A COMMENT ON (n, m)-GROUPS

Janez Ušan ${ }^{1}$

Abstract

This paper describes the (n, m)-groups for $n>2 m$ and $n \neq k m$ with an additional condition.

AMS Mathematics Subject Classification (2000): 20N15 Key words and phrases: (n, m)-group, $\{1, n-m+1\}$-neutral operation of the (n, m)-groupoid

1. Preliminaries

Definition 1.1. ([1]) Let $n \geq m+1(n, m \in N)$ and $(Q ; A)$ be an (n, m)-groupoid $\left(A: Q^{n} \rightarrow Q^{m}\right)$. We say that $(Q ; A)$ is an (n, m)-group iff the following statements hold:
(|) For every $i, j \in\{1, \ldots, n-m+1\}$, $i<j$, the following law holds

$$
A\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-m}\right)=A\left(x_{1}^{j-1}, A\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-m}\right)
$$

$[:\langle i, j\rangle \text {-associative law }]^{2}$; and
(\|) For every $i \in\{1, \ldots, n-m+1\}$ and for every $a_{1}^{n} \in Q$ there is exactly one $x_{1}^{m} \in Q^{m}$ such that the following equality holds

$$
A\left(a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n-m}\right)=a_{n-m+1}^{n} .
$$

Remark: For $m=1(Q ; A)$ is an n-group [4]. Cf. Chapter I in [9].
Definition 1.2. ([7]) Let $n \geq 2 m$ and let $(Q ; A)$ be an (n, m)-groupoid. Also, let \mathbf{e} be a mapping of the set $Q^{n-2 m}$ into the set Q^{m}. Then, we say that \mathbf{e} is $a\{1, n-m+1\}$-neutral operation of the (n, m)-groupoid ($Q ; A$) iff for every sequence $a_{1}^{n-2 m}$ over Q and for every $x_{1}^{m} \in Q^{m}$ the following equalities hold

$$
A\left(x_{1}^{m}, a_{1}^{n-2 m}, \mathbf{e}\left(a_{1}^{n-2 m}\right)\right)=x_{1}^{m} \text { and } A\left(\mathbf{e}\left(a_{1}^{n-2 m}\right), a_{1}^{n-2 m}, x_{1}^{m}\right)=x_{1}^{m}
$$

Remark: For $m=1 \mathbf{e}$ is a $\{1, n\}$-neutral operation of the n-groupoid $(Q ; A)$ [6]. Cf. Chapter II in [9].

Proposition 1.3. ([7]) Let $n \geq 2 m$ and let $(Q ; A)$ be an (n, m)-groupoid. Then there is at most one $\{1, n-m+1\}$-neutral operation of $(Q ; A)$.

[^0]Proposition 1.4. ([7]) Every (n, m)-group ($n \geq 2 m$) has a $\{1, n-m+$ $1\}$-neutral operation.

See, also [8].

2. Auxiliary part

Proposition 2.1. ([2]) Let $(Q ; A)$ be an (n, m)-groupoid and $n \geq 2 m$. Also, let the following statements hold:
(i) $(Q ; A)$ is an $(n, m)-$ semigroup;
(ii) For every $a_{1}^{n} \in Q$ there is exactly one $x_{1}^{m} \in Q^{m}$ such that the following equality holds

$$
A\left(a_{1}^{n-m}, x_{1}^{m}\right)=a_{n-m+1}^{n} ; \text { and }
$$

(iii) For every $a_{1}^{n} \in Q$ there is exactly one $y_{1}^{m} \in Q^{m}$ such that the following equality holds

$$
A\left(y_{1}^{m}, a_{1}^{n-m}\right)=a_{n-m+1}^{n} .
$$

Then $(Q ; A)$ is an $\{n, m\}-$ group.
See, also 2.3 in [11].

