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A COMMENT ON (n,m)−GROUPS
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Abstract. This paper describes the (n, m)−groups for n > 2m and
n 6= km with an additional condition.
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1. Preliminaries

Definition 1.1. ([1]) Let n ≥ m+1 (n,m ∈ N) and (Q; A) be an (n, m)−grou-

poid (A : Qn → Qm). We say that (Q; A) is an (n,m)−group iff the following

statements hold:

(|) For every i, j ∈ {1, . . . , n−m + 1}, i < j, the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[: < i, j > −associative law ]2; and

(||) For every i ∈ {1, . . . , n −m + 1} and for every an
1 ∈ Q there is exactly

one xm
1 ∈ Qm such that the following equality holds

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

Remark: For m = 1 (Q; A) is an n−group [4]. Cf. Chapter I in [9].

Definition 1.2. ([7]) Let n ≥ 2m and let (Q; A) be an (n,m)−groupoid. Also,
let e be a mapping of the set Qn−2m into the set Qm. Then, we say that e is
a {1, n−m + 1}−neutral operation of the (n,m)−groupoid (Q;A) iff for every
sequence an−2m

1 over Q and for every xm
1 ∈ Qm the following equalities hold

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1 and A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 .

Remark: For m = 1 e is a {1, n}−neutral operation of the n−groupoid (Q;A)
[6]. Cf. Chapter II in [9].

Proposition 1.3. ([7]) Let n ≥ 2m and let (Q; A) be an (n,m)−groupoid.
Then there is at most one {1, n−m + 1}−neutral operation of (Q; A).
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2(Q; A) is an (n, m)−semigroup.
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Proposition 1.4. ([7]) Every (n,m)−group (n ≥ 2m) has a {1, n − m +
1}−neutral operation.

See, also [8].

2. Auxiliary part

Proposition 2.1. ([2]) Let (Q; A) be an (n,m)−groupoid and n ≥ 2m. Also,
let the following statements hold:

(i) (Q; A) is an (n,m)−semigroup;
(ii) For every an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following

equality holds
A(an−m

1 , xm
1 ) = an

n−m+1; and
(iii) For every an

1 ∈ Q there is exactly one ym
1 ∈ Qm such that the following

equality holds
A(ym

1 , an−m
1 ) = an

n−m+1.
Then (Q; A) is an {n,m}−group.

See, also 2.3 in [11].

Definition 2.2. Let (Q; A) be an (n,m)−groupoid; n ≥ m + 1. Then:

(α)
1

A
def
= A; and

(β) For every s ∈ N and for every x
(s+1)(n−m)+m
1 ∈ Q

s+1

A (x(s+1)(n−m)+m
1 )

def
= A(

s

A(xs(n−m)+m
1 ), x(s+1)(n−m)+m

s(n−m)+m+1 ).

Proposition 2.3. Let (Q;A) be an (n,m)−semigroup and s ∈ N. Then, for
every x

(s+1)(n−m)+m
1 ∈ Q and for every t ∈ {1, . . . , s(n−m) + 1} the following

equality holds
s+1

A (x(s+1)(n−m)+m
1 ) =

s

A(xt−1
1 , A(xt+n−1

t ), x(s+1)(n−m)+m
t+n ).

Sketch of the proof. 1) s = 1 : By Def. 1.1− (|) and by Def. 4.3-(α), we have
1+1

A (x2(n−m)+m
1 ) =

1

A(xi−1
1 , A(xi+n−1

i ), x2(n−m)+m
i+n )

for every x
2(n−m)+m
1 ∈ Q and for every i ∈ {1, . . . , n−m + 1}.

2) s = v : Let for every x
(v+1)(n−m)+m
1 ∈ Q and for all t ∈ {1, . . . , v(n −

m) + 1} the following equality holds
v+1

A (x(v+1)(n−m)+m
1 ) =

v

A(xt−1
1 , A(xt+n−1

t ), x(v+1)(n−m)+m
t+n ).

