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QUATERNIONIC MAPS BETWEEN A
HYPER-KÄHLER MANIFOLD AND A 3-ALMOST

CONTACT MANIFOLD

Dorel Fetcu1

Abstract. We prove that any quaternionic map between a hyper-
Kähler manifold and a 3-almost contact manifold with a certain property
is a harmonic map and we give some results about the stability of such a
map and about the stability of a quaternionic map between hyper-Kähler
manifolds.
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1. Preliminaries

Let us recall that a hyper almost complex manifold is a manifold endowed
with three almost complex structures, Jα, α = 1, 3, satisfying the quaternionic
identities

(1.1) Jγ = JαJβ = −JβJα,

for any even permutation {α, β, γ} of {1, 2, 3}. If these three almost complex
structures are Kähler then the manifold is called a hyper-Kähler manifold.

For any real numbers a, b, c with a2 + b2 + c2 = 1, one obtains a covariant
complex structure aJ1 + bJ2 + cJ3. As in [3], we shall refer this S2-family of
complex structures as the hyper-Kähler S2. Therefore, SO(3) acts naturally on
the covariant complex structures. Every SO(3) matrix preserves the identities
1.1. A hyper-Kähler manifold is of dimension 4n.

In order to introduce the 3-almost contact manifolds and the hyperframed
manifolds let us recall some basic notions and properties of the framed ϕ-
manifolds.

Let M be an m-dimensional smooth manifold endowed with a tensor field ϕ
of type (1, 1), satisfying the algebraic condition

(1.2) ϕ3 + ϕ = 0.

The geometric structure on M defined by ϕ is called a ϕ-structure of rank r
if the rank r of ϕ is constant on M and, in this case, M is called a ϕ-manifold.
It follows easily that r is an even number.
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If M is a ϕ-manifold and if there are m − r vector fields ξi and m − r
differential 1-forms ηi satisfying

(1.3) ϕ2 = −I +
m−r∑

i=1

ηi ⊗ ξi, ηi(ξj) = δi
j ,

where i, j = 1, 2, ..., m− r, M is said to be globally framed or to have a framed
ϕ-structure. In this case M is called a globally framed ϕ-manifold or, simply, a
framed ϕ-manifold. From (1.3), by some algebraic computations, one obtains,

(1.4) ϕξi = 0, ηi ◦ ϕ = 0, ϕ3 + ϕ = 0.

If m = 2n + 1 and rank ϕ = 2n one obtains an almost contact structure on
M.

Let M be an m-dimensional globally framed ϕ-manifold with structure ten-
sors (ϕ, ξi, ηi) with rank ϕ = r, and consider the manifold M × Rm−r. We
denote a vector field on M × Rm−r by (X,

∑m−r
i=1 fi

∂
∂ti ) where X is tangent

to M , {t1, ..., tm−r} are the usual coordinates on Rm−r, and {f1, ..., fm−r} are
functions on M ×Rm−r. Define an almost complex structure on M ×Rm−r by

J(X,

m−r∑

i=1

fi
∂

∂ti
) = (ϕX −

m−r∑

i=1

fiξi,

m−r∑

i=1

ηi(X)
∂

∂ti
).

It is easy to check that J2 = −I. If J is integrable we say that the framed
ϕ-structure is normal. A framed ϕ-structure is normal if the tensor field S of
type (1,2) defined by

(1.5) S = Nϕ +
m−r∑

i=1

dηi ⊗ ξi,

vanishes, (see [7]), where Nϕ(X, Y ) = [ϕX, ϕY ]−ϕ[ϕX, Y ]−ϕ[X, ϕY ]+ϕ2[X, Y ],
for X, Y ∈ χ(M), is the Nijenhuis tensor field of ϕ.

If g is a (semi-)Riemannian metric on M such that

(1.6) g(ϕX, ϕY ) = g(X,Y )−
m−r∑

i=1

ηi(X)ηi(Y ),

then we say that (ϕ, ξi, ηi, g) is a metric framed ϕ-structure and M is called a
metric framed ϕ-manifold. The metric g is called an associated (semi-)Riema-
nnian metric.

The fundamental 2-form Ω of the considered metric framed ϕ-manifold M, is
defined just like in the case of the almost Hermitian and almost contact metric
manifold, by Ω = g(X, ϕY ), for any X, Y ∈ χ(M).