Definition 2.2. Let $(Q ; A)$ be an (n, m)-groupoid; $n \geq m+1$. Then:
($\alpha) \stackrel{1}{A} \stackrel{\text { def }}{=} A$; and
(β) For every $s \in N$ and for every $x_{1}^{(s+1)(n-m)+m} \in Q$

$$
\stackrel{s+1}{A}\left(x_{1}^{(s+1)(n-m)+m}\right) \stackrel{\text { def }}{=} A\left(A\left(x_{1}^{s(n-m)+m}\right), x_{s(n-m)+m+1}^{(s+1)(n-m)+m}\right) .
$$

Proposition 2.3. Let $(Q ; A)$ be an $(n, m)-$ semigroup and $s \in N$. Then, for every $x_{1}^{(s+1)(n-m)+m} \in Q$ and for every $t \in\{1, \ldots, s(n-m)+1\}$ the following equality holds

$$
\stackrel{s+1}{A}\left(x_{1}^{(s+1)(n-m)+m}\right)=\stackrel{s}{A}\left(x_{1}^{t-1}, A\left(x_{t}^{t+n-1}\right), x_{t+n}^{(s+1)(n-m)+m}\right)
$$

Sketch of the proof. 1) $s=1$: By Def. $1.1-(\mid)$ and by Def. 4.3-(α), we have

$$
\stackrel{1+1}{A}\left(x_{1}^{2(n-m)+m}\right)=\stackrel{1}{A}\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2(n-m)+m}\right)
$$

for every $x_{1}^{2(n-m)+m} \in Q$ and for every $i \in\{1, \ldots, n-m+1\}$.
2) $s=v$: Let for every $x_{1}^{(v+1)(n-m)+m} \in Q$ and for all $t \in\{1, \ldots, v(n-$ $m)+1\}$ the following equality holds

$$
\stackrel{v+1}{A}\left(x_{1}^{(v+1)(n-m)+m}\right)=\stackrel{v}{A}\left(x_{1}^{t-1}, A\left(x_{t}^{t+n-1}\right), x_{t+n}^{(v+1)(n-m)+m}\right) .
$$

3) $v \rightarrow v+1:$

$$
\stackrel{(v+1)+1}{A}\left(x_{1}^{(v+2)(n-m)+m}\right) \stackrel{(\beta)}{=} A\left(\stackrel{v+1}{A}\left(x_{1}^{(v+1)(n-m)+m}\right), x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}\right) \stackrel{2)}{=}
$$

$$
\begin{aligned}
& A\left(\stackrel{v}{A}\left(x_{1}^{t-1}, A\left(x_{t}^{t+n-1}\right), x_{t n}^{(v+1)(n-m)+m}\right), x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}\right) \stackrel{(\beta)}{=} \\
& \stackrel{v+1}{A}\left(x_{1}^{t-1}, A\left(x_{t}^{t+n-1}\right), x_{t+n}^{(v+1)(n-m)+m}, x_{(v+1)(n-m)+m+1}^{(v+2)(n-m)+m}\right) \stackrel{2)}{=} \\
& v \\
& A\left(x_{1}^{t-1}, A\left(A\left(x_{t}^{t+n-1}\right), x_{t+n}^{t+2(n-m)+m-1}\right), x_{t+2(n-m)+m}^{(v+2)(n-m)+m}\right) \stackrel{1.1(\mid)}{=} \\
& v \\
& A\left(x_{1}^{t-1}, A\left(x_{t}^{t+i-2}, A\left(x_{t+i-1}^{t+i+n-2}\right), x_{t+i+n-1}^{t+2(n-m)+m-1}\right), x_{t+2(n-m)+m}^{(v+2)(n-m)+m}\right) \stackrel{2)}{=} \\
& \stackrel{v+1}{A}\left(x_{1}^{t-1}, x_{t}^{t+i-2}, A\left(x_{t+i-1}^{t+i+n-2}\right), x_{t+i+n-1}^{t+2(n-m)+m-1}, x_{t+2(n-m)+m}^{(v+2)(n-m)+m}\right)= \\
& \stackrel{v+1}{A}\left(x_{1}^{t+i-2}, A\left(x_{t+i-1}^{t+i+n-2}\right), x_{t+i+n-1}^{(v+2)(n-m)+m}\right) .
\end{aligned}
$$

By Def. 1.1 - (|), Def. 2.2 and by Prop. 2.3, we obtain:

Proposition 2.4. ([1]) Let $(Q ; A)$ be an (n, m)-semigroup and $(i, j) \in N^{2}$. Then, for every $x_{1}^{(i+j)(n-m)+m} \in Q$ and for all $t \in\{1, \ldots, i(n-m)+1\}$ the following equality holds

$$
\stackrel{i+j}{A}\left(x_{1}^{(i+j)(n-m)+m}\right)=\stackrel{i}{A}\left(x_{1}^{t-1}, \stackrel{j}{A}\left(x_{t}^{t+j(n-m)+m-1}\right), x_{t+j(n-m)+m}^{(i+j)(n-m)+m}\right)
$$

By Prop. 2.4 and by Def. $1.1-(\mid)$, we have:

Proposition 2.5. ([1]) : Let $(Q ; A)$ be an (n, m)-semigroup and let $s \in N$. Then $(Q ; \stackrel{s}{A})$ is an $(s(n-m)+m, m)-$ semigroup.

Remark: In [1] $\stackrel{s}{A}$ is written as []s.

Proposition 2.6. ([1]) : Let $(Q ; A)$ be an (n, m-group, $n \geq 2 m$ and let $s \in N$. Then $(Q ; \stackrel{s}{A})$ is an $(s(n-m)+m, m)-$ group .

Sketch of the proof. Firstly we prove the following statements:
${ }^{\circ} 1(Q ; \stackrel{s}{A})$ is an $(s(n-m)+m, m)$-semigroup.
${ }^{\circ} 2$ For every $a_{1}^{s(n-m)+m} \in Q$ there is exactly one $x_{1}^{m} \in Q^{m}$ such that the following equality holds

$$
\stackrel{s}{A}\left(a_{1}^{s(n-m)}, x_{1}^{m}\right)=a_{s(n-m)+1}^{s(n-m)+m} .
$$

${ }^{\circ} 3$ For every $a_{1}^{s(n-m)+m} \in Q$ there is exactly one $y_{1}^{m} \in Q^{m}$ such that the following equality holds
$\stackrel{s}{A}\left(y_{1}^{m}, a_{1}^{s(n-m)}\right)=a_{s(n-m)+1}^{s(n-m)+m}$.
The proof of ${ }^{\circ} 1$: By Prop. 2.5.
Sketch of the proof of ${ }^{\circ} 2$:
$s \geq 2$:

$$
\begin{aligned}
& \stackrel{s}{A}\left(a_{1}^{s(n-m)}, x_{1}^{m}\right)=a_{s(n-m)+1}^{s(n-m)+m} \stackrel{2.2}{\Longleftrightarrow} \\
& A\left(\stackrel{s-1}{A}\left(a_{1}^{(s-1)(n-m)+m}\right), a_{(s-1)(n-m)+m+1}^{s(n-m)}, x_{1}^{m}\right)=a_{s(n-m)+1}^{s(n-m)+m}
\end{aligned}
$$

Sketch of the proof of ${ }^{\circ} 3$:
$s \geq 2$:
$\stackrel{s}{A}\left(y_{1}^{m}, a_{1}^{s(n-m)}\right)=a_{s(n-m)+1}^{s(n-m)+m} \stackrel{2.4}{\Longrightarrow}$
$A\left(y_{1}^{m}, a_{1}^{n-2 m}, \stackrel{s-1}{A}\left(a_{n-2 m+1}^{s(n-m)}\right)\right)=a_{s(n-m)+1}^{s(n-m)+m}$.
Finally, by ${ }^{\circ} 1-{ }^{\circ} 3$ and by Prop. 2.1, we conclude that Prop. 2.6 holds.

Proposition 2.7. ([10]) Let $k>2, m \geq 2, n=k \cdot m,(Q ; A)$ be an (n,m)-group and \mathbf{e} its $\{1, n-m+1\}-$ neutral operation. Also, let there exist a sequence $a_{1}^{n-2 m}$ over Q such that for all $i \in\{0,1, \ldots, 2 m-1\}$, and for every $x_{1}^{2 m} \in Q$ the following equality holds
(0) $A\left(x_{1}^{i}, a_{1}^{n-2 m}, x_{i+1}^{2 m}\right)=A\left(x_{1}^{2 m}, a_{1}^{n-2 m}\right)$.

