Novi Sad J. Math. Vol. 36, No. 1, 2006, 21-34

QUATERNIONIC MAPS BETWEEN A HYPER-KÄHLER MANIFOLD AND A 3-ALMOST CONTACT MANIFOLD

Dorel Fetcu¹

Abstract. We prove that any quaternionic map between a hyper-Kähler manifold and a 3-almost contact manifold with a certain property is a harmonic map and we give some results about the stability of such a map and about the stability of a quaternionic map between hyper-Kähler manifolds.

AMS Mathematics Subject Classification (2000): 58E20, 53C26, 53D15

Key words and phrases: Quaternionic map, harmonic map, hyper-Kähler manifold, 3-almost contact manifold

1. Preliminaries

Let us recall that a hyper almost complex manifold is a manifold endowed with three almost complex structures, J_{α} , $\alpha = \overline{1,3}$, satisfying the quaternionic identities

(1.1)
$$J_{\gamma} = J_{\alpha}J_{\beta} = -J_{\beta}J_{\alpha},$$

for any even permutation $\{\alpha, \beta, \gamma\}$ of $\{1, 2, 3\}$. If these three almost complex structures are Kähler then the manifold is called a hyper-Kähler manifold.

For any real numbers a, b, c with $a^2 + b^2 + c^2 = 1$, one obtains a covariant complex structure $aJ_1 + bJ_2 + cJ_3$. As in [3], we shall refer this S²-family of complex structures as the hyper-Kähler S². Therefore, SO(3) acts naturally on the covariant complex structures. Every SO(3) matrix preserves the identities 1.1. A hyper-Kähler manifold is of dimension 4n.

In order to introduce the 3-almost contact manifolds and the hyperframed manifolds let us recall some basic notions and properties of the framed φ -manifolds.

Let M be an m-dimensional smooth manifold endowed with a tensor field φ of type (1, 1), satisfying the algebraic condition

(1.2)
$$\varphi^3 + \varphi = 0$$

The geometric structure on M defined by φ is called a φ -structure of rank r if the rank r of φ is constant on M and, in this case, M is called a φ -manifold. It follows easily that r is an even number.

 $^{^1 \}rm Department of Mathematics, Technical University of Iassy,Carol I Blvd., n. 11, 700506, Iassy, Romania, e-mail: dfetcu@math.tuiasi.ro$

If M is a $\varphi\text{-manifold}$ and if there are m-r vector fields ξ_i and m-r differential 1-forms η_i satisfying

(1.3)
$$\varphi^2 = -I + \sum_{i=1}^{m-r} \eta_i \otimes \xi_i, \quad \eta_i(\xi_j) = \delta_j^i,$$

where i, j = 1, 2, ..., m - r, M is said to be globally framed or to have a framed φ -structure. In this case M is called a globally framed φ -manifold or, simply, a framed φ -manifold. From (1.3), by some algebraic computations, one obtains,

(1.4)
$$\varphi \xi_i = 0, \quad \eta_i \circ \varphi = 0, \quad \varphi^3 + \varphi = 0$$

If m = 2n + 1 and $rank \ \varphi = 2n$ one obtains an almost contact structure on M.

Let M be an m-dimensional globally framed φ -manifold with structure tensors (φ, ξ_i, η_i) with $rank \ \varphi = r$, and consider the manifold $M \times \mathbb{R}^{m-r}$. We denote a vector field on $M \times \mathbb{R}^{m-r}$ by $(X, \sum_{i=1}^{m-r} f_i \frac{\partial}{\partial t^i})$ where X is tangent to M, $\{t^1, ..., t^{m-r}\}$ are the usual coordinates on \mathbb{R}^{m-r} , and $\{f_1, ..., f_{m-r}\}$ are functions on $M \times \mathbb{R}^{m-r}$. Define an almost complex structure on $M \times \mathbb{R}^{m-r}$ by

$$J(X, \sum_{i=1}^{m-r} f_i \frac{\partial}{\partial t^i}) = (\varphi X - \sum_{i=1}^{m-r} f_i \xi_i, \sum_{i=1}^{m-r} \eta_i(X) \frac{\partial}{\partial t^i}).$$