3) v → v + 1 :
(v+1)+1

A (x(v+2)(n−m)+m
1 )

(β)
= A(

v+1

A (x(v+1)(n−m)+m
1 ), x(v+2)(n−m)+m

(v+1)(n−m)+m+1)
2)
=
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A(
v

A(xt−1
1 , A(xt+n−1

t ), x(v+1)(n−m)+m
t+n ), x(v+2)(n−m)+m

(v+1)(n−m)+m+1)
(β)
=

v+1

A (xt−1
1 , A(xt+n−1

t ), x(v+1)(n−m)+m
t+n , x

(v+2)(n−m)+m
(v+1)(n−m)+m+1)

2)
=

v

A(xt−1
1 , A(A(xt+n−1

t ), xt+2(n−m)+m−1
t+n ), x(v+2)(n−m)+m

t+2(n−m)+m )
1.1(|)
==

v

A(xt−1
1 , A(xt+i−2

t , A(xt+i+n−2
t+i−1 ), xt+2(n−m)+m−1

t+i+n−1 ), x(v+2)(n−m)+m
t+2(n−m)+m )

2)
==

v+1

A (xt−1
1 , xt+i−2

t , A(xt+i+n−2
t+i−1 ), xt+2(n−m)+m−1

t+i+n−1 , x
(v+2)(n−m)+m
t+2(n−m)+m ) =

v+1

A (xt+i−2
1 , A(xt+i+n−2

t+i−1 ), x(v+2)(n−m)+m
t+i+n−1 ). 2

By Def. 1.1− (|), Def. 2.2 and by Prop. 2.3, we obtain:

Proposition 2.4. ([1]) Let (Q; A) be an (n,m)−semigroup and (i, j) ∈ N2.

Then, for every x
(i+j)(n−m)+m
1 ∈ Q and for all t ∈ {1, . . . , i(n − m) + 1} the

following equality holds
i+j

A (x(i+j)(n−m)+m
1 ) =

i

A(xt−1
1 ,

j

A(xt+j(n−m)+m−1
t ), x(i+j)(n−m)+m

t+j(n−m)+m ).

By Prop. 2.4 and by Def. 1.1− (|), we have:

Proposition 2.5. ([1]) : Let (Q; A) be an (n,m)−semigroup and let s ∈ N.

Then (Q;
s

A) is an (s(n−m) + m, m)−semigroup.

Remark: In [1]
s

A is written as [ ]s.

Proposition 2.6. ([1]) : Let (Q; A) be an (n,m)−group, n ≥ 2m and let

s ∈ N. Then (Q;
s

A) is an (s(n−m) + m,m)−group.

Sketch of the proof. Firstly we prove the following statements:
◦1 (Q;

s

A) is an (s(n−m) + m,m)−semigroup.
◦2 For every a

s(n−m)+m
1 ∈ Q there is exactly one xm

1 ∈ Qm such that the
following equality holds

s

A(as(n−m)
1 , xm

1 ) = a
s(n−m)+m
s(n−m)+1 .

◦3 For every a
s(n−m)+m
1 ∈ Q there is exactly one ym

1 ∈ Qm such that the
following equality holds

s

A(ym
1 , a

s(n−m)
1 ) = a

s(n−m)+m
s(n−m)+1 .

The proof of ◦1 : By Prop. 2.5.
Sketch of the proof of ◦2 :

s ≥ 2 :
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s

A(as(n−m)
1 , xm

1 ) = a
s(n−m)+m
s(n−m)+1

2.2⇐⇒
A(

s−1

A (a(s−1)(n−m)+m
1 ), as(n−m)

(s−1)(n−m)+m+1, x
m
1 ) = a

s(n−m)+m
s(n−m)+1 .

Sketch of the proof of ◦3 :
s ≥ 2 :
s

A(ym
1 , a

s(n−m)
1 ) = a

s(n−m)+m
s(n−m)+1

2.4⇐⇒
A(ym

1 , an−2m
1 ,

s−1

A (as(n−m)
n−2m+1)) = a

s(n−m)+m
s(n−m)+1 .

Finally, by ◦1−◦ 3 and by Prop. 2.1, we conclude that Prop. 2.6 holds. 2

Proposition 2.7. ([10]) Let k > 2, m ≥ 2, n = k·m, (Q;A) be an (n,m)−gro-
up and e its {1, n−m + 1}−neutral operation. Also, let there exist a sequence
an−2m
1 over Q such that for all i ∈ {0, 1, . . . , 2m − 1}, and for every x2m

1 ∈ Q
the following equality holds
(0) A(xi

1, a
n−2m
1 , x2m

i+1) = A(x2m
1 , an−2m

1 ).
Further on, let
(1) B(x2m

1 )
def
= A(xm

1 , an−2m
1 , x2m

m+1) and

(2) cm
1

def
= A(

k

e(an−2m
1 )

∣∣∣)
for all x2m

1 ∈ Q. Then the following statements hold
(i) (Q; B) is a (2m,m)−group;
(ii) For all xk·m

1 ∈ Q

A(xk·m
1 ) =

k

B(xk·m
1 , cm

1 ); and
(iii) For all j ∈ {0, . . . , m − 1} and for every xm

1 ∈ Q the following equality
holds

B(xj
1, c

m
1 , xm

j+1) = B(xm
1 , cm

1 ).

