SOME COMBINATORIAL ASPECTS OF THE COMPOSITION OF A SET OF FUNCTIONS ${ }^{1}$

Branko J. Malešević ${ }^{2}$

Abstract

In this paper we determine a number of meaningful compositions of higher order of a set of functions, which is considered in [2], in implicit and explicit forms. The obtained results are applied to vector analysis in order to determine the number of meaningful differential operations of higher order.

AMS Mathematics Subject Classification (2000): 05C30, 58A10
Key words and phrases: Enumeration of graphs and maps, Differential forms

1. The composition of a set of functions

The main topic of considered in this paper is the set of functions \mathcal{A}_{n}, for $n=2,3, \ldots$, determined in the following form:

$$
\begin{array}{cl}
\mathcal{A}_{n}(n=2 m): & \nabla_{1}: \mathrm{A}_{0} \rightarrow \mathrm{~A}_{1}(n=2 m+1): \nabla_{1}: \mathrm{A}_{0} \rightarrow \mathrm{~A}_{1} \\
& \nabla_{2}: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \\
\vdots & \vdots \\
& \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \\
& \nabla_{i}: \mathrm{A}_{i} \rightarrow \mathrm{~A}_{i+1} \\
& \nabla_{i}: \mathrm{A}_{i} \rightarrow \mathrm{~A}_{i+1} \\
& \vdots \\
\nabla_{m}: \mathrm{A}_{m-1} \rightarrow \mathrm{~A}_{m} & \nabla_{m}: \mathrm{A}_{m-1} \rightarrow \mathrm{~A}_{m} \\
\nabla_{m+1}: \mathrm{A}_{m} \rightarrow \mathrm{~A}_{m-1} & \nabla_{m+1}: \mathrm{A}_{m} \rightarrow \mathrm{~A}_{m} \\
\vdots & \nabla_{m+2}: \mathrm{A}_{m} \rightarrow \mathrm{~A}_{m-1} \\
\nabla_{n-j}: \mathrm{A}_{j+1} \rightarrow \mathrm{~A}_{j} & \vdots \tag{1}\\
\vdots & \nabla_{n-j}: \mathrm{A}_{j+1} \rightarrow \mathrm{~A}_{j} \\
& \vdots \\
\nabla_{n-1}: \mathrm{A}_{2} \rightarrow \mathrm{~A}_{1} & \nabla_{n-1}: \mathrm{A}_{2} \rightarrow \mathrm{~A}_{1} \\
\nabla_{n}: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{0}, & \nabla_{n}: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{0} .
\end{array}
$$

Additionally, we make an assumption that A_{i} are non-empty sets, for $i=$ $0,1, \ldots, m$, where $m=[n / 2]$. For each set of functions \mathcal{A}_{n} we determine the number of meaningful compositions of higher order in implicit and explicit forms. Let us define a binary relation ρ "to be in composition" over the set of functions

[^0]\mathcal{A}_{n} with $\nabla_{i} \rho \nabla_{j}=\top$ iff the composition $\nabla_{j} \circ \nabla_{i}$ is meaningful $\left(\nabla_{i}, \nabla_{j} \in \mathcal{A}_{n}\right)$. Let us form the matrix $\mathrm{A}=\left[a_{i j}\right]$ with
\[

a_{i j}= $$
\begin{cases}1 & : \quad(j=i+1) \vee(i+j=n+1) \tag{2}\\ 0 & : \quad(j \neq i+1) \wedge(i+j \neq n+1)\end{cases}
$$
\]

for $i, j \in\{1,2, \ldots, n\}$. Graph, whose adjacency matrix is A and $\mathcal{A}_{n}=\left\{\nabla_{1}, \ldots\right.$, $\left.\nabla_{n}\right\}$ is a set of the vertices, is determined. Thus, on the basis of the article [2], some implicit formulas for the number of meaningful compositions of functions from the set \mathcal{A}_{n} are given by the following statement.

