NEW FORMULAE FOR $K_{i}(z)$ FUNCTION

Aleksandar Petojević ${ }^{1}$

Abstract. In this paper we study the function

$$
K_{i}(z)=\frac{1}{(i-1)!} \int_{0}^{\infty} e^{-x} x^{i-1} \frac{x^{z}-1}{x-1} d x \quad(\operatorname{Re}(z)>0, i \in \mathbb{N})
$$

defined in [13]. We give the generating functions, some representation and the congruences of the function $K_{i}(z)$. Also, we present some inequalities for the function $K_{i}(x)$ for positive values of x.

AMS Mathematics Subject Classification (2000): 11B34, 11B50, 11B37.
Key words and phrases: Kurepa's left factorial, $K_{i}(z)$ function, representation, recurrence relation, generating function, inequalities

1. Introduction

Let the Pochhammer symbol $(z)_{n}$ be defined by

$$
(z)_{0}=1, \quad(z)_{n}=z(z+1) \ldots(z+n-1)=\frac{\Gamma(z+n)}{\Gamma(z)}
$$

where $\Gamma(z)$ is the gamma function

$$
\Gamma(z)=\int_{0}^{+\infty} t^{z-1} e^{-t} d t, \quad(\operatorname{Re}(z)>0)
$$

Recently, [13], we defined the generalization of Kurepa's tree as follows:
Definition 1.1 Let $n \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$. Then $T K_{i}(n)$ denote a finite tree consisting of n levels with the k-th level containing $(i)_{k}$ nodes, $k=0,1,2 \ldots n-1$.

Figure 1: The tree $T K_{2}(3)$.

[^0]Let $K_{i}(n)$ denote the total number of nodes in the tree $T K_{i}(n)$. For the numbers $K_{i}(n)$, the following relations hold:

$$
\begin{aligned}
K_{0}(n) & \stackrel{\text { def }}{=} 1, \quad K_{1}(n)=!n \\
K_{i}(n) & =\sum_{k=0}^{n-1}(i)_{k}=\frac{1}{(i-1)!} \sum_{k=i-1}^{n+i-2} k!=i \cdot K_{i+1}(n-1)+1 \\
K_{i}(-n) & =-\frac{(i-n-1)!}{(i-1)!} K_{i-n}(n), \quad(i>n \in \mathbb{N}), \\
K_{i}(n) & =(-1)^{i} e^{-1}\left[\Gamma(1-i,-1)-(-1)^{n} \Gamma(1-i-n,-1) \frac{(i+n-1)!}{(i-1)!}\right]
\end{aligned}
$$

Here $\Gamma(z, x)$ is the incomplete gamma function defined via

$$
\Gamma(z, x)=\int_{x}^{+\infty} t^{z-1} e^{-t} d t
$$

and $!n$ is Kurepa's left factorial (see [7])

$$
!0=0, \quad!n=\sum_{k=0}^{n-1} k!\quad(n \in \mathbb{N})
$$

The functions $\left\{K_{i}(n)\right\}_{i=1}^{\infty}$ are periodical functions. In this way we have the following statements:

$$
\begin{aligned}
K_{i}(n) & \equiv K_{i+j n}(n)(\bmod n) ; \quad K_{j n-1}(n) \equiv 0(\bmod n \cdot j) \\
K_{i}(n) & \equiv 0(\bmod i+1), \quad\left(i \in \mathbb{N}_{0}, n \in \mathbb{N} \backslash\{1\}\right)
\end{aligned}
$$

For every complex number $\operatorname{Re}(z)>0$ and $i \in \mathbb{N}$ the function $K_{i}(z)$ is defined by

$$
\begin{equation*}
K_{i}(z) \stackrel{\text { def }}{=} \frac{1}{(i-1)!} \int_{0}^{\infty} e^{-x} x^{i-1} \frac{x^{z}-1}{x-1} d x \tag{1.1}
\end{equation*}
$$

This function can be extended analytically to the whole complex plane by

$$
\begin{equation*}
K_{i}(z)=K_{i}(z+1)-\frac{\Gamma(z+i)}{(i-1)!} \tag{1.2}
\end{equation*}
$$

and for $i \in \mathbb{N}, x \in \mathbb{R}$ satisfy the asymptotic relations

$$
\lim _{x \rightarrow \infty} \frac{K_{i}(x)}{\Gamma(x+i-1)}=\frac{1}{(i-1)!}, \quad \lim _{x \rightarrow \infty} \frac{K_{i}(x)}{\Gamma(x+i)}=0 .
$$