Proposition 2.8. ([5]) : Let n > 2m, m > 1, (Q; A) be an (n,m)−group and
e its {1, n−m + 1}−neutral operation. Then for all i ∈ {0, 1, . . . ,m}, for every
t ∈ {1, . . . , n−2m+1}, for every xm

1 ∈ Qm and for all an−2m
1 ∈ Q the following

equality holds
A(xi

1, a
n−2m
t , e(an−2m

1 ), at−1
1 , xm

i+1) = xm
1 .

Remark: Prop. 2.8 for n = 2m is proved in [2]. See, also [3].

Proposition 2.9. ([8]) : Let n > m+1 and let (Q;A) be an (n,m)−groupoid.
Also, let

(a) The < 1, 2 > −associative law holds in (Q; A); and
(b) For every an−m

1 ∈ Q and for each xm
1 , ym

1 ∈ Qm the following implication
holds

A(xm
1 , an−m

1 ) = A(ym
1 , an−m

1 ) ⇒ xm
1 = ym

1 .
Then (Q; A) is an (n,m)−semigroup.
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3. Main part

Theorem 3.1. Let m ≥ 2, s ≥ 2, 0 < r < m, n = s ·m + r and let (Q;A) be
an (n,m)−group. Also, let there exist a sequence ak·m−2m

1 , where k = r−m+1,
such that for all i ∈ {0, 1, . . . , 2m − 1}, and for every x2m

1 ∈ Q the following
equality holds

(0)
m

A(xi
1, a

k·m−2m
1 , x2m

i+1) =
m

A(x2m
1 , ak·m−2m

1 ).
Then there is a mapping B of the set Q2m into the set Qm, cm

1 ∈ Qm and the
sequence ε

(m−1)(n−m)
1 over Q such that the following statements hold

(1) (Q;B) is a (2m,m)−group;
(2) For all j ∈ {0, . . . ,m−1} and for every xm

1 ∈ Q the following equality holds
B(xj

1, c
m
1 , xm

j+1) = B(xm
1 , cm

1 );
(3) For all xm

1 ∈ Q the following equality holds

A(xm
1 ) = B(

n−m

B (xn
1 , ε

(m−1)(n−m)
1 ), cm

1 ).
(4) For all t ∈ {0, . . . , m − 1} and for every yr

1, z
m
1 ∈ Q the following equality

holds
n−m−s+1

B (yr
1, z

t
1, ε

(m−1)(n−m)
1 , zm

t+1) =
n−m−s+1

B (yr
1, z

m
1 , ε

(m−1)(n−m)
1 ).

Proof. Firstly we prove the following statements:

1◦ (Q,
m

A) is a (km, m)−group, where k = n−m + 1.

2◦ Let E be a {1, km−m+1}−neutral operation of (km, m)−group (Q;
m

A).
Also let

a) B(xm
1 , ym

1 )
def
=

m

A(xm
1 , akm−2m

1 , ym
1 )

for all xm
1 , ym

1 ∈ Qm, where akm−2m
1 from (0); and

b) cm
1

def
=

m

A(
k

E(akm−2m
1 )

∣∣∣).
Then:
1) (Q; B) is a (2m,m)−group;
2) For all xm

1 ∈ Qm and for all j ∈ {0, . . . , m− 1} the following equality holds
B(xi

1, c
m
1 , xm

i+1) = B(xm
1 , cm

1 ); and
3) For all xkm

1 ∈ Q the following equality holds
m

A(xkm
1 ) =

k

B(xkm
1 , cm

1 ).
3◦ Let e be a {1, n −m + 1}−neutral operation of (n,m)−group (Q; A).

Then for all xm
1 ∈ Q and for every

(i)

bn−2m
1 , i ∈ {1, . . . , m − 1}, the following

equality holds

A(xn
1 ) =

m

A(xn
1 ,

(i)

bn−2m
1 , e(

(i)

bn−2m
1 )

m−1
i=1 ).

4◦ Let
(i)

bn−2m
1 , i ∈ {1, . . . ,m− 1}, be an arbitrary sequence over Q. Also,

let
ε
(m−1)(n−m)
1

def
= (i)

bn−2m
1 , e(

(i)

bn−2m
1 )

m−1
i=1 .