Theorem 1. Let $P_{n}(\lambda)=|\mathrm{A}-\lambda \mathrm{I}|=\alpha_{0} \lambda^{n}+\alpha_{1} \lambda^{n-1}+\ldots+\alpha_{n}$ be the characteristic polynomial of the matrix $\mathrm{A}=\left[a_{i j}\right]$, determined by (2), and $v_{n}=[1 \cdots 1]_{1 \times n}$. If we denote by $f(k)$ the number of meaningful composition of $k^{\text {th }}$-order of functions from \mathcal{A}_{n}, then the following formulas are true:

$$
\begin{equation*}
f(k)=v_{n} \cdot \mathrm{~A}^{k-1} \cdot v_{n}^{T} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0} f(k)+\alpha_{1} f(k-1)+\ldots+\alpha_{n} f(k-n)=0 \quad(k>n) \tag{4}
\end{equation*}
$$

Remark 1. Generally, let a graph G, with vertices ν_{1}, \ldots, ν_{n}, be determined by the adjacency matrix A and let $P_{n}(\lambda)=|\mathrm{A}-\lambda \mathrm{I}|=\alpha_{0} \lambda^{n}+\alpha_{1} \lambda^{n-1}+\ldots+\alpha_{n}$ be the characteristic polynomial of the matrix A. If we denote with $a_{i j}^{(k)}$ the number of $\nu_{i}, \nu_{j}-$ walks of length k in the graph G, then for every choice of ν_{i} and ν_{j}, the sequence $a_{i j}^{(k)}$ satisfies the same recurrent relation (4) (see the first problem in the section 8.6, of the supplementary problems page, of the book [3]).

2. Some explicit formulas for the number of composition

In this part we give some explicit formulas for the number of meaningful compositions of functions from the set \mathcal{A}_{n}. The following statements are true.

Lemma 1. The characteristic polynomial $P_{n}(\lambda)$ of the matrix $\mathrm{A}=\left[a_{i j}\right]$, determined by (2), fulfills the following recurrent relation

$$
\begin{equation*}
P_{n}(\lambda)=\lambda^{2}\left(P_{n-2}(\lambda)-P_{n-4}(\lambda)\right) \tag{5}
\end{equation*}
$$

Proof. Expanding the determinant $P_{n}(\lambda)=|\mathrm{A}-\lambda \mathrm{I}|$ by the first column we have

$$
\begin{equation*}
P_{n}(\lambda)=-\lambda C_{n-1}(\lambda)+(-1)^{n+1} D_{n-1}(\lambda), \tag{6}
\end{equation*}
$$

where $C_{n-1}(\lambda)$ and $D_{n-1}(\lambda)$ are suitable minors of the elements a_{11} i $a_{n 1}$ of the determinant $P_{n}(\lambda)$. Continuing the expansion of the determinant $C_{n-1}(\lambda)$ by the ending row we can conclude that

$$
\begin{equation*}
C_{n-1}(\lambda)=-\lambda P_{n-2}(\lambda) \tag{7}
\end{equation*}
$$

Further, notice that the determinant $D_{n}(\lambda)$ has minor $P_{n-3}(\lambda)$ as follows

$$
D_{n}(\lambda)=\left|\begin{array}{rrrlllrr}
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \tag{8}\\
-\lambda & 1 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & & & & & \\
0 & & & & & \\
0 & 0 \\
0 & 0 \\
\vdots & & & & P_{n-3}(\lambda) & & \\
0 & & & & & \\
0 & & & & & \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 \\
1 & -\lambda & 1
\end{array}\right| .
$$

If in the previous determinant we multiply the first row by -1 and add it to the $n^{\text {th }}$-row and then, if in the next step, we expand determinant by ending column, we can conclude

$$
\begin{equation*}
D_{n}(\lambda)=(-1)^{n-1} \lambda^{2} P_{n-3}(\lambda) \tag{9}
\end{equation*}
$$

On the basis of expansion (6) and formulas (7), (9) it is true that

$$
\begin{equation*}
P_{n}(\lambda)=\lambda^{2}\left(P_{n-2}(\lambda)-P_{n-4}(\lambda)\right) \tag{10}
\end{equation*}
$$