For the function $K_{i}(z)$ the set of poles is $P_{K_{i}}=\{-i,-i-2,-i-3,-i-4, \ldots\}$. The infinite point is an essential singularity and every pole $z_{p} \in P_{K_{i}}$ is simple with the residue

$$
\text { res } K_{i}\left(z_{p}\right)=\frac{1}{(i-1)!} \sum_{k=i}^{-z_{p}} \frac{(-1)^{k-i+1}}{(k-i)!}, \quad\left(z_{p} \in P_{K_{i}}\right)
$$

Finally, the functional equality

$$
\begin{equation*}
K_{i}(z+1)=(z+i) K_{i}(z)-(z+i-1) K_{i}(z-1), \quad\left(i \in \mathbb{N}_{0}\right) \tag{1.3}
\end{equation*}
$$

is valid.

2. The generating functions

For the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ the generating function, the exponential generating function and the Direchlet series generating function, denoted respectively by $G(x), g(x)$ and $D(x)$ and are defined as [17, p. 3, p. 21, p. 56]

$$
G(x)=\sum_{n=0}^{\infty} c_{n} x^{n}, \quad g(x)=\sum_{n=0}^{\infty} c_{n} \frac{x^{n}}{n!}, \quad D(x)=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{x}} .
$$

Apart [17], the relevant theory on generating functions can be found in [4] and in [6] Chapter VII.

Remark 2.1 For a fixed number b, the exponential generating function and the generating function for the Pochhammer symbol $(b)_{n}$ is given as follows (see [18]):

$$
\sum_{n=0}^{\infty}(b)_{n} \frac{z^{n}}{n!}=(1-z)^{-b}, \quad \sum_{n=0}^{\infty}(b)_{n} x^{n} \approx-\frac{E_{b}(-1 / x)}{x e^{1 / x}}
$$

where $E_{n}(x)$ is the exponential integral

$$
E_{n}(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t
$$

The second possibility of generating integer sequences by the Pochhammer symbol is that for a fixed $n \in \mathbb{N}$, terms of the sequence are generated by the index $i \in \mathbb{N}_{0}$, i.e., $\left\{(i)_{n}\right\}_{i=0}^{\infty}$ (see formulae (2.7), (2.8) and (2.9)).

In what follows $\zeta(z), s(n, m)$ and $P_{k}^{n}(x)$ are respectively the Riemann zeta function, Stirling number of the first kind and the polynomials defined by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \quad(\operatorname{Re}(z)>1)
$$

Table 1: The special cases of $P_{k}^{n}(x)$

$P_{k}^{n}(x)$	sequences	in $[16]$
$P_{k}^{1}(2)$	$0,1,4,12,32,80, \ldots$	$A 001787$
$P_{k}^{1}(3)$	$0,1,6,27,108,405, \ldots$	$A 027471$
$P_{k}^{1}(4)$	$0,1,8,48,256,1280, \ldots$	$A 002697$
$P_{k}^{2}(1)$	$0,2,6,12,20,30, \ldots$	$A 002378$
$P_{k}^{3}(1)$	$0,3,12,33,72,135, \ldots$	$A 054602$
$P_{2}^{n}(2)$	$0,4,10,18,28,40, \ldots$	$A 028552$
$P_{2}^{n}(3)$	$0,6,14,24,36,50, \ldots$	$A 028557$

$$
\begin{gathered}
x(x-1) \cdots(x-n+1)=\sum_{m=0}^{n} s(n, m) x^{k} \\
P_{k}^{n}(x)=\sum_{j=0}^{k-1}(n)^{(k-j)}\binom{k}{j} x^{j}, \quad(n, k \in \mathbb{N})
\end{gathered}
$$

where $(x)^{(m)}=x(x-1) \cdots(x-m+1)$ is the falling factorial. Several well-known special cases of the polynomials $P_{k}^{n}(x)$ are presented in Table 1.

