
Novi Sad J. Math.
Vol. 35, No. 2, 2005, 103-110

A METHOD OF THE DETERMINATION OF A
GEODESIC CURVE ON RULED SURFACE WITH

TIME-LIKE RULINGS

Emin Kasap1

Abstract. A non-linear differential equation is analyzed to determine

the geodesic curves on ruled surfaces with time-like rulings inR3
1. When it

is assumed that curvature and torsion of the base curve and components
with respect to Frenet’s frame of time-like straight-line are constants,
for a special integration constant, it appears that the resulting non-linear
differential equation can be integrated exactly. Finally, examples are given
to show the geodesic curve on ruled surfaces with time-like rulings.
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1. Introduction

Most people have heard the phrase: A straight line is the shortest distance
between two points. But in differential geometry, they say the same in a different
language. They say instead: Geodesics for the Euclidean metric are straight
lines. A geodesic is a curve that represents the extremal value of a distance
function in some space. In the Euclidean space, extremal means ’minimal’,
so geodesics are paths of minimal arc length. In the 3-dimensional Minkowski
space, the extremal paths are actually ‘maximal’ arc length.

Geodesics are important in the relativistic description of gravity. Einstein’s
Principle of Equivalence, part of the General Theory of Relativity, tells us that
geodesics represent the paths of freely-falling particles in a given space. (Freely-
falling in this context means moving only under the influence of gravity, with
no other forces involved.)

Geodesics are the curves along which geodesic curvature vanishes. This is
of course where the geodesic curvature name comes from. Since Lorentzian
metric is not positive definite metric, the distance function dS2 can be positive,
negative or zero, whereas the distance function in the Euclidean space can only
be positive. Thus, we have to separate our geodesics on the basis of whether
the distance function is positive, negative or zero. The geodesics with dS2 < 0
are called space-like geodesics. The geodesics with dS2 > 0 are called time-like
geodesics, while geodesics with dS2 = 0 are called null geodesics.
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In this article, the basic concepts of 3-dimensional Minkowski space have
been first given. Using geodesic curvature, the differential equation of the geo-
desics on a time-like ruled surface with time-like rulings has been obtained and
solved under some conditions. Finally, examples have been given related to the
subject.

2. Preliminaries

Let us consider the Minkowski 3-space R3
1[R

3
, (+,+,−)] and let the Lorent-

zian inner product of ~X = (x1, x2, x3) and ~Y = (y1, y2, y3) ∈ R3 be

< ~X , ~Y > = x1y1 + x2y2 − x3y3.

A vector ~X ∈ R3
1 is called a space-like vector when < ~X , ~X > > 0 or

~X = 0. It is called time-like and null (lightlike) vector in case of < ~X , ~X >< 0
and < ~X , ~X > = 0 for ~X 6= 0, respectively.

The norm of ~X ∈ R3
1 is denoted by

∥∥∥ ~X
∥∥∥ and defined as

∥∥∥ ~X
∥∥∥ =

√∣∣∣< ~X , ~X >
∣∣∣.

For a regular curve in R3
1, if its tangent vector at every point is space-like,

it is called space-like curve. Similarly, if its tangent vector is time-like and null
vector, it is called time-like and null curve, respectively,[3].

Let ~X = (x1, x2, x3) and ~Y = (y1, y2, y3) be any two vectors in R3
1. The

cross product of ~X and ~Y is defined by

~X ∧ ~Y = ( x2y3 − x3y2 , x3y1 − x1y3 , x2y1 − x1y2 ), [1].(1)

A surface in R3
1 is called a time-like surface if the induced metric on the

surface is a Lorentz metric, i.e. the normal vector on the time-like surface is a
space-like vector, [2].

Let ~α = ~α(s) be a unit speed space-like curve in R3
1. Consider the ortho-

normal Frenet frame {~e1 , ~e2 , ~e3} associated with the curve ~α = ~α(s), such that
~e1 = ~e1(s), ~e2 = ~e2(s) and ~e3 = ~e3(s) are the tangent vector field, the principal
vector field and the binormal vector field, respectively.