Further on, let
(1) $B\left(x_{1}^{2 m}\right) \stackrel{\text { def }}{=} A\left(x_{1}^{m}, a_{1}^{n-2 m}, x_{m+1}^{2 m}\right)$ and
(2) $c_{1}^{m} \stackrel{\text { def }}{=} A\left(\left.\frac{k}{\mathbf{e}\left(a_{1}^{n-2 m}\right)} \right\rvert\,\right)$
for all $x_{1}^{2 m} \in Q$. Then the following statements hold
(i) $(Q ; B)$ is a $(2 m, m)$-group;
(ii) For all $x_{1}^{k \cdot m} \in Q$

$$
A\left(x_{1}^{k \cdot m}\right)=\stackrel{k}{B}\left(x_{1}^{k \cdot m}, c_{1}^{m}\right) ; \text { and }
$$

(iii) For all $j \in\{0, \ldots, m-1\}$ and for every $x_{1}^{m} \in Q$ the following equality holds

$$
B\left(x_{1}^{j}, c_{1}^{m}, x_{j+1}^{m}\right)=B\left(x_{1}^{m}, c_{1}^{m}\right)
$$

Proposition 2.8. ([5]) : Let $n>2 m, m>1,(Q ; A)$ be an (n, m)-group and \mathbf{e} its $\{1, n-m+1\}$-neutral operation. Then for all $i \in\{0,1, \ldots, m\}$, for every $t \in\{1, \ldots, n-2 m+1\}$, for every $x_{1}^{m} \in Q^{m}$ and for all $a_{1}^{n-2 m} \in Q$ the following equality holds

$$
A\left(x_{1}^{i}, a_{t}^{n-2 m}, \mathbf{e}\left(a_{1}^{n-2 m}\right), a_{1}^{t-1}, x_{i+1}^{m}\right)=x_{1}^{m} .
$$

Remark: Prop. 2.8 for $n=2 m$ is proved in [2]. See, also [3].

Proposition 2.9. ([8]) : Let $n>m+1$ and let $(Q ; A)$ be an (n, m - groupoid. Also, let
(a) The $<1,2>-$ associative law holds in $(Q ; A)$; and
(b) For every $a_{1}^{n-m} \in Q$ and for each $x_{1}^{m}, y_{1}^{m} \in Q^{m}$ the following implication holds
$A\left(x_{1}^{m}, a_{1}^{n-m}\right)=A\left(y_{1}^{m}, a_{1}^{n-m}\right) \Rightarrow x_{1}^{m}=y_{1}^{m}$.
Then $(Q ; A)$ is an $(n, m)-$ semigroup.

3. Main part

Theorem 3.1. Let $m \geq 2, s \geq 2,0<r<m, n=s \cdot m+r$ and let $(Q ; A)$ be an (n, m)-group. Also, let there exist a sequence $a_{1}^{k \cdot m-2 m}$, where $k=r-m+1$, such that for all $i \in\{0,1, \ldots, 2 m-1\}$, and for every $x_{1}^{2 m} \in Q$ the following equality holds
(0) $\stackrel{m}{A}\left(x_{1}^{i}, a_{1}^{k \cdot m-2 m}, x_{i+1}^{2 m}\right)=\stackrel{m}{A}\left(x_{1}^{2 m}, a_{1}^{k \cdot m-2 m}\right)$.

Then there is a mapping B of the set $Q^{2 m}$ into the set $Q^{m}, c_{1}^{m} \in Q^{m}$ and the sequence $\varepsilon_{1}^{(m-1)(n-m)}$ over Q such that the following statements hold
(1) $(Q ; B)$ is a $(2 m, m)$-group;
(2) For all $j \in\{0, \ldots, m-1\}$ and for every $x_{1}^{m} \in Q$ the following equality holds $B\left(x_{1}^{j}, c_{1}^{m}, x_{j+1}^{m}\right)=B\left(x_{1}^{m}, c_{1}^{m}\right) ;$
(3) For all $x_{1}^{m} \in Q$ the following equality holds

$$
A\left(x_{1}^{m}\right)=B\left(\stackrel{n-m}{B}\left(x_{1}^{n}, \varepsilon_{1}^{(m-1)(n-m)}\right), c_{1}^{m}\right) .
$$