The framed ϕ-manifold M with structure tensors (ϕ, ξi, ηi) is called a C-
manifold if it is normal, dΩ = 0 and dηi = 0, i = 1, ...,m− r, (see [2]).
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If on an almost contact manifold (M, ϕ, ξ, η) it is defined an associated Rie-
mannian metric g then (M, ϕ, ξ, η, g) is called an almost contact metric manifold.
If on an almost contact metric manifold (M,ϕ, ξ, η, g) we have Ω = dη, where
Ω is the fundamental 2-form on M , then we say that (M,ϕ, ξ, η, g) is a contact
metric manifold. If for an almost contact metric structure (ϕ, ξ, η, g) which is
normal we have dη = 0 and dΩ = 0, then (N, ϕ, ξ, η, g) is called a cosymplectic
manifold.

In [1] the following result is proved.

Theorem 1.1. An almost contact metric structure (ϕ, ξ, η, g) is cosymplectic
if and only if ϕ is parallel.

In the same way one obtains

Theorem 1.2. If (M,ϕ, ξi, ηi, g) is a C-manifold then ϕ is parallel.

In 1969 in [13] and in 1970 in [11], the authors defined the almost contact
3-structure (or the coquaternionic structure) on an odd dimensional manifold
M , as follows.

If the manifold M admits three almost contact structure (ϕα, ξα, ηα), α =
1, 3, satisfying

(1.7)
ϕγ = ϕαϕβ − ηβ ⊗ ξα = −ϕβϕα + ηα ⊗ ξβ ,

ξγ = ϕαξβ = −ϕβξα, ηγ = ηα ◦ ϕβ = −ηβ ◦ ϕα,

for any even permutation {α, β, γ} of {1, 2, 3}, then the manifold is said to have
an almost contact 3-structure.

It is proved (see [11]) that there exists an associated metric to each of this
three structures. If all structures are cosymplectic, then we call the manifold
M a 3-cosymplectic manifold.

As a generalization of the notion of hyper almost complex manifold and the
notion of 3-almost contact manifold we defined in [4] and [6] the hyperframed
manifolds as follows.

If a differentiable manifold M admits three framed ϕα-structures, (ϕα, ξα
a , ηα

a ),
such that dim M − rank ϕα = n, for any α = 1, 2, 3, satisfying the following,
for any even permutation (α, β, γ) of (1, 2, 3),

(1.8)
ϕγ = ϕαϕβ −

∑n
a=1 ηβ

a ⊗ ξα
a = −ϕβϕα +

∑n
a=1 ηα

a ⊗ ξβ
a ,

ξγ
a = ϕαξβ

a = −ϕβξα
a , ηγ

a = ηα
a ◦ ϕβ = −ηβ

a ◦ ϕα,

then the manifold is said to be a hyperframed manifold. A hyperframed manifold
is of dimension 4m + 3n.

Obviously a 3-almost contact manifold is a hyperframed manifold.
Note that for any real numbers p, q, r with p2 + q2 + r2 = 1 we obtain a

framed ϕ-structure (pϕ1 + qϕ2 + rϕ3, pξ1
a + qξ2

a + rξ3
a, pη1

a + qη2
a + rη3

a), and that
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every SO(3) matrix preserve 1.7 and 1.8. We shall refer this S2-family of almost
contact structures as the 3-almost contact S2.

In [6], we prove that there exists a Riemannian metric associated to all three
framed ϕα-structures. If the framed ϕα-structures are C-structures we call the
manifold M a hyper C-manifold.

2. Quaternionic maps

Definition 2.1. Let (M, J, g) be an almost Kähler manifold and let (N, ϕ, ξa,
ηa, h) be a metric framed ϕ-manifold. A smooth map f : M → N is called a
±(J, ϕ)-holomorphic map if dfJ = ±ϕdf , where df : TM → TN denotes the
induced tangent map of f .

Definition 2.2. Let (M, Jα, g) be a hyper almost Kähler manifold and let
(N,ϕα, ξα, ηα, h) be a metric 3-almost contact manifold. We call a smooth map
f : M → N a quaternionic map if

(2.1) AαβϕβdfJα = df,

where Aαβ are the entries of a matrix A in SO(3).