In this study, ~e3 = ~e3(s) will be taken as time-like. If one takes it space-like,
similar procedures will be applied.

The Frenet formulas are given by

~e1

′
(s) = κ(s)~e2(s), ~e2

′
(s) = −κ(s)~e1(s) + τ(s)~e3(s), ~e3

′
(s) = τ(s)~e2(s)(2)

where κ(s) and τ(s) are the curvature and torsion of ~α(s), respectively.
It is easy to see from (1) that

~e1 ∧ ~e2 = −~e3 , ~e1 ∧ ~e3 = −~e2 , ~e2 ∧ ~e3 = ~e1(3)

A time-like straight line ~X inR3
1, such that it is strictly connected to Frenet’s

frame of the space-like curve ~α = ~α(s), is represented uniquely with respect to
this frame, in the form
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~X(s) =
3∑

i=1

xi(s)~ei(s), < ~X(s) , ~X(s) > < 0(4)

As ~X moves along ~α = ~α(s) it generates a time-like ruled surface given by
the regular parametrization

ϕ(s,v) = ~α(s) + v ~X(s)
x2

1 + x2
2 − x2

3 = −1 , ~X
′
(s) 6= 0

where the components xi(s) (i = 1, 2, 3) are scalar functions of the arc-length
parameter of the curve ~α = ~α(s)

This ruled surface will be denoted by M . The curve ~α = ~α(s) is called a base
curve and the various positions of the generating line ~X are called the rulings
of the surface M .

If consecutive rulings of a ruled surface in R3
1 intersect, then the surface

is said to be developable. All other ruled surfaces are called skew surfaces. If
there exists a common perpendicular to two constructive rulings in the skew
surface, then the foot of the common perpendicular on the main ruling is called
a striction point. The set of striction points on a ruled surface defines the
striction curve, [5].

The striction curve, ~β = ~β(s), can be written in terms of the base curve ~α(s)
as

~β(s) = ~α(s)− φ(s) ~X(s) where

φ(s) =
x
′
1 − x2κ

< ~X ′ , ~X ′ >
(5)

The unit normal vector ~n on the time-like ruled surface M is given by

~n =
~α
′
(s) ∧ ~X(s) + v ~X

′
(s) ∧ ~X(s)∥∥∥~α′(s) ∧ ~X(s) + v ~X ′(s) ∧ ~X(s)

∥∥∥
(6)

From (3) and (4) the unit normal vector to the ruled surface M at the point
(s , o ) is

~n(s , o ) = −x3~e2 + x2~e3√
|x2

2 − x2
3|

Thus, if x2 = 0, x3 6= 0 then the base curve of M is a geodesic curve.

In this paper, the striction curve of the ruled surface M will be taken as the
base curve. In this case, for the parametric equation of M , we can write

ϕ(s,v) = ~α(s) + v ~X(s) , ~X
′
(s) 6= 0

x2
1 + x2

2 − x2
3 = −1 , x

′
1 − x2κ = 0
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3. Geodesic Curvature

Let ~γ = ~γ(s) be a curve on the ruled surface M. Then it can be written as

~γ(s) = ~α(s) + v(s) ~X(s)(7)

Using (2), for the unit tangent vector along the curve ~γ~γ(s), we get

T (s) =
~γ
′
(s)

‖~γ′(s)‖ =
η1~e1 + η2~e2 + η3~e3√

R

where

η1 = 1 + v
′
x1 , η2 = v

′
x2 + vϕ1 , η3 = v

′
x3 + vϕ2

ϕ1 = x
′
2 + x1κ + x3τ , ϕ2 = x

′
3 + x2τ and

R =
∣∣η2

1 + η2
2 − η2

3

∣∣ .