Then for all x
(s−1)m
1 , yr

1, z
m
1 ∈ Q and for all j ∈ {0, . . . ,m − 1} the following

equality holds
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m

A(x(s−1)m
1 , yr

1, z1, ε
(m−1)(n−m)
1 , zj+1) =

m

A(x(s−1)m
1 , yr

1, z
m
1 , ε

(m−1)(n−m)
1 ).

The proof of 1◦ : By Prop. 2.6.
The proof of 2◦ : By Prop. 2.7.
Sketch of the proof of 3◦ :

a) m = 2 :
2

A(xn
1 , bn−2m

1 , e(bn−2m
1 ))2.2==

A(A(xn
1 ), bn−2m

1 , e(bn−2m
1 ))1.2==A(xn

1 )
b) m > 2 :
m

A(xn
1 ,

(i)

bn−2m
1 , e(

(i)

bn−2m
1 )

m−2
i=1 ,

(m−1)

b n−2m
1 , e(

(m−1)

b n−2m
1 )2.2==

A(
m−1

A (xn
1 ,

(i)

bn−2m
1 , e(

(i)

b n−2m
1 )

m−2
i=1 ),

(m−1)

b n−2m
1 , e(

(m−1)

b n−2m
1 )1.2==

m−1

A (xn
1 ,

(i)

bn−2m
1 , e(

(i)

bn−2m
1 )

m−2
i=1 ) = . . .

1.2==A(xn
1 ).

Sketch of the proof of 4◦ [to the case m = 3, n = 7]:
3

A(x3
1, y, z3

1 , b, e(b), c, e(c))2.3==
2

A(x3
1, y, A(z3

1 , b, e(b)), c, e(c))
1.2,2.8

==
2

A(x3
1, y, A(zi

1, b, e(b), z3
i+1), c, e(c)) =

2

A(x3
1, y, A(zi

1, b, ej(b) 3
j=1, z

3
i+1), c, e(c)) =

2

A(x3
1, y, A(zi

1, b, ej(b) 3−i
j=1, ej(b) 3

j=3−i+1, z
3
i+1), c, e(c))2.3==

2

A(x3
1, y, zi

1, b, ej(b) 3−i
j=1, A( ej(b) 3

j=3−i+1, z
3
i+1, c, e(c)))

1.2,2.8
==

2

A(x3
1, y, zi

1, b, ej(b) 3−i
j=1, A( ej(b) 3

j=3−i+1, c, e(c), z3
i+1))

2.3==
3

A(x3
1, y, zi

1, b, ej(b) 3−i
j=1, ej(b) 3

j=3−i+1, c, e(c), z3
i+1) =

3

A(x3
1, y, zi

1, b, e(b), c, e(c), z3
i+1).

By 1◦ and 2◦, we have (1) and (2).
Sketch of the proof of (3): By 2◦[:3)] and by 3◦.

(k = n−m + 1, ε
(m−1)(n−m)
1

def
= (i)

b n−2m
1 , e(

(i)

b n−2m
1 )

m−1
i=1 .)

Sketch of the proof of (4):
m

A(x(s−1)m
1 , yr

1, z
m
1 , ε

(m−1)(n−m)
1 )4

◦
==

m

A(x(s−1)m
1 , yr

1, z
j
1, ε

(m−1)(n−m)
1 , zm

j+1)
4◦−3)
=⇒

k

B(x(s−1)m
1 , yr

1, z
m
1 , ε

(m−1)(n−m)
1 , cm

1 ) =
k

B(x(s−1)m
1 , yr

1, z
j
1, ε

(m−1)(n−m)
1 , zm

j+1, c
m
1 )

1◦,2.4
=⇒

s

B(x(s−1)m
1 ,

n−m−s+1

B (yr
1, z

m
1 , ε

(m−1)(n−m)
1 ), cm

1 ) =
s

B(x(s−1)m
1 ,

n−m−s+1

B (yr
1, z

j
1, ε

(m−1)(n−m)
1 , zm

j+1), c
m
1 )

1◦,2.6
=⇒

n−m−s+1

B (yr
1, z

m
1 , ε

(m−1)(n−m)
1 ) =

n−m−s+1

B (yr
1, z

j
1, ε

(m−1)(n−m)
1 , zm

j+1).
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The proof of Th. 3.1 is completed. 2

Theorem 3.2. Let (Q; B) be a (2m,m)−group and m ≥ 2. Also let:
(a) cm

1 be an element of the set Qm such that for every i ∈ {0, . . . ,m − 1},
and for every xm