Theorem 2.2 For a fixed number $n \in \mathbb{N}$ we have

$$
\begin{align*}
\sum_{i=0}^{+\infty} K_{i}(n) x^{i} & =1+\sum_{k=0}^{n-1} k!\frac{x}{(1-x)^{k+1}} \quad(|x|<1) \tag{2.4}\\
\sum_{i=0}^{+\infty} K_{i}(n) \frac{x^{i}}{i!} & =e^{x}+\sum_{k=1}^{n-1}\left[e^{x} x^{k}\right]^{(k-1)} \quad(x \in \mathbb{R}) \\
\sum_{i=1}^{+\infty} \frac{K_{i}(n)}{i^{x}} & =\zeta(x)+\sum_{k=1}^{n-1} \sum_{j=1}^{k}(-1)^{j+k} s(k, j) \cdot \zeta(x-j) .
\end{align*}
$$

Proof. Firstly, for a fixed number $n \in \mathbb{N}$ the equation

$$
\begin{equation*}
\sum_{i=0}^{\infty}(i)_{n} x^{i}=n!\frac{x}{(1-x)^{n+1}} \quad(|x|<1) \tag{2.7}
\end{equation*}
$$

is well known.
Secondly, let $[f(x)]^{(k)}$ be the $k^{t h}$ derivative of a function $f(x)$ and $g_{n}(x)=$ $x e^{x}\left[x^{n-1}+P_{n-1}^{n}(x)\right]$. By induction on $i \in \mathbb{N}$ we have

$$
\left[g_{n}(x)\right]^{(i)}=e^{x} x^{n}+e^{x} \sum_{j=1}^{i}\binom{i}{i-j} x^{n-i} \prod_{m=0}^{j-1}(n-m)+
$$

$$
\begin{aligned}
& +e^{x} \sum_{j=0}^{n-2}\binom{n-1}{j} x^{j+1} \prod_{m=0}^{n-2-j}(n-m)+ \\
& +e^{x} \sum_{s=0}^{i-1}\binom{i}{s+1} \sum_{j=s}^{n-2} \frac{(j+1)!}{(j-s)!}\binom{n-1}{j} x^{j-s} \prod_{m=0}^{n-2-j}(n-m)
\end{aligned}
$$

Hence

$$
\begin{aligned}
{\left[g_{n}(0)\right]^{(i)} } & =\sum_{s=0}^{i-1}\binom{i}{s+1}(s+1)!\binom{n-1}{s} \prod_{m=0}^{n-2-s}(n-m) \\
& =i!(n-1)!n!\sum_{s=0}^{i-1} \frac{1}{(i-s-1)!(s+1)!(n-s-1)!s!} \\
& =i!(n-1)!n!\cdot \frac{(n+i-1)!}{i!(i-1)!n!(n-1)!}=\frac{(n+i-1)!}{(i-1)!}=(i)_{n} .
\end{aligned}
$$

Applying the standard formula for the Taylor series expansion about the point $x=0$ we arrive at the formula

$$
\begin{equation*}
\sum_{i=0}^{\infty}(i)_{n} \frac{x^{i}}{i!}=x e^{x}\left[x^{n-1}+P_{n-1}^{n}(x)\right]=\left[e^{x} x^{n}\right]^{(n-1)} \quad(x \in \mathbb{R}) \tag{2.8}
\end{equation*}
$$

Thirdly, using the equation

$$
\sum_{i=1}^{\infty} \frac{(i)_{n+1}}{i^{x}}=n \sum_{i=1}^{\infty} \frac{(i)_{n}}{i^{x}}+\sum_{i=1}^{\infty} \frac{(i)_{n}}{i^{x-1}}
$$

and the recurrence relation for Stirling numbers of the first kind (see [18])

$$
s(n+1, j)=s(n, j-1)-n \cdot s(n, j)
$$

we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{(i)_{n}}{i^{x}}=\sum_{j=1}^{n}(-1)^{j+n} s(n, j) \zeta(x-j) \tag{2.9}
\end{equation*}
$$

Finally, the theorem now follows from (2.7), (2.8) and (2.9).