It is easy to verify that any ±(J, ϕ)-holomorphic map with respect to an
almost complex structure aJ1 + bJ2 + cJ3, with a2 + b2 + c2 = 1 and an almost
contact structure (pϕ1 + qϕ2 + rϕ3, pξ1 + qξ2 + rξ3, pη1 + qη2 + rη3), with
p2 + q2 + r2 = 1, is a quaternionic map.

Since SO(3) preserves the identities 1.1 and 1.7, we can choose the complex
structures Jα for M and the almost contact structures (ϕβ , ξβ , ηβ) for N such
that Aαβ = δαβ in 2.1. In the sequel, we shall assume that Aαβ = δαβ .

In the following let us consider two manifolds M and N as in Definition 2.2,
and suppose that M is compact. As in [3] (for the case of the maps between
hyper-Kähler manifolds), for a smooth map f : M → N , consider the energy
functional

E(f) =
1
2
‖ df ‖2= 1

2

∫

M

gijhmn∂if
m∂jf

n ∗ 1,

where ∗1 is the volume element of M , the functional

ET (f) =
∫

M

∑
α

〈Jα, f∗ϕα〉 ∗ 1 =
1
2

∫

M

∑
α

(Jα)pq(ϕα)mk∂pf
m∂qf

k ∗ 1,

and

I(f) =
1
2

∫

M

(| df −
∑
α

ϕαdfJα |2 +〈
∑
α

ηα ◦ df ◦ Jα,
∑
α

ηα ◦ df ◦ Jα〉) ∗ 1.

Remark 2.1. Since for a quaternionic map one obtains easily that
∑

α ηα ◦
df ◦ Jα = 0, it follows that f is a quaternionic map if and only if I(f) = 0.
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Remark 2.2. Note that, if J is an almost Kähler structure on (M, g), with
the fundamental 2-form ω, and if (ϕ, ξ, η, h) is a metric almost contact structure
on N such that the fundamental 2-form Ω on N is closed, then any ±(J, ϕ)-
holomorphic map between M and N is a minimum of the energy integral in its
homotopy class, since

(2.2) E(f) +
∫

M

〈J, f∗ϕ〉 ∗ 1 =
1
4

∫

M

(| df − ϕdfJ |2 +〈η ◦ df, η ◦ df〉) ∗ 1,

where we use the fact that
∫

M
〈J, f∗ϕ〉∗1 =

∫
M
〈ω, f∗Ω〉∗1 which is a homotopy

invariant, (see [5]).

Theorem 2.3. Let f : M → N be a smooth map between two manifolds M
and N as above. Then

(2.3) E(f) + ET (f) =
1
4
I(f).

If the fundamental 2-forms on N corresponding to the three almost contact struc-
tures are closed and if f is a quaternionic map, then f is a minimum of the
energy in its homotopy class.

Proof. After a straightforward computation one obtains

I(f) = E(f) + 2ET (f) +
1
2

∫

M

(〈
∑
α

ϕαdfJα,
∑
α

ϕαdfJα〉+

+〈
∑
α

ηα ◦ df ◦ Jα,
∑
α

ηα ◦ df ◦ Jα〉) ∗ 1.

Let {ei, J1ei, J2ei, J3ei} be an orthonormal local framed field on M adapted
to the hyper almost Kähler structure. One obtains

1
2

∫

M

〈
∑
α

ϕαdfJα,
∑
α

ϕαdfJα〉∗1 =
1
2

∫

M

m∑

i=1

[h(
∑
α

ϕαdfJα(ei),
∑
α

ϕαdfJα(ei))+

+
∑

β

h(
∑
α

ϕαdfJα(Jβei),
∑
α

ϕαdfJα(Jβei)) ∗ 1,

where dim M = 4m. Using the definition of the hyper almost Kähler structure
and the definition of the almost contact 3-structure, it follows easily

1
2

∫

M

〈
∑
α

ϕαdfJα,
∑
α

ϕαdfJα〉 ∗ 1 = 3E(f) + 2ET (f)−

−1
2

∫

M

m∑

i=1

{[
∑
α

ηα(dfJα(ei))][
∑
α

ηα(dfJα(ei))]+

+
∑

β

[
∑
α

ηα(dfJα(Jβei))][
∑
α

ηα(dfJα(Jβei))]} ∗ 1,
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Hence E(f) + ET (f) = 1
4I(f). For a pair of structures (Jα, ϕβ), ET is a

homotopy invariant, (see [5]). If f is a quaternionic map, that means I(f) = 0,
then f is a minimum of the energy in its homotopy class.