(4) For all $t \in\{0, \ldots, m-1\}$ and for every $y_{1}^{r}, z_{1}^{m} \in Q$ the following equality holds $\left.{ }^{n-m-s+1}\left(y_{1}^{r}, z_{1}^{t}, \varepsilon_{1}^{(m-1)(n-m)}, z_{t+1}^{m}\right)={ }^{n-m-s+1} B^{(} y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}\right)$.
Proof. Firstly we prove the following statements:
$1^{\circ}(Q, \stackrel{m}{A})$ is a $(k m, m)$-group, where $k=n-m+1$.
2° Let E be a $\{1, k m-m+1\}-$ neutral operation of $(k m, m)-\operatorname{group}(Q ; \stackrel{m}{A})$. Also let
a) $B\left(x_{1}^{m}, y_{1}^{m}\right) \stackrel{\text { def }}{=} A\left(x_{1}^{m}, a_{1}^{k m-2 m}, y_{1}^{m}\right)$
for all $x_{1}^{m}, y_{1}^{m} \in Q^{m}$, where $a_{1}^{k m-2 m}$ from (0); and

$$
\text { b) } \quad c_{1}^{m} \stackrel{\text { def }}{=} A\left(\left.\frac{k}{\mathrm{E}\left(a_{1}^{k m-2 m}\right)} \right\rvert\,\right)
$$

Then:

1) $(Q ; B)$ is a $(2 m, m)$-group;
2) For all $x_{1}^{m} \in Q^{m}$ and for all $j \in\{0, \ldots, m-1\}$ the following equality holds $B\left(x_{1}^{i}, c_{1}^{m}, x_{i+1}^{m}\right)=B\left(x_{1}^{m}, c_{1}^{m}\right) ;$ and
3) For all $x_{1}^{k m} \in Q$ the following equality holds

$$
\stackrel{m}{A}\left(x_{1}^{k m}\right)=\stackrel{k}{B}\left(x_{1}^{k m}, c_{1}^{m}\right) .
$$

$3^{\circ} \quad$ Let \mathbf{e} be a $\{1, n-m+1\}$-neutral operation of $(n, m)-\operatorname{group}(Q ; A)$.
Then for all $x_{1}^{m} \in Q$ and for every $\stackrel{(i)}{b_{1}^{n-2 m}}, i \in\{1, \ldots, m-1\}$, the following equality holds

$$
A\left(x_{1}^{n}\right)=\stackrel{m}{A}\left(x_{1}^{n}, \quad \stackrel{(i)}{b_{1}^{n-2 m}}, \mathbf{e}\left(\overline{(i)}_{1}^{n-2 m}\right){ }_{i=1}^{m-1}\right)
$$

$4^{\circ} \quad$ Let $\stackrel{(i)}{b_{1}^{n-2 m}}, i \in\{1, \ldots, m-1\}$, be an arbitrary sequence over Q. Also, let

$$
\varepsilon_{1}^{(m-1)(n-m)} \stackrel{d e f}{=} \stackrel{(i)}{b_{1}^{n-2 m}, \mathbf{e}\left(b_{1}^{n-2 m}\right)}{ }_{i=1}^{m-1}
$$

Then for all $x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{m} \in Q$ and for all $j \in\{0, \ldots, m-1\}$ the following equality holds
$\stackrel{m}{A}\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}\right)=\stackrel{m}{A}\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}\right)$.
The proof of 1° : By Prop. 2.6.
The proof of 2° : By Prop. 2.7.
Sketch of the proof of 3° :
a) $m=2$:
${ }^{2} A\left(x_{1}^{n}, b_{1}^{n-2 m}, \mathbf{e}\left(b_{1}^{n-2 m}\right)\right) \xlongequal{2.2}$
$A\left(A\left(x_{1}^{n}\right), b_{1}^{n-2 m}, \mathbf{e}\left(b_{1}^{n-2 m}\right)\right) \stackrel{1.2}{=} A\left(x_{1}^{n}\right)$
b) $m>2$:

$\stackrel{m-1}{A}\left(x_{1}^{n}, \stackrel{(i)}{b_{1}^{n-2 m}}, \mathbf{e}\left(b_{1}^{n-2 m}\right){ }_{i=1}^{m-2}\right)=\ldots \stackrel{1.2}{=} A\left(x_{1}^{n}\right)$.
Sketch of the proof of 4° [to the case $m=3, n=7$]:
$\stackrel{3}{A}\left(x_{1}^{3}, y, z_{1}^{3}, b, \mathbf{e}(b), c, \mathbf{e}(c)\right) \stackrel{2.3}{=}$
${ }^{2}\left(x_{1}^{3}, y, A\left(z_{1}^{3}, b, \mathbf{e}(b)\right), c, \mathbf{e}(c)\right)^{1.2,2.8}$
${ }^{2}\left(x_{1}^{3}, y, A\left(z_{1}^{i}, b, \mathbf{e}(b), z_{i+1}^{3}\right), c, \mathbf{e}(c)\right)=$
${ }^{2} A\left(x_{1}^{3}, y, A\left(z_{1}^{i}, b, \mathbf{e}_{j}(b){ }_{j=1}^{3}, z_{i+1}^{3}\right), c, \mathbf{e}(c)\right)=$
${ }^{2}\left(x_{1}^{3}, y, A\left(z_{1}^{i}, b, \mathbf{e}_{j}(b){ }_{j=1}^{3-i}, \mathbf{e}_{j}(b){ }_{j=3-i+1}^{3}, z_{i+1}^{3}\right), c, \mathbf{e}(c)\right) \xlongequal{2.3}$
${ }_{A}^{2}\left(x_{1}^{3}, y, z_{1}^{i}, b, \overline{\mathbf{e}}_{j}(b){ }_{j=1}^{3-i}, A\left(\mathbf{e}_{j}(b){ }_{j=3-i+1}^{3}, z_{i+1}^{3}, c, \mathbf{e}(c)\right)\right)^{1.2,2.8}$
$\stackrel{2}{A}\left(x_{1}^{3}, y, z_{1}^{i}, b, \mathbf{e}_{j}(b){ }_{j=1}^{3-i}, A\left(\mathbf{e}_{j}(b){ }_{j=3-i+1}^{3}, c, \mathbf{e}(c), z_{i+1}^{3}\right)\right) \xlongequal{2.3}$
${ }^{3}\left(x_{1}^{3}, y, z_{1}^{i}, b, \mathbf{e}_{j}(b){ }_{j=1}^{3-i}, \overline{\mathbf{e}_{j}(b)}{ }_{j=3-i+1}^{3}, c, \mathbf{e}(c), z_{i+1}^{3}\right)=$
${ }^{3} A\left(x_{1}^{3}, y, z_{1}^{i}, b, \mathbf{e}(b), c, \mathbf{e}(c), z_{i+1}^{3}\right)$.
By 1° and 2°, we have (1) and (2).
Sketch of the proof of (3): By $\left.2^{\circ}[: 3)\right]$ and by 3°.
$\left(k=n-m+1, \varepsilon_{1}^{(m-1)(n-m)} \stackrel{\text { def }}{=} \stackrel{(i)}{b}{\underset{1}{n-2 m}, \mathbf{e}\left(\stackrel{(i)}{b} n_{1}^{n-2 m}\right)}_{i=1}^{m-1}\right.$.)
Sketch of the proof of (4):

$$
\begin{aligned}
& m \\
& A\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)} \stackrel{4^{\circ}}{ }\right. \\
& m \\
& A\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}\right) \stackrel{\left.4^{\circ}-3\right)}{\Longrightarrow} \\
& \stackrel{k}{B}\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right)= \\
& \stackrel{k}{B}\left(x_{1}^{(s-1) m}, y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}, c_{1}^{m}\right) \stackrel{1^{\circ}, 2.4}{\Longrightarrow} \\
& \stackrel{s}{B}\left(x_{1}^{(s-1) m},{ }_{n-m-s+1}^{B}\left(y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}\right), c_{1}^{m}\right)= \\
& \stackrel{n}{B}\left(x_{1}^{(s-1) m}, \quad{ }_{n-s+1}^{B}\left(y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}\right), c_{1}^{m}\right) \stackrel{1^{\circ}, 2.6}{\Longrightarrow} \\
& B^{n-m-s+1}\left(y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}\right)=\stackrel{n-m-s+1}{ }\left(y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}\right) .
\end{aligned}
$$

The proof of Th. 3.1 is completed.