Remark 2.3 Equation (2.5) is given in [13]. On the basis of equation (2.4) and the well-known relation [1, p.88, entry 6.5.19.]

$$
\Gamma(-n, x)=\frac{(-1)^{n}}{n!}\left[\Gamma(0, x)-e^{-x} \sum_{m=0}^{n-1}(-1)^{m} \frac{m!}{x^{m+1}}\right] \quad(n \in \mathbb{N})
$$

we get representation of generating function of the sequences $\left\{K_{i}(n)\right\}_{i=0}^{+\infty}$ via an incomplete gamma function:

$$
\sum_{i=0}^{+\infty} K_{i}(n) x^{i}=1+x \cdot e^{x-1}\left[(-1)^{n} n!\cdot \Gamma(-n, x-1)-\Gamma(0, x-1)\right]
$$

3. The representation and some congruences

Let γ be Euler's constant. Then the following statement is true.
Theorem 3.1 For $z \in \mathbb{C}$ we have
$K_{i}(z)=\frac{1}{(i-1)!} \cdot\left[-!(i-1)-\frac{\pi}{e} \cot \pi z+\frac{1}{e}\left(\sum_{n=1}^{+\infty} \frac{1}{n!n}+\gamma\right)+\sum_{n=0}^{+\infty} \Gamma(z+i-n-1)\right]$.
Proof. For $\operatorname{Re}(z)>1$ and $i \in \mathbb{N}$, according to definition (1.1) we have

$$
i K_{i+1}(z-1)+1=1+\frac{1}{(i-1)!} \int_{0}^{\infty} e^{-x} x^{i} \frac{x^{z-1}-1}{x-1}=K_{i}(z)
$$

Consequently, using the relation (1.2) we have

$$
\begin{equation*}
K_{i}(z)=i \cdot K_{i+1}(z-1)+1 \quad(z \in \mathbb{C}, i \in \mathbb{N}) \tag{3.10}
\end{equation*}
$$

For $i=1$ theorem is true (see [15, p. 472]). These formulas were mentioned also in the book [10]. By means of the relation (3.10) and induction on $i \in \mathbb{N}$ the result of the theorem is obtained.

Lemma 3.2 For $n \in \mathbb{N}$ we have

$$
\sum_{i=1}^{n-1} K_{i}(n) \equiv \sum_{i=1}^{n-1} \frac{!n-!(i-1)}{(i-1)!} \quad(\bmod n)
$$

Proof. The relations (1.2) and
$\int_{0}^{\infty} e^{-x} x^{i-2} \cdot\left(x^{z}-1\right) d x=\Gamma(z+i-1)-\Gamma(i-1), \quad(\operatorname{Re}(i)>1, \operatorname{Re}(z)>0)$,
yields
$\left(3.11 K_{i}(z)=\frac{1}{i-1} K_{i-1}(z)+\frac{\Gamma(z+i-1)}{(i-1)!}-\frac{1}{i-1} \quad(1<i \in \mathbb{N}, z \in \mathbb{C})\right.$.
Hence

$$
\begin{aligned}
K_{n-m}(n) & \equiv \frac{1}{(n-m-1)!} K_{1}(n) \\
& -\sum_{k=m+1}^{n-1} \prod_{j=m+1}^{k} \frac{1}{n-j} \quad(\bmod n), \quad(0 \leq m \leq n-2)
\end{aligned}
$$

i.e.,

$$
K_{i}(n) \equiv \frac{!n-!(i-1)}{(i-1)!} \quad(\bmod n), \quad(1 \leq i \leq n)
$$

Remark 3.3 Applying relations (1.3) and (3.10), for $2<i \in \mathbb{N}$ and $z \in \mathbb{C}$, we have
$(3.12) K_{i}(z)=\frac{z+i-1}{i-1} K_{i-1}(z)-\frac{z+i-2}{(i-2)(i-1)} K_{i-2}(z)+\frac{z}{(i-2)(i-1)}$.
Six integer sequences in [16] are special cases of the function $K_{i}(n): K_{0}(n)=$ $K_{i}(1), K_{1}(n), K_{2}(n), K_{i}(2), K_{i}(3)$ and $K_{i}(4)$. The sequence $\left\{K_{i}(5)\right\}_{i=0}^{+\infty}$

$$
1,34,153,436,985,1926, \ldots
$$

cannot currently be found in [16]. Using relation (3.12) the formula for $K_{i}(5)$ numbers is given as follows $K_{i}(5)=i^{4}+7 i^{3}+15 i^{2}+10 i+1$.

