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NEW FORMULAE FOR Ki(z) FUNCTION

Aleksandar Petojević1

Abstract. In this paper we study the function

Ki(z) =
1

(i− 1)!

Z ∞

0

e−xxi−1 xz − 1

x− 1
dx (Re (z) > 0, i ∈ N)

defined in [13]. We give the generating functions, some representation and
the congruences of the function Ki(z). Also, we present some inequalities
for the function Ki(x) for positive values of x.
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1. Introduction

Let the Pochhammer symbol (z)n be defined by

(z)0 = 1, (z)n = z(z + 1)...(z + n− 1) =
Γ(z + n)

Γ(z)
,

where Γ(z) is the gamma function

Γ(z) =
∫ +∞

0

tz−1e−t dt , (Re (z) > 0).

Recently, [13], we defined the generalization of Kurepa’s tree as follows:

Definition 1.1 Let n ∈ N and i ∈ N0. Then TKi(n) denote a finite tree con-
sisting of n levels with the k-th level containing (i)k nodes, k = 0, 1, 2 . . . n− 1.

• • • • • • 2nd level∖ ∣∣ / ∖ ∣∣ /
• • 1st level∖ /

• 0th level

Figure 1: The tree TK2(3).
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Let Ki(n) denote the total number of nodes in the tree TKi(n). For the
numbers Ki(n), the following relations hold:

K0(n) def= 1 , K1(n) = !n ,

Ki(n) =
n−1∑

k=0

(i)k =
1

(i− 1)!

n+i−2∑

k=i−1

k! = i ·Ki+1(n− 1) + 1 ,

Ki(−n) = − (i− n− 1)!
(i− 1)!

Ki−n(n), (i > n ∈ N) ,

Ki(n) = (−1)ie−1

[
Γ(1− i,−1)− (−1)nΓ(1− i− n,−1)

(i + n− 1)!
(i− 1)!

]

Here Γ(z, x) is the incomplete gamma function defined via

Γ(z, x) =
∫ +∞

x

tz−1e−t dt ,

and !n is Kurepa’s left factorial (see [7])

!0 = 0 , !n =
n−1∑

k=0

k! (n ∈ N) .

The functions {Ki(n)}∞i=1 are periodical functions. In this way we have the
following statements:

Ki(n) ≡ Ki+jn(n) (mod n); Kjn−1(n) ≡ 0 (mod n · j);

Ki(n) ≡ 0 (mod i + 1), (i ∈ N0, n ∈ N\{1}) .

For every complex number Re (z) > 0 and i ∈ N the function Ki(z) is defined
by

Ki(z) def=
1

(i− 1)!

∫ ∞

0

e−xxi−1 xz − 1
x− 1

dx.(1.1)

This function can be extended analytically to the whole complex plane by

Ki(z) = Ki(z + 1)− Γ(z + i)
(i− 1)!

,(1.2)

and for i ∈ N, x ∈ R satisfy the asymptotic relations

lim
x→∞

Ki(x)
Γ(x + i− 1)

=
1

(i− 1)!
, lim

x→∞
Ki(x)

Γ(x + i)
= 0 .
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For the function Ki(z) the set of poles is PKi
= {−i, −i−2, −i−3, −i−4, . . . }.

The infinite point is an essential singularity and every pole zp ∈ PKi is simple
with the residue

res Ki(zp) =
1

(i− 1)!

−zp∑

k=i

(−1)k−i+1

(k − i)!
, (zp ∈ PKi

) .

Finally, the functional equality

Ki(z + 1) = (z + i)Ki(z)− (z + i− 1)Ki(z − 1) , (i ∈ N0) .(1.3)

is valid.

2. The generating functions

For the sequence {cn}∞n=0 the generating function, the exponential generat-
ing function and the Direchlet series generating function, denoted respectively
by G(x), g(x) and D(x) and are defined as [17, p. 3, p. 21, p. 56]

G(x) =
∞∑

n=0

cnxn , g(x) =
∞∑

n=0

cn
xn

n!
, D(x) =

∞∑
n=1

cn

nx
.

Apart [17], the relevant theory on generating functions can be found in [4] and
in [6] Chapter VII.