Thus, we obtain

~T
′
(s) = R−3/2

( [
(η
′
1 − η2κ)~e1 + (η

′
2 + η1κ + η3τ)~e2 + (η

′
3 + η2τ)~e3

]
R

− R
′

2
(η1~e1 + η2~e2 + η3~e3) )

From (6), the unit normal vector field on the ruled surface M along the curve
~γ = ~γ(s) is

~n(s , v(s) ) =
v(x3ϕ1 − x2ϕ2)~e1 + (−x3 + vx1ϕ2)~e2 + (−x2 + vx1ϕ1)~e3√

v2(x3ϕ1 − x2ϕ2)2 + (−x3 + vx1ϕ2)2 − (−x2 + vx1ϕ1)2

Hence, the geodesic curvature of the curve ~γ = ~γ(s) is obtained as

kg =
1

R ‖~n(s , v(s) )‖

∣∣∣∣∣∣

η1 η2 η3

η
′
1 − η2κ η

′
2 + η1κ + η3τ η

′
3 + η2τ

v(x3ϕ1 − x2ϕ2) −x3 + vx1ϕ2 −x2 + vx1ϕ1

∣∣∣∣∣∣
(8)

Then, the differential equation of the geodesic curves on the ruled surface
M is given by

f(s , v)v
′′

+ h(s , v)(v
′
)2 + g(s , v)v

′
+ r(s , v)v − x2κ = 0,(9)

where
f(s, v) = 1 + x2

1 + v2(ϕ2
1 − ϕ2

2),
h(s, v) = v

[
ϕ2

2 − ϕ2
1 − x

′
2ϕ1 + x

′
3ϕ2 + x2τϕ2 − (x1κ + x3τ)ϕ1

]
,

g(s, v) = vx1

[
x
′
2ϕ1 − x2ϕ

′
1 + x3ϕ

′
2 − x

′
3ϕ2

− 2τ(x2ϕ2 − x3ϕ1) + 2x1κϕ1 + ϕ2
1 − ϕ2

2

]

+ v2(ϕ2ϕ
′
2 − ϕ1ϕ

′
1)− x1x2κ
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and

r(s, v) = −x2ϕ
′
1 + x3ϕ

′
2 + x1κϕ1 − x2τϕ2 + x3τϕ1

+ v
[
x1(ϕ1ϕ

′
1 − ϕ2ϕ

′
2) + x2κ(ϕ2

2 − ϕ2
1)

]

+ v2
[
(ϕ

′
2ϕ1 − ϕ2ϕ

′
1)(x3ϕ1 − x2ϕ2)

+ (ϕ3
1 − ϕ1ϕ

2
2)(x1κ + x3τ) + x2τ(ϕ3

2 − ϕ2
1ϕ2)

]
(10)

If κ = 0, then ~α = ~α(s) is a line. In this case, since the ruled surface M is a
part of Lorentzian plane, the geodesics on the surface M are straight lines. In
this paper we assume that κ 6= 0.

In general, the non-linear differential equation (9) can not be solved ana-
lytically. Moreover, since we do not have any boundary condition, we can not
use any numerical method. Hence, let curvature and torsion of the base curve
~α = ~α(s) be constants and −→X be fixed in {~e1, ~e2, ~e3} such that x1 = 0. Under
this assumption, the differential equation (9) takes the form

f(v)v
′′

+ h(v)(v
′
)2 + r(v)v = 0(11)

where

f(v) = 1 + v2ϕ2
1, h(v) = −2vϕ2

1, r(v) = ϕ2
1

(
1 + v2ϕ2

1

)
, ϕ1 = x3τ(12)

If τ = 0, from (11) we obtain v = as + b, a, b ∈ R. Therefore, from (7) the
equation of a geodesic curve on the space-like ruled surface M is

~γ(s) = ~α(s) + (as + b) ~X(s)

We assume that τ 6= 0.
By using the substitution p = p(v) = v

′
= dv

ds , we find that equation (11)
takes the form

f(v)p
dp

dv
+ h(v)p2 + r(v)v = 0(13)

Putting 2h(v)
f(v) = H(v) and − 2 r(v)

f(v)v = R(v) in (13), we have the following
representation for (13):

2p
dp

dv
+ H(v)p2 = R(v)

Now, by making the substitution q = p2, we have that the last equation
reduces to

dq

dv
+ H(v)q = R(v)(14)
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This is a linear differential equation. It is well known that solution of the
equation (14) is q = e−