Theorem 3.2. Let $(Q ; B)$ be a $(2 m, m)-$ group and $m \geq 2$. Also let:
(a) c_{1}^{m} be an element of the set Q^{m} such that for every $i \in\{0, \ldots, m-1\}$, and for every $x_{1}^{m} \in Q$ the following equality holds
$B\left(x_{1}^{i}, c_{1}^{m}, x_{i+1}^{m}\right)=B\left(x_{1}^{m}, c_{1}^{m}\right) ;$ and
(b) $\varepsilon_{1}^{(m-1)(n-m)}$ be a sequence over Q such that for all $j \in\{0, \ldots, m-1\}$, and for every $y_{1}^{r}, z_{1}^{m} \in Q$ the following equality holds

$$
\stackrel{n-m-s+1}{B}\left(y_{1}^{r}, z_{1}^{j}, \varepsilon_{1}^{(m-1)(n-m)}, z_{j+1}^{m}\right)=_{B}^{n-m-s+1}\left(y_{1}^{r}, z_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}\right)
$$

where $s \geq 2,0<r<m$ and $n=s \cdot m+r$.
Further on, let
(c) $A\left(x_{1}^{m}\right) \stackrel{\text { def }}{=} B\left(\stackrel{n-m}{B}\left(x_{1}^{n}, \varepsilon_{1}^{(m-1)(n-m)}\right), c_{1}^{m}\right)$
for all $x_{1}^{n} \in Q$.
Then $(Q ; A)$ is an $(n, m)-$ group.
Proof. Firstly we prove the following statements:
${ }_{1}^{\circ}$ The $<1,2>$-associative law holds in $(Q ; A)$.
$\stackrel{\circ}{2}$ For every $a_{1}^{n} \in Q$ there is exactly one $x_{1}^{m} \in Q^{m}$ such that the following equality holds
$A\left(x_{1}^{m}, a_{1}^{n-m}\right)=a_{n-m+1}^{n}$.
$\stackrel{\circ}{3}(Q ; A)$ is an (n, m)-group.
4 For every $a_{1}^{n} \in Q$ there is exactly one $y_{1}^{m} \in Q^{m}$ such that the following equality holds

$$
A\left(a_{1}^{n-m}, y_{1}^{m}\right)=a_{n-m+1}^{n} .
$$

Sketch of the proof of 1 :
a) $A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-m}\right) \stackrel{(c)}{=}$

$$
\begin{aligned}
& \stackrel{n-m+1}{B}\left(\stackrel{n-m+1}{B}\left(x_{1}^{n}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right), x_{n+1}, x_{n+2}^{2 n-m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right) \stackrel{2.4}{=} \\
& \stackrel{n-m+1}{B}\left(x_{1}, \stackrel{n-m+1}{B}{ }^{(n+1}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}, x_{n+1}\right), x_{n+2}^{2 n-m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right) .
\end{aligned}
$$

b) $\stackrel{n-m+1}{B}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}, x_{n+1}\right) \stackrel{2.3}{=}$
${ }_{n}^{n-m}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m-1)}, B\left(\varepsilon_{(m-1)(n-m+1)+1}^{(m-1)(n-m)}, c_{1}^{m}, x_{n+1}\right)\right) \xlongequal{(a)}$
$\stackrel{n-m}{B}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m-1)}, B\left(\varepsilon_{(m-1)(n-m+1)+1}^{(m-1)(n-m)}, x_{n+1}, c_{1}^{m}\right)\right) \xlongequal{2.3}$
${ }_{B}^{n-m+1}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m-1)}, \varepsilon_{(m-1)(n-m+1)+1}^{(m-1)(n-m)}, x_{n+1}, c_{1}^{m}\right)=$
${ }_{B}^{n-m+1}\left(x_{2}^{n}, \varepsilon_{1}^{(m-1)(n-m-1)}, x_{n+1}, c_{1}^{m}\right) \xlongequal{2.4}$
$\stackrel{s}{B}\left(x_{2}^{(s-1) m+1}, \stackrel{n-m-s+1}{B}\left(x_{(s-1) m+2}^{n},{ }^{3} \varepsilon_{1}^{(m-1)(n-m)}, x_{n+1}\right), c_{1}^{m}\right) \stackrel{(b)}{=}$
$\stackrel{s}{B}\left(x_{2}^{(s-1) m+1},{ }^{n-m-s+1}{ }^{n}\left(x_{(s-1) m+2}^{n}, x_{n+1}, \varepsilon_{1}^{(m-1)(n-m)}\right), c_{1}^{m}\right)=$

