e.
[1]Θ∧(Φ∨Ψ) = [1](Θ∧Φ)∨(Θ∧Ψ), for all Θ, Φ, Ψ ∈ConA for A ∈ V.
As V is weakly regular, this equality implies
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Θ ∧ (Φ ∨Ψ) = (Θ ∧ Φ) ∨ (Θ ∧Ψ) (for all Θ, Φ, Ψ ∈ConA and A ∈ V), thus
the variety V is congruence distributive. 2
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