Lemma 2. Characteristic polynomial $P_{n}(\lambda)$ of the matrix $\mathrm{A}=\left[a_{i j}\right]$, determined by (2), has the following explicit representation
(11) $\quad P_{n}(\lambda)=\left\{\begin{array}{c}\sum_{k=1}^{\left[\frac{n+2}{4}\right]+1}(-1)^{k-1}\binom{\frac{n}{2}-k+2}{k-1} \lambda^{n-2 k+2} \quad: n=2 m, \\ \sum_{k=1}^{\left[\frac{n+2}{4}\right]+2}(-1)^{k-1}\left(\binom{\frac{n+3}{2}-k}{k-1}+\binom{\frac{n+3}{2}-k}{k-2} \lambda\right) \lambda^{n-2 k+2}: n=2 m+1 .\end{array}\right.$

Proof. Let us determine a few initial characteristic polynomials in the following forms:

$$
\begin{align*}
& P_{2}(\lambda)=\lambda^{2}-1=\sum_{k=1}^{2}(-1)^{k-1}\binom{3-k}{k-1} \lambda^{4-2 k}, \tag{12}\\
& P_{4}(\lambda)=\lambda^{4}-2 \lambda^{2}=\sum_{k=1}^{2}(-1)^{k-1}\binom{4-k}{k-1} \lambda^{6-2 k}
\end{align*}
$$

and

$$
\begin{align*}
& P_{3}(\lambda)=\lambda^{3}-\lambda^{2}-\lambda=\sum_{k=1}^{3}(-1)^{k-1}\left(\binom{3-k}{k-1} \lambda^{5-2 k}+\binom{3-k}{k-2} \lambda^{6-2 k}\right) \tag{13}\\
& P_{5}(\lambda)=\lambda^{5}-\lambda^{4}-2 \lambda^{3}+\lambda^{2}=\sum_{k=1}^{3}(-1)^{k-1}\left(\binom{4-k}{k-1} \lambda^{7-2 k}+\binom{4-k}{k-2} \lambda^{8-2 k}\right) .
\end{align*}
$$

Then the statement of this lemma follows by mathematical induction on the basis of the recurrent relation (5).

From Theorem 1 and Lemma 2, the following statement follows.

Theorem 2. Let $\mathrm{A}=\left[a_{i j}\right]$ be the matrix determined by (2). Then the number of meaningful compositions of $k^{\text {th }}$-order of functions from \mathcal{A}_{n} fulfills the recurrent relation (4), whereas α_{i} 's $(i=0,1, \ldots, n)$ are coefficients of the characteristic polynomial $P_{n}(\lambda)$ determined by (11).

Further, the following general statement is true.
Lemma 3. Let $\mathrm{A}^{k}=\left[a_{i j}^{(k)}\right]$ be the $k^{\text {th }}$-power of the matrix $\mathrm{A}=\left[a_{i, j}\right] \in \mathbf{C}^{n \times n}$ $(k \in N)$ and let

$$
\begin{equation*}
P_{n}(\lambda)=|\mathrm{A}-\lambda \mathrm{I}|=\alpha_{0} \lambda^{n}+\alpha_{1} \lambda^{n-1}+\ldots+\alpha_{n} \tag{14}
\end{equation*}
$$

be the characteristic polynomial $P_{n}(\lambda)$ of the matrix A. If for each pair of indexes $(i, j) \in\{1,2, \ldots, n\}^{2}$ the sequence $g_{i j}(m)$, for $m>n$, is determined as a solution of the recurrent relation

$$
\begin{equation*}
\alpha_{0} g_{i j}(m)+\alpha_{1} g_{i j}(m-1)+\ldots+\alpha_{n} g_{i j}(m-n)=0 \tag{15}
\end{equation*}
$$

with the initial values $g_{i j}(1)=a_{i j}^{(1)}, g_{i j}(2)=a_{i j}^{(2)}, \ldots, g_{i j}(n)=a_{i j}^{(n)}$, then the matrix $\mathbf{G}_{m}=\left[g_{i j}(m)\right] \in \mathbf{C}^{n \times n}$ is the $m^{\text {th }}$-power of the matrix $\mathbf{A}(m \in N)$.
Proof. We prove the equality $G_{m}=A^{m}$ by induction over $m \in N$. Indeed, for $m=1, \ldots, n$ the statement is true. Let $m>n$. Let us assume that $G_{k}=A^{k}$ is true for each $k<m$. Then for $k=m$, let us note that $g_{i j}(k)$ fulfils