Defining the quaternionic maps between a hyper almost Kähler manifold
and a hyperframed manifold in the same way as the quaternionic maps with the
target manifold a 3-almost contact manifold, one obtains the following

Theorem 2.4. Let (M, Jα, g) be a compact hyper almost Kähler manifold and
let (N,ϕα, ξα

a , ηα
a , h), r = 1, r, be a metric hyperframed manifold. Then, for any

smooth map f : M → N , we have E(f) + ET (f) = 1
4I(f), where E(f) and

ET (f) are defined as above and

I(f) =
1
2

∫

M

(| df −
∑
α

ϕαdfJα |2 +
r∑

a=1

〈
∑
α

ηα
a ◦ df ◦ Jα,

∑
α

ηα
a ◦ df ◦ Jα〉) ∗ 1.

If the fundamental 2-forms on N corresponding to the three framed ϕα-structu-
res are closed and if f is a quaternionic map, then f is a minimum of the energy
in its homotopy class.

Remark 2.5. Note that a map f defined as in the previous theorem is quater-
nionic if and only if I(f) = 0.

Just like in [3], where the target manifold is a hyper-Kähler manifold, a
criterion which detects when a quaternionic map is a (J, ϕ)-holomorphic map
with respect to a structure in the hyper-Kähler S2 and a structure in the 3-
almost contact S2, can be obtained.

Theorem 2.6. Let f : M → N be a quaternionic map between a hyper-Kähler
manifold and a 3-almost contact manifold. Let A be a 3×3-matrix whose (α, β)-
entries are − ∫

M
〈Jα, f∗ϕβ〉 ∗ 1 for α, β = 1, 2, 3. Then

(tr A)2 > max{eigenvalues of AAt}

and the equality holds if and only if f is a (J, ϕ)-holomorphic map with respect
to a structure in the hyper-Kähler S2 and a structure in the 3-almost contact
S2.

Proof. Set J = XαJα with | X |= 1 and ϕ = Y βϕβ , η =
∑

β Y βηβ , ξ =∑
β Y βξβ , with | Y |= 1. Then, from 2.2 one obtains

E(f) = XAY t +
1
4

∫

M

(| df − ϕdfJ |2 +〈η ◦ df ◦ J, η ◦ df ◦ J〉) ∗ 1.

Since f is quaternionic, from 2.3, we have E(f) = tr A. It follows that
tr A > XAtY , for any unit vectors X, Y . The equality holds if and only if f is
holomorphic with respect J and ϕ.
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All eigenvalues of AAt are nonnegative. Let 4λ2 be an eigenvalue of AAt

with λ > 0. Then there is a unit vector Yλ in R3 such that AAtY t
λ = 4λ2Y t

λ .
Hence

Yλ(AtAY t
λ) = Yλ(AAtY t

λ) = 4λ2YλY t
λ .

We have | AY t
λ |= 2λ. Suppose λ 6= 0 and we choose Xt

λ = 1
2λAY t

λ . It follows
XλAY t

λ = 2λ. Then tr A > 2λ. Hence (tr A)2 > max{eigenvalues of AAt}.
If all the eigenvalues of AAt are 0 that is trivially true.

For the second part of the theorem let us consider the Lagrange multiplier

F (X, Y ) = XAY t − λ(| X |2 −1)− µ(| Y |2 −1).

If XAY t attains its maximum at two unit vector fields V,W ∈ R3, then
FX = 0, FY = 0 in X = V , Y = W . One obtains AW t = 2λV t, V A = 2µW .
Then 2λ = 2λ | V |2= V AW t = 2µ | W |2= 2µ. This implies AtAW t =
2λAtV t = 4λµW t = 4λ2W t. That is 4λ2 is an eigenvalue of AtA. If f is (J, ϕ)-
holomorphic with respect to a complex structure in the hyper-Kähler S2, on M
and an almost contact structure in the 3-almost contact S2, on N , then XAY t

attains its maximum tr A. On the other hand, tr A = XAY t = 2λ and then
4λ2 is an eigenvalue of AtA.