1 ∈ Q the following equality holds
B(xi

1, c
m
1 , xm

i+1) = B(xm
1 , cm

1 ); and
(b) ε

(m−1)(n−m)
1 be a sequence over Q such that for all j ∈ {0, . . . ,m − 1},

and for every yr
1, z

m
1 ∈ Q the following equality holds

n−m−s+1

B (yr
1, z

j
1, ε

(m−1)(n−m)
1 , zm

j+1) =
n−m−s+1

B (yr
1, z

m
1 , ε

(m−1)(n−m)
1 ),

where s ≥ 2, 0 < r < m and n = s ·m + r.
Further on, let

(c) A(xm
1 )

def
= B(

n−m

B (xn
1 , ε

(m−1)(n−m)
1 ), cm

1 )
for all xn

1 ∈ Q.
Then (Q; A) is an (n,m)−group.

Proof. Firstly we prove the following statements:
◦
1 The < 1, 2 > −associative law holds in (Q; A).
◦
2 For every an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following

equality holds
A(xm

1 , an−m
1 ) = an

n−m+1.
◦
3 (Q;A) is an (n,m)−group.
◦
4 For every an

1 ∈ Q there is exactly one ym
1 ∈ Qm such that the following

equality holds
A(an−m

1 , ym
1 ) = an

n−m+1.

Sketch of the proof of
◦
1 :

a) A(A(xn
1 ), x2n−m

n+1 )
(c)
=

n−m+1

B (
n−m+1

B (xn
1 , ε

(m−1)(n−m)
1 , cm

1 ), xn+1, x
2n−m
n+2 , ε

(m−1)(n−m)
1 , cm

1 )2.4==
n−m+1

B (x1,
n−m+1

B (xn
2 , ε

(m−1)(n−m)
1 , cm

1 , xn+1), x2n−m
n+2 , ε

(m−1)(n−m)
1 , cm

1 ).

b)
n−m+1

B (xn
2 , ε

(m−1)(n−m)
1 , cm

1 , xn+1)
2.3==

n−m

B (xn
2 , ε

(m−1)(n−m−1)
1 , B(ε(m−1)(n−m)

(m−1)(n−m+1)+1, c
m
1 , xn+1))

(a)
==

n−m

B (xn
2 , ε

(m−1)(n−m−1)
1 , B(ε(m−1)(n−m)

(m−1)(n−m+1)+1, xn+1, c
m
1 ))2.3==

n−m+1

B (xn
2 , ε

(m−1)(n−m−1)
1 , ε

(m−1)(n−m)
(m−1)(n−m+1)+1, xn+1, c

m
1 ) =

n−m+1

B (xn
2 , ε

(m−1)(n−m−1)
1 , xn+1, c

m
1 )2.4==

s

B(x(s−1)m+1
2 ,

n−m−s+1

B (xn
(s−1)m+2,

3 ε
(m−1)(n−m)
1 , xn+1), cm

1 )
(b)
==

s

B(x(s−1)m+1
2 ,

n−m−s+1

B (xn
(s−1)m+2, xn+1, ε

(m−1)(n−m)
1 ), cm

1 ) =

3n = sm + r.
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s

B(x(s−1)m+1
2 ,

n−m−s+1

B (xn+1
(s−1)m+2, ε

(m−1)(n−m)
1 ), cm

1 )2.4==
n−m+1

B (x(s−1)m+2
2 , xn+1

(s−1)m+2, ε
(m−1)(n−m)
1 , cm

1 ) =
n−m+1

B (xn+1
2 , ε

(m−1)(n−m)
1 , cm

1 )
(c)
== A(xn+1

2 ).

Finally, by a), b) and by (c), we obtain
◦
1.

Sketch of the proof of
◦
2 :

A(xm
1 , an−m

1 ) = an
n−m+1

(c)⇐⇒
n−m+1

B (xm
1 , an−m

1 , ε
(m−1)(n−m)
1 , cm

1 ) = an
n−m+1

2.4⇐⇒
B(xm

1 ,
n−m

B (an−m
1 , ε

(m−1)(n−m)
1 , cm

1 )) = an
n−m+1.

The proof of
◦
3 : By

◦
1,
◦
2 and Prop. 2.9.

Sketch of the proof of
◦
4 :

A(an−m
1 , xm

1 ) = an
n−m+1

(c)⇐⇒
n−m+1

B (an−m
1 , ym

1 , ε
(m−1)(n−m)
1 , cm

1 ) = an
n−m+1.

Whence, by Prop. 2.6 and by Def. 1.1, we obtain
◦
4.

Finally, by
◦
2− ◦

4 and by Prop. 2.1, we conclude that Th. 3.2 holds. 2
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