Remark 3.4 The total number of arrangements of a set with n elements (see [2], [5], [14] and [12]), the derangement numbers (sequence A000166 in [16]) and the harmonic number, denoted respectively by a_{n}, S_{n} and H_{n}, and are defined as

$$
a_{n}=n!\sum_{k=0}^{n} \frac{1}{k!} ; \quad S_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \quad(n \geq 0) ; \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

The following congruences are easy to find after some simple calculation:

$$
\begin{align*}
\sum_{i=1}^{n-1} K_{i}(n) & \equiv \sum_{i=0}^{n-3} a_{i} \quad(\bmod n) \quad(2<n \in \mathbb{N}) \tag{3.13}\\
& \equiv \sum_{k=1}^{n-1}(-1)^{k} S_{k} \quad(\bmod n) \tag{3.14}\\
& \equiv!n-H_{n-2}+\sum_{i=1}^{n-2} \frac{K_{i}(n)}{i} \quad(\bmod n) \tag{3.15}
\end{align*}
$$

Question 3.5 For $k \in \mathbb{N}_{0} \backslash\{1\}$ is it correct that

$$
\sum_{i=0}^{n-1} K_{i}(n) \equiv 0 \quad(\bmod n) \Leftrightarrow n=2^{k} ?
$$

Question 3.6 For all a prime number p is it correct that

$$
\sum_{i=0}^{p} K_{i}(p) \equiv 0 \quad(\bmod p) ?
$$

4. Some inequalities for $K_{i}(x)$ function

For positive values of x, based on the functional equation (1.2) and the inequality [8, p. 299, (4.4)]

$$
K_{1}(x) \leq 1+2 \Gamma(x)
$$

the following inequality is true:

$$
K_{1}(x-1) \leq 1+\Gamma(x)
$$

Analogously, on the basis of the functional equation (1.2) and inequalities [9, p. 3, (4.3)]

$$
\begin{equation*}
K_{1}(x) \leq \frac{9}{5} x, \quad(x \in[0,1]) \tag{4.16}
\end{equation*}
$$

and $[9$, p. $4,(4.8)]$

$$
K_{1}(x) \leq 2 \Gamma(x)
$$

the main result in $[9$, p. 4 , Theorem 4.4)] is true:

$$
\begin{equation*}
K_{1}(x-1) \leq \Gamma(x), \quad(x \geq 3) \tag{4.17}
\end{equation*}
$$

while the equality is true for $x=3$.
Here we give elementary proof of the inequality which is an improvement of the inequality (4.17) as follows.

Lemma 4.1 For $x \geq 1$ we have

$$
\begin{equation*}
K_{1}(x-1) \leq \frac{9}{5}+\frac{!([x]-1)}{([x]-1)!} \cdot \Gamma(x), \tag{4.18}
\end{equation*}
$$

where $[x]$ denotes the integer part of x.
Proof. Let $n \in \mathbb{N}$. For $x=n$ the lemma is true. Let $x \in(n, n+1)$. Then the functional equation (1.2) yields

$$
\begin{aligned}
K_{1}(x-1) & =K_{1}(x-2)+\Gamma(x-1)=K_{1}(x-3)+\Gamma(x-2)+\Gamma(x-1) \\
& \vdots \\
& =K_{1}(x-s)+\Gamma(x-s+1)+\Gamma(x-s+2)+\cdots+\Gamma(x-1)
\end{aligned}
$$

where $x \geq s \in \mathbb{N}$. Hence, for $s=n$ we have

$$
\begin{equation*}
K_{1}(x-1)=K_{1}(x-n)+\sum_{k=1}^{n-1} \Gamma(x-k) . \tag{4.19}
\end{equation*}
$$

Also, the functional equation $\Gamma(x+1)=x \Gamma(x)$ yields

$$
\Gamma(x-k)=\Gamma(x) \cdot \prod_{t=1}^{k} \frac{1}{x-t}, \quad(k=1,2, \ldots, n-1)
$$

Hence, using relation (4.19) we have

$$
\begin{aligned}
K_{1}(x-1) & =K_{1}(x-n)+\Gamma(x) \cdot \sum_{k=1}^{n-1} \prod_{t=1}^{k} \frac{1}{x-t} \\
& \leq K_{1}(x-n)+\Gamma(x) \cdot \sum_{k=1}^{n-1} \prod_{t=1}^{k} \frac{1}{n-t} \\
& =K_{1}(x-n)+\Gamma(x) \cdot \frac{!(n-1)}{(n-1)!}
\end{aligned}
$$

Since $x-n \in(0,1)$ the result now follows from (4.16).