Conversely, if tr A = max{eigenvalues of AAt}, we take 2λ = tr A and it
follows that 4λ2 is an eigenvalue of AtA. Suppose | Y |= 1 and AtAY t = 4λ2Y t.
It follows that Y AtAY t = 4λ2 and then | AY t |2= 4λ2. Taking Xt = 1

2λAY t

one obtains XAY t = 2λ = tr A. Hence f is a (J, ϕ)-holomorphic map with
respect to a complex structure in the hyper-Kähler S2, on M and an almost
contact structure in the 3-almost contact S2, on N . Note that if A is the zero
matrix, then the quaternionic map is a constant.

3. The stability of the quaternionic maps

Let f : M → N be a smooth map between two Riemannian manifolds (M, g)
and (N, h). We should recall some notions and results related to the induced
bundle over M of TN , as they are presented in [14].

Let f−1(TN) be the induced bundle over M of TN defined as follows, denote
by π : TN → N the projection. Then

f−1TN = {(x, u) ∈ M × TN, π(u) = f(x), x ∈ M} =
⋃

x∈M

Tf(x)N.

The set of all C∞-sections of f−1TN , denoted by Γ(f−1TN) is

Γ(f−1TN) = {V : M → TN, C∞ −map, V (x) ∈ Tf(x)N,x ∈ M}.
Denote by ∇M ,∇N , the Levi-Civita connections on (M, g) and (N, h) re-

spectively. Then, for a smooth map f between (M, g) and (N,h), we de-
fine the induced connection ∇̃ on the induced bundle f−1TN as follows, for
X ∈ χ(M), V ∈ Γ(f−1TN), define ∇̃XV ∈ Γ(f−1TN) by ∇̃XV = ∇N

dfXV .
Then the connection ∇̃ and the metric h are compatible, that is, for V1, V2 ∈

Γ(f−1TN), X ∈ χ(M) we have X(h(V1, V2)) = h(∇̃XV1, V2) + h(V1, ∇̃XV2).
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Theorem 3.1. Let f : M → N be a quaternionic map between two hyper-
Kähler manifolds, (M,Jα, g) and (N,Jα, h). If M is compact, then

∫

M

h(JfV, V ) ∗ 1 =
1
4

∫

M

h(DV,DV ) ∗ 1 > 0,

where V ∈ Γ(f−1TN), and Jf is the Jacobi operator of f defined by

JfV = −
m∑

i=1

(∇̃ei∇̃ei − ∇̃∇ei
ei)V −

m∑

i=1

RN (V, dfei)dfei, V ∈ Γ(f−1TN),

where RN denote the curvature tensor on N . For each V ∈ Γ(f−1TN), DV is
an element of Γ(f−1TN ⊗ T ∗M) defined by

DV (X) =
∑
α

Jα∇̃JαXV − ∇̃XV, X ∈ χ(M),

Then
1) f is weakly stable, that is, each eigenvalue of Jf is nonnegative.
2) kerJf = {V ∈ Γ(f−1TN), DV = 0}.

Proof. Let {ei, J1ei, J2ei, J3ei}m
i=1 be an orthonormal local frame field on M

adapted to the hyper-Kähler structure on M .
According to the definition of DV , one obtains, for any V ∈ Γ(f−1TN),

(3.1) h(DV, DV ) =
m∑

i=1

{h(DV (ei), DV (ei)) +
∑
α

h(DV (Jαei), DV (Jαei))} =

=
m∑

i=1

{h(
∑
α

Jα∇̃JαeiV − ∇̃eiV,
∑
α

Jα∇̃JαeiV − ∇̃eiV )+

+
∑
α

h(
∑

β

Jβ∇̃JβJαeiV − ∇̃JαeiV,
∑

β

Jβ∇̃JβJαeiV − ∇̃JαeiV )} =

=
m∑

i=1

{4h(∇̃eiV, ∇̃eiV ) + 4
∑
α

h(∇̃JαeiV, ∇̃JαeiV )− 8h(∇̃eiV,
∑
α

Jα∇̃JαeiV )+

+8
∑

α6=β

h(Jα∇̃JαeiV,Jβ∇̃JβeiV )},

since the two manifolds are hyper-Kähler.
Next we shall prove that

(3.2) RN (V, dfei)dfei +
∑
α

RN (V, dfJαei)dfJαei =

= −
∑
α

JαRN (dfei, dfJαei)V + J3R
N (dfJ2ei, dfJ1ei)V +
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+J2R
N (dfJ1ei, dfJ3ei)V + J1R

N (dfJ3ei, dfJ2ei)V.