Remark 2.1 For a fixed number b, the exponential generating function and the
generating function for the Pochhammer symbol (b)n is given as follows (see
[18]):

∞∑
n=0

(b)n
zn

n!
= (1− z)−b ,

∞∑
n=0

(b)n xn ≈ − Eb(−1/x)
xe1/x

,

where En(x) is the exponential integral

En(x) =
∫ ∞

1

e−xt

tn
dt.

The second possibility of generating integer sequences by the Pochhammer symbol
is that for a fixed n ∈ N, terms of the sequence are generated by the index i ∈ N0,
i.e., {(i)n}∞i=0 (see formulae (2.7), (2.8) and (2.9)).

In what follows ζ(z), s(n, m) and Pn
k (x) are respectively the Riemann zeta

function, Stirling number of the first kind and the polynomials defined by

ζ(z) =
∞∑

n=1

1
nz

, (Re (z) > 1)
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Table 1: The special cases of Pn
k (x)

Pn
k (x) sequences in [16]

P 1
k (2) 0, 1, 4, 12, 32, 80, ... A001787

P 1
k (3) 0, 1, 6, 27, 108, 405, ... A027471

P 1
k (4) 0, 1, 8, 48, 256, 1280, ... A002697

P 2
k (1) 0, 2, 6, 12, 20, 30, ... A002378

P 3
k (1) 0, 3, 12, 33, 72, 135, ... A054602

Pn
2 (2) 0, 4, 10, 18, 28, 40, ... A028552

Pn
2 (3) 0, 6, 14, 24, 36, 50, ... A028557

x(x− 1) · · · (x− n + 1) =
n∑

m=0

s(n,m)xk ,

Pn
k (x) =

k−1∑

j=0

(n)(k−j)

(
k

j

)
xj , (n, k ∈ N),

where (x)(m) = x(x−1) · · · (x−m+1) is the falling factorial. Several well-known
special cases of the polynomials Pn

k (x) are presented in Table 1.

Theorem 2.2 For a fixed number n ∈ N we have
+∞∑

i=0

Ki(n)xi = 1 +
n−1∑

k=0

k!
x

(1− x)k+1
(|x| < 1)(2.4)

+∞∑

i=0

Ki(n)
xi

i!
= ex +

n−1∑

k=1

[exxk](k−1) (x ∈ R)(2.5)

+∞∑

i=1

Ki(n)
ix

= ζ(x) +
n−1∑

k=1

k∑

j=1

(−1)j+ks(k, j) · ζ(x− j) .(2.6)

Proof. Firstly, for a fixed number n ∈ N the equation
∞∑

i=0

(i)nxi = n!
x

(1− x)n+1
(|x| < 1)(2.7)

is well known.
Secondly, let [f(x)](k) be the kth derivative of a function f(x) and gn(x) =

xex
[
xn−1 + Pn

n−1(x)
]
. By induction on i ∈ N we have

[gn(x)](i) = exxn + ex
i∑

j=1

(
i

i− j

)
xn−i

j−1∏
m=0

(n−m) +
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+ ex
n−2∑

j=0

(
n− 1

j

)
xj+1

n−2−j∏
m=0

(n−m) +

+ ex
i−1∑
s=0

(
i

s + 1

) n−2∑

j=s

(j + 1)!
(j − s)!

(
n− 1

j

)
xj−s

n−2−j∏
m=0

(n−m).

Hence

[gn(0)](i) =
i−1∑
s=0

(
i

s + 1

)
(s + 1)!

(
n− 1

s

) n−2−s∏
m=0

(n−m)

= i! (n− 1)! n!
i−1∑
s=0

1
(i− s− 1)! (s + 1)! (n− s− 1)! s!

= i! (n− 1)! n! · (n + i− 1)!
i! (i− 1)! n! (n− 1)!

=
(n + i− 1)!

(i− 1)!
= (i)n .