$$
\begin{equation*}
g_{i j}(m)=-\frac{1}{\alpha_{0}}\left(\alpha_{1} g_{i j}(m-1)+\ldots+\alpha_{n} g_{i j}(m-n)\right) \tag{16}
\end{equation*}
$$

where $\alpha_{0}=(-1)^{n}$. From the previous equality, by the Cayle-Hamilton theorem, it follows that

$$
\begin{align*}
G_{m} & =-\frac{1}{\alpha_{0}}\left(\alpha_{1} G_{m-1}+\ldots+\alpha_{n} G_{m-n}\right) \\
& =-\frac{1}{\alpha_{0}}\left(\alpha_{1} A^{m-1}+\ldots+\alpha_{n} A^{m-n}\right)=A^{m} \tag{17}
\end{align*}
$$

By Theorem 1 and Lemmas 3, 2, the following statement follows.
Theorem 3. Let $\mathrm{A}=\left[a_{i j}\right]$ be the matrix determined by (2) and let $\mathrm{A}^{m}=\left[a_{i j}^{(m)}\right]$ be the $m^{\text {th }}$-power of the matrix A determined for each pair of the indexes $(i, j) \in$ $\{1,2, \ldots, n\}^{2}$, for $m>n$, by an explicit form of the elements $a_{i j}^{(m)}$ based on a recurrent relation

$$
\begin{equation*}
\alpha_{0} a_{i j}^{(m)}+\alpha_{1} a_{i j}^{(m-1)}+\ldots+\alpha_{n} a_{i j}^{(m-n)}=0 \tag{18}
\end{equation*}
$$

Initial values $a_{i j}^{(k)}$ are determined as (i, j)-elements of the matrix $\mathrm{A}^{k} \quad(k=$ $1,2, \ldots, n)$ and α_{i} 's $(i=0,1, \ldots, n)$ are coefficients of the characteristic polynomial $P_{n}(\lambda)$ determined by (11). Then, by the formula (3), the number $f(k)$ of meaningful composition of $k^{\text {th }}$-order of functions from \mathcal{A}_{n}, is explicitly determined.

3. Examples from vector analysis

We present some examples of counting the numbers of meaningful differential operations of higher order in vector analysis according to [2]. Let us start with the sets of functions

$$
\begin{equation*}
\mathrm{A}_{i}=\left\{\mathrm{f}: \left.\mathbf{R}^{n} \longrightarrow \mathbf{R}^{\binom{n}{i}} \right\rvert\, f_{1}, \ldots, f_{\binom{n}{i}} \in C^{\infty}\left(\mathbf{R}^{n}\right)\right\} \tag{19}
\end{equation*}
$$

for $i=0,1, \ldots, m$, with $m=[n / 2]$. Let $\Omega^{r}\left(\mathbf{R}^{n}\right)$ be the space (module) of differential forms of degree $r=0,1, \ldots, n$ on the space \mathbf{R}^{n} over the ring A_{0}. For each r let us choose the order of basis elements $d x_{i_{1}} \wedge \ldots \wedge d x_{i_{r}}$. For each i we determine

$$
\begin{equation*}
\varphi_{i}: \Omega^{i}\left(\mathbf{R}^{n}\right) \rightarrow \mathrm{A}_{i}(0 \leq i \leq m) \text { and } \varphi_{n-i}: \Omega^{n-i}\left(\mathbf{R}^{n}\right) \rightarrow \mathrm{A}_{i}(0 \leq i<n-m) \tag{20}
\end{equation*}
$$