Since f is a quaternionic map one obtains

RN (V, dfei)dfei +
∑
α

RN (V, dfJαei)dfJαei =

=
∑
α

JαRN (V, dfei)dfJαei +
∑
α

∑

β

JβRN (V, dfJαei)dfJβJαei =

= −
∑
α

JαRN (dfei, V )dfJαei +
∑
α

JαRN (dfJαei, V )dfei + A =

= −
∑
α

JαRN (dfei, dfJαei)V + A,

where A is the sum of the last three terms in the right side of 3.2 and where we
used the formulas, for X,Y, Z ∈ χ(N)

RN (X,Y )Z + RN (Y, X)Z = 0, RN (X,Y )Z + RN (Y,Z)X + RN (Z, X)Y = 0.

Since
∫

M

h(JfV, V ) ∗ 1 =
∫

M

m∑

i=1

{h(∇̃eiV, ∇̃eiV ) +
∑
α

h(∇̃JαeiV, ∇̃JαeiV )−

−h(RN (V, dfei)dfei, V )−
∑
α

h(RN (V, dfJαei)dfJαei, V )} ∗ 1, (see[14]),

we have

(3.3)
∫

M

[h(JfV, V )− 1
4
h(DV,DV )] ∗ 1 =

=
∫

M

{
m∑

i=1

{h(
∑
α

JαRN (dfei, dfJαei)V, V )−

−h(A, V ) + 2h(∇̃eiV,
∑
α

Jα∇̃JαeiV )− 2
∑

α 6=β

h(Jα∇̃JαeiV,Jβ∇̃JβeiV )} ∗ 1.

We have

(3.4) −h(JαRN (dfei, dfJαei)V, V ) = h(RN (dfei, dfJαei)V,JαV ) =

= h(∇̃ei∇̃JαeiV − ∇̃Jαei∇̃eiV − ∇̃[ei,Jαei]V,JαV ) =

= ei(h(∇̃JαeiV,JαV ))− h(∇̃JαeiV, ∇̃eiJαV )−
−Jαei(h(∇̃eiV,JαV )) + h(∇̃eiV, ∇̃JαeiJαV )− h(∇̃∇ei

JαeiV,JαV )+

+h(∇̃∇Jαei
eiV,JαV ),
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for any α = 1, 2, 3, since ∇̃ and h are compatible, where ∇ denote the Levi-
Civita connection on M . In the same way we can compute h(A, V ). If we
denote