R
H(v)dv

[
c1 +

∫
R(v)e

R
H(v)dvdv

]
,where c1 is an arbi-

trary constant.
Since

∫
H(v)dv = − ln(1 + v2ϕ2

1)
2 and

∫
R(v)e

R
H(v)dv

dv = 1
1+v2ϕ2

1
, we

obtain the following solution for the differential equation (11):

s = ±
∫

dv√
c1(1 + v2ϕ2

1)2 + (1 + v2ϕ2
1)

(15)

It is well known that the left-hand side of (15) is the elliptic integral (see for
example [4]) which can not be integrated exactly except for the following case:

If case c1 = 0, we have

v = ± 1
ϕ1

sinh(ϕ1s)(16)

From (7) and (15), the equation of a geodesic curve on the surface M is

~γ(s) = −→α (s) +
1
ϕ1

sinh(ϕ1s)
−→
X (s)(17)

Since the tangent vector of the geodesic curve −→γ = ~γ(s) is
−→γs = ~e1 + vϕ1~e2 + v′x3~e3, we have the following result:

Corollary 1.
i) If 1 + v2ϕ2

1 − x2
3(v

′)2 > 0, then −→γ = ~γ(s) is a space-like curve,
ii) If 1 + v2ϕ2

1 − x2
3(v

′)2 < 0, then −→γ = ~γ(s) is a time-like curve,
iii) If 1 + v2ϕ2

1 − x2
3(v

′)2 = 0, then −→γ = ~γ(s) is a null curve.

Example 1. Let −→α (s) =
(

2
√

3
3 s, cosh(

√
3

3 s), sinh(
√

3
3 s)

)
be a space-like curve

such that κ = 1/3 and τ = 2 / 3. The short calculations give
~e1 =

(
2
√

3
3 ,

√
3

3 sinh(
√

3
3 s),

√
3

3 cosh(
√

3
3 s)

)
, ~e2 =

(
0, cosh(

√
3

3 s), sinh(
√

3
3 s)

)

and ~e3 =
(
−
√

3
3 , − 2

√
3

3 sinh(
√

3
3 s), − 2

√
3

3 cosh(
√

3
3 s)

)
.

Let (0, 0, 1) be expression of unit time-like vector −→X = −→
X (s) with respect

to the orthonormal frame {~e1 , ~e2 , ~e3}. Therefore, we have a ruled surface given
by the parametric equation

ϕ1(s, v) = (
2
√

3
3

s− v

√
3

3
, cosh(

√
3

3
s)− v

2
√

3
3

sinh(
√

3
3

s),

sinh(
√

3
3

s)− v
2
√

3
3

cosh(
√

3
3

s))

It is clear that ϕ is a time-like ruled surface with time-like rulings. From
(16), it follows that the equation of a geodesic curve on the surface ϕ is



A method of the determination of a geodesic curve ... 109

γ(s) = (
2
√

3
3

s−
√

3
2

sinh(
2
3
s), cosh(

√
3

3
s)−

√
3 sinh(

2
3
s) sinh(

√
3

3
s),

sinh(
√

3
3

s)−
√

3 sinh(
2
3
s) cosh(

√
3

3
s))

Because of Corollary 1, −→γ = −→γ (s) is a null curve (Fig. 1).

Fig. 1. Ruled surface ϕ1 and its geodesic curve

Example 2.

ϕ2(s, v) = (− cosh(
2
√

5
5

s) + v
3
√

5
5

sinh(
2
√

5
5

s),
3
√

5
5

s− v
2
√

5
5

,

− sinh(
2
√

5
5

s) + v
3
√

5
5

cosh(
2
√

5
5

s))

is a time-like ruled surface with time-like rulings. A geodesic curve on the
surface ϕ2 is

γ(s) = (− cosh(
2
√

5
5

s) +
√

5
2

sinh(
6
5
s) sinh(

2
√

5
5

s),
3
√

5
5

s−
√

5
3

sinh(
6
5
s),

− sinh(
2
√

5
5

s) +
√

5
2

sinh(
6
5
s) cosh(

2
√

5
5

s))

Because of Corollary 1, −→γ = −→γ (s) is a null curve (Fig. 2).
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Fig. 2. Ruled surface ϕ2 and its geodesic curve
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