Applying the standard formula for the Taylor series expansion about the point
x = 0 we arrive at the formula

∞∑

i=0

(i)n
xi

i!
= xex

[
xn−1 + Pn

n−1(x)
]

= [exxn](n−1) (x ∈ R) .(2.8)

Thirdly, using the equation

∞∑

i=1

(i)n+1

ix
= n

∞∑

i=1

(i)n

ix
+

∞∑

i=1

(i)n

ix−1

and the recurrence relation for Stirling numbers of the first kind (see [18])

s(n + 1, j) = s(n, j − 1)− n · s(n, j)

we have ∞∑

i=1

(i)n

ix
=

n∑

j=1

(−1)j+ns(n, j)ζ(x− j) .(2.9)

Finally, the theorem now follows from (2.7), (2.8) and (2.9). 2

Remark 2.3 Equation (2.5) is given in [13]. On the basis of equation (2.4)
and the well-known relation [1, p. 88, entry 6.5.19.]

Γ(−n, x) =
(−1)n

n!

[
Γ(0, x)− e−x

n−1∑
m=0

(−1)m m!
xm+1

]
(n ∈ N)
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we get representation of generating function of the sequences {Ki(n)}+∞i=0 via an
incomplete gamma function:

+∞∑

i=0

Ki(n)xi = 1 + x · ex−1

[
(−1)nn! · Γ(−n, x− 1)− Γ(0, x− 1)

]
.

3. The representation and some congruences

Let γ be Euler’s constant. Then the following statement is true.

Theorem 3.1 For z ∈ C we have

Ki(z) =
1

(i− 1)!
·
[
− !(i−1)− π

e
cot πz+

1
e

(
+∞∑
n=1

1
n!n

+γ

)
+

+∞∑
n=0

Γ(z+i−n−1)

]
.

Proof. For Re (z) > 1 and i ∈ N, according to definition (1.1) we have

iKi+1(z − 1) + 1 = 1 +
1

(i− 1)!

∫ ∞

0

e−xxi x
z−1 − 1
x− 1

= Ki(z) .

Consequently, using the relation (1.2) we have

Ki(z) = i ·Ki+1(z − 1) + 1 (z ∈ C , i ∈ N) .(3.10)

For i = 1 theorem is true (see [15, p. 472]). These formulas were mentioned
also in the book [10]. By means of the relation (3.10) and induction on i ∈ N
the result of the theorem is obtained. 2

Lemma 3.2 For n ∈ N we have
n−1∑

i=1

Ki(n) ≡
n−1∑

i=1

!n− !(i− 1)
(i− 1)!

(mod n) .

Proof. The relations (1.2) and
∫ ∞

0

e−xxi−2 · (xz−1) dx = Γ(z+ i−1)−Γ(i−1) , (Re (i) > 1 , Re (z) > 0) ,

yields

Ki(z) =
1

i− 1
Ki−1(z) +

Γ(z + i− 1)
(i− 1)!

− 1
i− 1

(1 < i ∈ N, z ∈ C) .(3.11)

Hence

Kn−m(n) ≡ 1
(n−m− 1)!

K1(n)

−
n−1∑

k=m+1

k∏

j=m+1

1
n− j

(mod n) , (0 ≤ m ≤ n− 2)
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i.e.,

Ki(n) ≡ !n− !(i− 1)
(i− 1)!

(mod n) , (1 ≤ i ≤ n) .

2

Remark 3.3 Applying relations (1.3) and (3.10), for 2 < i ∈ N and z ∈ C,
we have

Ki(z) =
z + i− 1

i− 1
Ki−1(z)− z + i− 2

(i− 2)(i− 1)
Ki−2(z) +

z

(i− 2)(i− 1)
.(3.12)

Six integer sequences in [16] are special cases of the function Ki(n) : K0(n) =
Ki(1), K1(n), K2(n), Ki(2), Ki(3) and Ki(4). The sequence {Ki(5)}+∞i=0

1, 34, 153, 436, 985, 1926, . . .

cannot currently be found in [16]. Using relation (3.12) the formula for Ki(5)
numbers is given as follows Ki(5) = i4 + 7i3 + 15i2 + 10i + 1 .

Remark 3.4 The total number of arrangements of a set with n elements (see
[2], [5], [14] and [12]), the derangement numbers (sequence A000166 in [16])
and the harmonic number, denoted respectively by an , Sn and Hn, and are
defined as

an = n!
n∑

k=0

1
k!

; Sn = n!
n∑

k=0

(−1)k

k!
(n ≥ 0); Hn =

n∑

k=1

1
k

.