m∑

i=1

{h(
∑
α

JαRN (dfei, dfJαei)V, V )− h(A, V )} = B,

we obtain B = B1 + B2, where

B1 =
m∑

i=1

{
∑
α

[−eih(∇̃Jαei
V,JαV ) + Jαeih(∇̃ei

V,JαV ) + h(∇̃∇ei
Jαei

V,JαV )−

−h(∇̃∇Jαei
eiV,JαV )] + J2eih(∇̃J1eiV,J3V )− J1eih(∇̃J2eiV,J3V )−

−h(∇̃∇J2ei
J1eiV,J3V ) + h(∇̃∇J1ei

J2eiV,J3V ) + J1eih(∇̃J3eiV,J2V )−
−J3eih(∇̃J1eiV,J2V )− h(∇̃∇J1ei

J3eiV,J2V ) + h(∇̃∇J3ei
J1eiV,J2V )+

+J3eih(∇̃J2eiV,J1V )− J2eih(∇̃J3eiV,J1V )− h(∇̃∇J3ei
J2eiV,J1V )+

+h(∇̃∇J2ei
J3eiV,J1V )},

and

B2 =
m∑

i=1

{
∑
α

[h(∇̃JαeiV, ∇̃eiJαV )− h(∇̃eiV, ∇̃JαeiJαV )]−

−h(∇̃J1eiV, ∇̃J2eiJ3V ) + h(∇̃J2eiV, ∇̃J1eiJ3V )− h(∇̃J3eiV, ∇̃J1eiJ2V )+

+h(∇̃J1eiV, ∇̃J3eiJ2V )− h(∇̃J2eiV, ∇̃J3eiJ1V ) + h(∇̃J3eiV, ∇̃J2eiJ1V )} =

= 2{
m∑

i=1

[
∑
α

h(Jα∇̃eiV, ∇̃JαeiV ) + h(∇̃J1eiJ3V, ∇̃J2eiV )+

+h(∇̃J3eiJ2V, ∇̃J1eiV ) + h(∇̃J2eiJ1V, ∇̃J3eiV )]} =

= −2
m∑

i=1

[h(∇̃eiV,
∑
α

Jα∇̃JαeiV )− 2
∑

α6=β

h(Jα∇̃JαeiV,Jβ∇̃JβeiV )],

since the two manifolds are hyper-Kähler.
Consider the vector field X ∈ χ(M) defined by 1

g(X, Y ) = −
∑
α

h(∇̃JαY V,JαV ),

for any Y ∈ χ(M). By a straightforward computation one obtains div X = B1.
From the expressions of B1 and B2 by using the Green’s formula, it follows that

∫

M

h(JfV, V ) ∗ 1 =
1
4

∫

M

h(DV,DV ) ∗ 1.
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Theorem 3.2. Let f : M → N be a quaternionic map between a hyper-Kähler
manifold, (M, Jα, g) and a 3-cosymplectic manifold (N,ϕα, ξα, ηα, h). If M is
compact, then
∫

M

h(JfV, V ) ∗ 1 =
1
4

∫

M

h(DV, DV ) ∗ 1 +
1
12

∫

M

∑
α

tr (ηα⊗ ηα)(DV,DV ) ∗ 1,

where, for any V ∈ Γ(f−1TN), DV (X) =
∑

α ϕα∇̃JαXV − ∇̃XV , X ∈ χ(M),
and

(ηα ⊗ ηα)(DV,DV )(X,Y ) = ηα(DV (X))ηα(DV (Y )).

Then
1) f is weakly stable, that is, each eigenvalue of Jf is nonnegative.
2) kerJf = {V ∈ Γ(f−1TN), DV = 0}.

Proof. After a similar computation with that in Theorem 3.1, based on
the definitions of the hyper-Kähler structure and of the 3-cosymplectic struc-
ture, on the definitions of the Levi-Civita connections on the domain and the
target manifolds and on Theorem 1.1, one obtains that in the expression of∫

M
h(JfV, V ) ∗ 1− 1

4

∫
M

h(DV, DV ) ∗ 1 the following new terms arise

m∑

i=1

{
∫

M

1
4
[
∑
α

∑

β

ηα(∇̃JβeiV )ηα(∇̃JβeiV ) +
∑
α

ηα(∇̃eiV )ηα(∇̃eiV )] ∗ 1+

+
∫

M

1
2
[
∑

α 6=β

ηα(∇̃JαeiV )ηβ(∇̃JβeiV )−
∑

α 6=β

ηα(∇̃JβeiV )ηβ(∇̃JαeiV )] ∗ 1−

−
∫

M

1
2
[η1(∇̃eiV )(η3(∇̃J2eiV )− η2(∇̃J3eiV ))+

+η2(∇̃eiV )(η1(∇̃J3eiV )−η3(∇̃J1eiV ))+η3(∇̃eiV )(η2(∇̃J1eiV )−η1(∇̃J2eiV ))]∗1.

After a straightforward computation, one obtains that this is

1
12

∫

M

∑
α

tr (ηα ⊗ ηα)(DV,DV ) ∗ 1.

In the same way one obtains

Theorem 3.3. Let f : M → N be a quaternionic map between a hyper-Kähler
manifold, (M, Jα, g) and a hyper C-manifold (N, ϕα, ξα

a , ηα
a , h), with a = 1, r. If

M is compact, then
∫

M

h(JfV, V )∗1 =
1
4

∫

M

h(DV, DV )∗1+
1
12

∫

M

r∑
a=1

∑
α

tr (ηα
a⊗ηα

a )(DV,DV )∗1.

Then
1) f is weakly stable, that is, each eigenvalue of Jf is nonnegative.
2) kerJf = {V ∈ Γ(f−1TN), DV = 0}.
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4. Quaternionic maps between a hyper-Kähler manifold with
dimension 4 and a 3-cosymplectic manifold with dimen-
sion 3

Let M be a differential manifold which is of real dimension 4. Then the only
hyper-Kähler structure on M is defined by the tensor fields of type (1, 1) whose
matrix expressions take the following form, (see [9])

(4.1) J1 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 , J2 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 ,

J3 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 .