Corrollary 4.2 For $5 \leq x \in \mathbb{R}$ we have

$$
\begin{equation*}
K_{1}(x-1) \leq \frac{9}{5}+\frac{\Gamma(x)}{2} \tag{4.20}
\end{equation*}
$$

Proof. For $4 \leq n \in \mathbb{N}$ induction on n we have $\frac{!n}{n!} \leq \frac{1}{2}$.
Question 4.3 For $0 \leq y \leq x$ is it correct that

$$
K_{1}(y) \leq K_{1}(x) ?
$$

Finally, according to relation (3.11) we give a generalization of Lemma 4.1 as follows.

Theorem 4.4 For $x \geq 1$ and $i \in \mathbb{N}$ we have
$(4.21)(i-1)!\cdot K_{i}(x-1) \leq \frac{9}{5}+\frac{!([x]-1)}{([x]-1)!} \cdot \Gamma(x)-!(i-1)+\sum_{k=0}^{i-2} \Gamma(x+k)$.

Corrollary 4.5 For $5 \leq x \in \mathbb{R}$ and $i \in \mathbb{N}$ we have

$$
\begin{equation*}
(i-1)!\cdot K_{i}(x-1) \leq \frac{9}{5}+\frac{\Gamma(x)}{2}-!(i-1)+\sum_{k=0}^{i-2} \Gamma(x+k) \tag{4.22}
\end{equation*}
$$

Acknowledgement

This work was supported in part by the Ministry of Science and Environmental Protection of the Republic of Serbia under Grant \# 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods.

References

[1] Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing., New York: Dover 1972.
[2] Cameron, P. J., Sequences realized by oligomorphic permutation groups. Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.5.
[3] Carlitz, L., A note on the left factorial function. Math. Balkanica 5 (1975), 37-42.
[4] Comtet, L., Advanced Combinatorics; The art of finite and infinite expansions. Boston: D. Reidel Publ. Co. 1974.
[5] Gandhi, J. M., On logarithmic numbers. Math. Student 31 (1963), 73-83.
[6] Graham, R., Knuth D., Patashnik, I. O., Concrete mathematics. Reading, MA: Addison-Wesley 1989.
[7] Kurepa, Đ., On the left factorial function !n. Math. Balkanica 1 (1971), 147-153.
[8] Kurepa, Đ., Left factorial function in complex domain. Math. Balkanica 3 (1973), 297-307.
[9] Malešević, B. J., Some inequalities of the Kurepa's function. J. Inequal. Pure and Appl. Math. 5(4) Art. 84 (2004), p. 5.
[10] Marichev, O. I., Handbook of Integral Transformation of Higher Transcendental Functions: Theory and Algorithmic Tables. Chichester: Ellis Horwood Ltd. 1983.
[11] Milovanović, G. V., Petojević, A., Generalized factorial function, numbers and polynomials and related problems. Math. Balkanica, New Series Vol. 16, Fasc 1-4 (2002), 113-130.
[12] Petojević, A., The function ${ }_{v} M_{m}(s ; a, z)$ and some well-known sequences. Journal of Integer Sequences Vol. 5 (2002), Article 02.1.7, p.16.
[13] Petojević, A., The $\left\{K_{i}(z)\right\}_{i=1}^{\infty}$ functions. Rocky Mountain J. Math. (to appear, RMJM\#2671)
[14] Singh, D., The numbers $L(m, n)$ and their relations with prepared Bernoulli and Eulerian numbers. Math. Student 20 (1952), 66-70.
[15] Slavić, D. V., On the left factorial function of the complex argument. Math. Balkanica 3 (1973), 472-477.
[16] Sloane, N. J. A., On-Line Encyclopedia of Integer Sequences. published elec. at http://www.research.att.com/~njas/sequences/
[17] Wilf, H. S., Generating functionology. New York: Academic Press 1990.
[18] Wolfram Research, Mathematica. published elec. at http://functions.wolfram.com

Received by the editors June 13, 2005

[^0]: ${ }^{1}$ University of Novi Sad, Teacher Training Faculty, Podgorička 4, 25000 Sombor, SERBIA and MONTENEGRO, E-mail: apetoje@ptt.yu