by forming $\binom{n}{i}$-tuple of coefficients with respect to the basis elements in the given order. Notice that, in comparison to [2], we additionally consider the order of basis elements. Consequently, previously introduced functions are isomorphisms from the space of differential forms into the space of vector functions. Next, we use the well-known fact that $\Omega^{i}\left(\mathbf{R}^{n}\right)$ and $\Omega^{n-i}\left(\mathbf{R}^{n}\right)$ are spaces of the same dimension $\binom{n}{i}$, for $i=0,1, \ldots, m$. They can be identified with A_{i}, using the corresponding isomorphism (20). Let us define differential operations of the first order via exterior differentiation operator d as follows

$$
\begin{equation*}
\nabla_{r}=\varphi_{r} \circ d \circ \varphi_{r-1}^{-1} \quad(1 \leq r \leq n) \tag{21}
\end{equation*}
$$

Thus, the following diagrams commute:

Hence, the differential operations ∇_{r} determine functions so that (1) is fulfilled. Let us define differential operations of the higher order as meaningful compositions of higher order of functions from the set $\mathcal{A}_{n}=\left\{\nabla_{1}, \ldots, \nabla_{n}\right\}$. Let us consider in the next sections the concrete dimensions $n=3,4,5, \ldots, 10$.

Three-dimensional vector analysis. In the real three-dimensional space \mathbf{R}^{3} we consider the following sets

$$
\begin{equation*}
\mathrm{A}_{0}=\left\{f: \mathbf{R}^{3} \longrightarrow \mathbf{R} \mid f \in C^{\infty}\left(\mathbf{R}^{3}\right)\right\} \text { and } \mathrm{A}_{1}=\left\{\vec{f}: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{3} \mid \vec{f} \in \vec{C}^{\infty}\left(\mathbf{R}^{3}\right)\right\} \tag{23}
\end{equation*}
$$

Let $d x, d y, d z$, respectively, be the basis vectors of the space of 1 -forms and let $d y \wedge d z, d z \wedge d x, d x \wedge d y$ respectively be the basis vectors of the space of 2 forms. Thus, over the sets A_{0} and A_{1} there exist $m=3$ differential operations
of the first order

$$
\begin{align*}
& \nabla_{1} f=\operatorname{grad} f: \mathrm{A}_{0} \longrightarrow \mathrm{~A}_{1} \\
& \nabla_{2} \vec{f}=\operatorname{curl} \vec{f}: \mathrm{A}_{1} \longrightarrow \mathrm{~A}_{1} \tag{24}\\
& \nabla_{3} \vec{f}=\operatorname{div} \vec{f}: \mathrm{A}_{1} \longrightarrow \mathrm{~A}_{0}
\end{align*}
$$

Under the previous choice of order of basis vectors of spaces of 1-forms and 2 -forms, the previously defined operations of the first order coincide with differential operations of first order in the classical vector analysis. It is a known fact that there are $m=5$ differential operations of the second order. In the article [1] it is proved that there exists $m=8$ differential operations of the third order. Further, in the article [2], it is proved that there exist F_{k+3} differential operations of the $k^{\text {th }}$-order, where F_{k} is $k^{\text {th }}$-Fibonacci's number. Here we give the proof of the previous statement, based on results of the second part of this paper. Namely, using Theorem 3, we obtain

$$
\mathrm{A}^{k}=\left[\begin{array}{lll}
F_{k-1} & F_{k} & F_{k} \tag{25}\\
F_{k-1} & F_{k} & F_{k} \\
F_{k-2} & F_{k-1} & F_{k-1}
\end{array}\right]
$$

and

$$
\begin{equation*}
f(k)=v_{3} \cdot \mathrm{~A}^{k-1} \cdot v_{3}^{T}=F_{k-3}+4 F_{k-2}+4 F_{k-1}=F_{k+3} . \tag{26}
\end{equation*}
$$