[^1]\[

$$
\begin{aligned}
& \stackrel{s}{B}\left(x_{2}^{(s-1) m+1}, \stackrel{n-m-s+1}{B}\left(x_{(s-1) m+2}^{n+1}, \varepsilon_{1}^{(m-1)(n-m)}\right), c_{1}^{m}\right) \stackrel{2.4}{=} \\
& \stackrel{n-m+1}{B}\left(x_{2}^{(s-1) m+2}, x_{(s-1) m+2}^{n+1}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right)= \\
& \stackrel{n-m+1}{B}\left(x_{2}^{n+1}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right) \xlongequal{(c)} A\left(x_{2}^{n+1}\right) .
\end{aligned}
$$
\]

Finally, by $a), b$) and by (c), we obtain 1 .
Sketch of the proof of $\stackrel{\circ}{2}$:
$A\left(x_{1}^{m}, a_{1}^{n-m}\right)=a_{n-m+1}^{n} \stackrel{(c)}{\Longleftrightarrow}$
$\stackrel{n-m+1}{B}\left(x_{1}^{m}, a_{1}^{n-m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right)=a_{n-m+1}^{n} \stackrel{2.4}{\Longleftrightarrow}$
$B\left(x_{1}^{m}, \stackrel{n-m}{B}\left(a_{1}^{n-m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right)\right)=a_{n-m+1}^{n}$.
The proof of $\stackrel{\circ}{3}$: By $\stackrel{\circ}{1}, \stackrel{\circ}{2}$ and Prop. 2.9.
Sketch of the proof of 4 :
$A\left(a_{1}^{n-m}, x_{1}^{m}\right)=a_{n-m+1}^{n} \stackrel{(c)}{\Longleftrightarrow}$
$\stackrel{n-m+1}{B}\left(a_{1}^{n-m}, y_{1}^{m}, \varepsilon_{1}^{(m-1)(n-m)}, c_{1}^{m}\right)=a_{n-m+1}^{n}$.
Whence, by Prop. 2.6 and by Def. 1.1, we obtain ${ }_{4}^{\circ}$.
Finally, by $\stackrel{\circ}{2}-\stackrel{\circ}{4}$ and by Prop. 2.1, we conclude that Th. 3.2 holds.

References

[1] Čupona, Ǵ., Vector valued semigroups. Semigroup Forum 26 (1983), 65-74.
[2] Čupona, Ǵ. Dimovski, D., On a class of vector valued groups. Proceedings of the Conf. "Algebra and Logic", Zagreb 1984, 29-37.
[3] Čupona, Ǵ., Celakoski, N., Markovski, S., Dimovski, D., Vector valued groupoids, semigroups and groups. In: Vector valued semigroups and groups, (B. Popov, Ǵ. Čupona and N. Celakoski, eds.), pp. 1-78, Skopje 1988.
[4] Dörnte, W., Untersuchengen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29 (1928), 1-19.
[5] Galić, R., On (n, m)-groups for $n>2 m$. Sarajevo Journal of Mathematics Vol. 1 (14) (2005), 171-174.
[6] Ušan, J., Neutral operations of n-groupoids. Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18 No. 2 (1988), 117-126. (in Russian)
[7] Ušan, J., Neutral operations of (n, m)-groupoids. Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 19 No. 2 (1989), 125-137. (in Russian)
[8] Ušan, J., Note on (n, m)-groups. Math. Moravica 3 (1999), 127-139.
[9] Ušan, J., n-groups in the light of the neutral operations. Math. Moravica Special Vol. (2003), monograph.
[10] Ušan, J. About a class of (n, m)-groups. Math. Moravica Vol. 9 (2005), 77-86.
[11] Ušan J., Katić, A., Two characterizations of (n, m) -groups for $n \geq 3 m$. Math. Moravica Vol. 8-1 (2004), 73-78.
A comment on (n, m)-groups 141

Received by the editors September 23, 2005

[^0]: ${ }^{1}$ Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia and Montenegro
 ${ }^{2}(Q ; A)$ is an (n, m)-semigroup.

[^1]: ${ }^{3} n=s m+r$.