Concerning the 3-cosymplectic structures which can be defined on a 3-
dimensional manifold we can state the following.

Let N be a 3-dimensional manifold. Let us consider on N the almost contact
structures given in local coordinates by

ϕ1 =




0 0 0
0 0 1
0 −1 0


 , η1 = dx1, ξ1 =

∂

∂x1
,

(4.2) ϕ2 =




0 0 −1
0 0 0
1 0 0


 , η2 = dx2, ξ2 =

∂

∂x2
,

ϕ3 =




0 −1 0
1 0 0
0 0 0


 , η3 = dx3, ξ3 =

∂

∂x3
.

It can be easily verified that this structures define an almost contact 3-
structure on N . Moreover, let us consider the induced almost complex struc-
tures on N × R, defined by Ji = (X, f d

dt ) = (ϕiX − fξi, ηi(X) d
dt ), i = 1, 3,

where X ∈ χ(N) and f ∈ C∞(N × R). It is proved in [1] that these tensor
fields define three almost contact structures on N ×R. After a straightforward
computation one obtains that Ji actually are the tensor fields which define the
unique hyper-Kähler structure on N × R. It follows that the almost contact
structures defined on N are normal structures and then on N we obtained a
3-cosymplectic structure, (see [1]).

In the following let us consider a new 3-cosymplectic structure on N , (ψi, ζ
i, θi),

i = 1, 3, such that the fundamental 2-forms, ωi, i = 1, 3, corresponding to each
almost contact structure, are closed. Then, taking the induced almost complex
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structures on N × R defined as above, and the metric G on N × R, defined
by G = g + dtdt, where g is the Riemannian metric associated to all almost
contact structures on N , which gives the fundamental 2-forms ωi on N , one
obtains for the corresponding fundamental 2-forms, Ωi, i = 1, 3, on N ×R, that
Ωi = ωi − θi ∧ dt. Hence, if the 1-forms θi are closed and the 2-forms ωi are
also closed, then dΩi = 0. But, using a Hitchin’s lemma one obtains that the
induced almost complex structures on N ×R are normal and then they define a
hyper-Kähler structure on N × R, (see [8], [10]). Since this structure is unique
and since the induced Kähler structures on N × R are uniquely determined by
the cosymplectic structures on N , it follows that the structure defined by 4.2 is
the only 3-cosymplectic structure on N .

Let f : M → N be a smooth map between a 4-dimensional hyper-Kahler
manifold and a 3-dimensional 3-cosymplectic manifold. Then, using 2.1, with
Aαβ = δαβ , 4.1 and 4.2, one obtains that f is quaternionic map if and only if

(4.3)





f1
1 + f2

2 + f3
3 = 0

f2
1 − f1

2 − f3
4 = 0

f3
1 + f2

4 − f1
3 = 0

−f1
4 + f3

2 − f2
3 = 0

,

where fa
i = ∂fa

∂xi , a = 1, 3, i = 1, 4.
Example. Let M and N be R4 and R3, respectively, endowed with the hyper-
Kähler and the 3-cosymplectic structures and let f : R4 → R3 be a smooth
map, given by

f(x1, x2, x3, x4) = (−2x1, x2, x3).

It is easy to see from 4.3 that f is a quaternionic map. The matrix of df is


−2 0 0 0
0 1 0 0
0 0 1 0


 .

Since the rank of this matrix is 3 and the rank of a ±(J, ϕ)-holomorphic map
must be even, it follows that f is a quaternionic map which is non-±(J, ϕ)-
holomorphic with respect to any almost complex structure on R4 and to any
almost contact structure on R3.

Using Theorem 3.2, after a straightforward computation, one obtains, for a
vector field V ∈ Γ(f−1TR3), that V ∈ Ker Jf if and only if





V 2
3 − V 3

2 = 0
V 1

3 + 2V 3
1 = 0

V 1
2 + 2V 2

1 = 0
2V 1

1 + V 2
2 + V 3

3 = 0

,

where V = V i ∂
∂xi and V j

i = ∂V j

∂xi , i, j = 1, 4, V i being smooth functions on R4.
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