Multidimensional vector analysis. In the real n-dimensional space \mathbf{R}^{n} the number of differential operations is determined by the corresponding recurrent formulas, which for the dimension $n=3,4,5, \ldots, 10$, we cite according to [2]:

dimension:	recurrent relations for the number of meaningful operations:
$n=3$	$f(k+2)=f(k+1)+f(k)$
$n=4$	$f(k+2)=2 f(k)$
$n=5$	$f(k+3)=f(k+2)+2 f(k+1)-f(k)$
$n=6$	$f(k+4)=3 f(k+2)-f(k)$
$n=7$	$f(k+5)=f(k+3)+3 f(k+2)-2 f(k+1)-f(k)$
$n=8$	$f(k+4)=4 f(k+2)-3 f(k)$
$n=9$	$f(k+5)=f(k+4)+4 f(k+3)-3 f(k+2)-3 f(k+1)+f(k)$
$n=10$	$f(k+6)=5 f(k+4)-6 f(k+2)+f(k)$

For the dimensions $n=3$, as we have shown above, the number of differential operations of higher order is determined via Fibonacci numbers. Also, this is
true for the dimension $n=6$. Namely, using Theorem 3, we obtain

$$
(27) \mathrm{A}^{k}=\left\{\begin{array}{llllll}
{\left[\begin{array}{lllll}
F_{2 p-1} & 0 & F_{2 p} & 0 & F_{2 p} \\
0 & F_{2 p} & 0 & F_{2 p-1} & 0 \\
F_{2 p-2} & 0 & F_{2 p-1} & 0 & F_{2 p-1} \\
0 & F_{2 p} & 0 & F_{2 p-1} & 0 \\
F_{2 p-1} & 0 & F_{2 p} & 0 & F_{2 p} \\
0 & F_{2 p-1} & 0 & F_{2 p-2} & 0 \\
{\left[\begin{array}{lllll}
\\
0 & F_{2 p+1} & 0 & F_{2 p} & 0 \\
F_{2 p} & 0 & F_{2 p+1} & 0 & F_{2 p+1}
\end{array}\right]: k=2 p,} \\
0 & F_{2 p} & 0 & F_{2 p-1} & 0 \\
F_{2 p} & 0 & F_{2 p+1} & 0 & F_{2 p+1} \\
0 & F_{2 p+1} & 0 & F_{2 p} & 0 \\
F_{2 p-1} & 0 & F_{2 p} & 0 & F_{2 p} \\
{\left[\begin{array}{ll}
0
\end{array}\right.} \\
{\left[\begin{array}{ll}
0
\end{array}\right.}
\end{array}\right]: k=2 p+1 ;}
\end{array}\right.
$$

and

$$
\begin{equation*}
f(k)=v_{6} \cdot \mathrm{~A}^{k-1} \cdot v_{6}^{T}=2 F_{k-3}+8 F_{k-2}+8 F_{k-1}=2 \cdot F_{k+3} . \tag{28}
\end{equation*}
$$

For higher dimensions, that is for $n=4,5,7,8,9,10$, the roots of corresponding characteristic polynomials are not related to Fibonacci numbers.
Finally, let us outline that for all dimensions $n=3,4,5,6,7,8,9,10$, the values of the function $f(k)$, for initial values of the argument k, are given in database of integer sequences [4] as sequences $A 020701(n=3)$, A090989 $(n=4)$, A090990 $(n=5)$, A090991 $(n=6)$, A090992 $(n=7)$, A090993 $(n=8)$, A090994 $(n=9)$, A090995 ($n=10$), respectively.

References

[1] Malešević, B., A note on higher-order differential operations. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 7 (1996), 105-109. (available at http://pefmath.etf.bg.ac.yu/)
[2] Malešević, B., Some combinatorial aspects of differential operation composition on the space R^{n}. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33. (available at http://pefmath.etf.bg.ac.yu/)
[3] West, D. B., Introduction to Graph Theory. Prentice Hall 2001, second edition. Supplementary problems page for the third edition available at http://www.math.uiuc.edu/~west/igt/newprob.html
[4] Sloane, N. J. A., The-On-Line Encyclopedia of Integer Sequences, published elec. at http://www.research.att.com/~njas/sequences/

Received by the editors April 7, 2004

[^0]: ${ }^{1}$ Research partially supported by the MNTRS, Serbia, Grant No. 144020.
 ${ }^{2}$ University of Belgrade, Faculty of Electrical Engineering, 11000 Belgrade, Serbia, e-mail: malesevic@etf.bg.ac.yu