The following congruences are easy to find after some simple calculation:
n−1∑

i=1

Ki(n) ≡
n−3∑

i=0

ai (mod n) (2 < n ∈ N)(3.13)

≡
n−1∑

k=1

(−1)kSk (mod n)(3.14)

≡ !n−Hn−2 +
n−2∑

i=1

Ki(n)
i

(mod n) .(3.15)

Question 3.5 For k ∈ N0\{1} is it correct that

n−1∑

i=0

Ki(n) ≡ 0 (mod n) ⇔ n = 2k ?

Question 3.6 For all a prime number p is it correct that
p∑

i=0

Ki(p) ≡ 0 (mod p) ?
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4. Some inequalities for Ki(x) function

For positive values of x, based on the functional equation (1.2) and the
inequality [8, p. 299, (4.4)]

K1(x) ≤ 1 + 2Γ(x)

the following inequality is true:

K1(x− 1) ≤ 1 + Γ(x) .

Analogously, on the basis of the functional equation (1.2) and inequalities [9,
p. 3, (4.3)]

K1(x) ≤ 9
5
x , (x ∈ [0, 1])(4.16)

and [9, p. 4, (4.8)]
K1(x) ≤ 2Γ(x)

the main result in [9, p. 4, Theorem 4.4)] is true:

K1(x− 1) ≤ Γ(x) , (x ≥ 3)(4.17)

while the equality is true for x = 3.
Here we give elementary proof of the inequality which is an improvement of

the inequality (4.17) as follows.

Lemma 4.1 For x ≥ 1 we have

K1(x− 1) ≤ 9
5

+
!([x]− 1)
([x]− 1)!

· Γ(x) ,(4.18)

where [x] denotes the integer part of x.

Proof. Let n ∈ N. For x = n the lemma is true. Let x ∈ (n, n + 1) . Then the
functional equation (1.2) yields

K1(x− 1) = K1(x− 2) + Γ(x− 1) = K1(x− 3) + Γ(x− 2) + Γ(x− 1)
...
= K1(x− s) + Γ(x− s + 1) + Γ(x− s + 2) + · · ·+ Γ(x− 1)

where x ≥ s ∈ N. Hence, for s = n we have

K1(x− 1) = K1(x− n) +
n−1∑

k=1

Γ(x− k) .(4.19)

Also, the functional equation Γ(x + 1) = xΓ(x) yields

Γ(x− k) = Γ(x) ·
k∏

t=1

1
x− t

, (k = 1, 2, . . . , n− 1) .



New formulae for Ki(z) function 131

Hence, using relation (4.19) we have

K1(x− 1) = K1(x− n) + Γ(x) ·
n−1∑

k=1

k∏
t=1

1
x− t

≤ K1(x− n) + Γ(x) ·
n−1∑

k=1

k∏
t=1

1
n− t

= K1(x− n) + Γ(x) · !(n− 1)
(n− 1)!

.

Since x− n ∈ (0, 1) the result now follows from (4.16). 2

Corrollary 4.2 For 5 ≤ x ∈ R we have

K1(x− 1) ≤ 9
5

+
Γ(x)

2
.(4.20)

Proof. For 4 ≤ n ∈ N induction on n we have
!n
n!
≤ 1

2
.

Question 4.3 For 0 ≤ y ≤ x is it correct that

K1(y) ≤ K1(x) ?

Finally, according to relation (3.11) we give a generalization of Lemma 4.1
as follows.

Theorem 4.4 For x ≥ 1 and i ∈ N we have

(i− 1)! ·Ki(x− 1) ≤ 9
5

+
!([x]− 1)
([x]− 1)!

· Γ(x)− !(i− 1) +
i−2∑

k=0

Γ(x + k) .(4.21)

Corrollary 4.5 For 5 ≤ x ∈ R and i ∈ N we have

(i− 1)! ·Ki(x− 1) ≤ 9
5

+
Γ(x)

2
− !(i− 1) +

i−2∑

k=0

Γ(x + k) .(4.22)
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[13] Petojević, A., The {Ki(z)}∞i=1 functions. Rocky Mountain J. Math. (to appear,
RMJM#2671)

[14] Singh, D., The numbers L(m,n) and their relations with prepared Bernoulli and
Eulerian numbers. Math. Student 20 (1952), 66-70.
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