It is easy to check that $J^2 = -I$. If J is integrable we say that the framed φ -structure is normal. A framed φ -structure is normal if the tensor field S of type (1,2) defined by

(1.5)
$$S = N_{\varphi} + \sum_{i=1}^{m-r} d\eta_i \otimes \xi_i,$$

vanishes, (see [7]), where $N_{\varphi}(X, Y) = [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] + \varphi^2[X, Y]$, for $X, Y \in \chi(M)$, is the Nijenhuis tensor field of φ .

If g is a (semi-)Riemannian metric on M such that

(1.6)
$$g(\varphi X, \varphi Y) = g(X, Y) - \sum_{i=1}^{m-r} \eta_i(X) \eta_i(Y),$$

then we say that $(\varphi, \xi_i, \eta_i, g)$ is a metric framed φ -structure and M is called a metric framed φ -manifold. The metric g is called an associated (semi-)Riemannian metric.

The fundamental 2-form Ω of the considered metric framed φ -manifold M, is defined just like in the case of the almost Hermitian and almost contact metric manifold, by $\Omega = g(X, \varphi Y)$, for any $X, Y \in \chi(M)$.

The framed φ -manifold M with structure tensors (φ, ξ_i, η_i) is called a C-manifold if it is normal, $d\Omega = 0$ and $d\eta_i = 0, i = 1, ..., m - r$, (see [2]).

If on an almost contact manifold (M, φ, ξ, η) it is defined an associated Riemannian metric g then $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold. If on an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ we have $\Omega = d\eta$, where Ω is the fundamental 2-form on M, then we say that $(M, \varphi, \xi, \eta, g)$ is a contact metric manifold. If for an almost contact metric structure (φ, ξ, η, g) which is normal we have $d\eta = 0$ and $d\Omega = 0$, then $(N, \varphi, \xi, \eta, g)$ is called a cosymplectic manifold.

In [1] the following result is proved.

Theorem 1.1. An almost contact metric structure (φ, ξ, η, g) is cosymplectic if and only if φ is parallel.

In the same way one obtains

(1.7)

Theorem 1.2. If $(M, \varphi, \xi_i, \eta_i, g)$ is a *C*-manifold then φ is parallel.

In 1969 in [13] and in 1970 in [11], the authors defined the almost contact 3-structure (or the coquaternionic structure) on an odd dimensional manifold M, as follows.

If the manifold M admits three almost contact structure $(\varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}), \alpha = \overline{1,3}$, satisfying

$$arphi_{\gamma} = arphi_{lpha} arphi_{eta} - \eta^{eta} \otimes \xi^{lpha} = -arphi_{eta} arphi_{lpha} + \eta^{lpha} \otimes \xi^{eta},$$

 $\xi^{\gamma} = arphi_{lpha} \xi^{eta} = -arphi_{eta} \xi^{lpha}, \quad \eta^{\gamma} = \eta^{lpha} \circ arphi_{eta} = -\eta^{eta} \circ arphi_{eta}$

for any even permutation $\{\alpha, \beta, \gamma\}$ of $\{1, 2, 3\}$, then the manifold is said to have an almost contact 3-structure.

It is proved (see [11]) that there exists an associated metric to each of this three structures. If all structures are cosymplectic, then we call the manifold M a 3-cosymplectic manifold.

As a generalization of the notion of hyper almost complex manifold and the notion of 3-almost contact manifold we defined in [4] and [6] the hyperframed manifolds as follows.

If a differentiable manifold M admits three framed φ_{α} -structures, $(\varphi_{\alpha}, \xi_{\alpha}^{\alpha}, \eta_{\alpha}^{\alpha})$, such that dim $M - rank \ \varphi_{\alpha} = n$, for any $\alpha = 1, 2, 3$, satisfying the following, for any even permutation (α, β, γ) of (1, 2, 3),

(1.8)
$$\varphi_{\gamma} = \varphi_{\alpha}\varphi_{\beta} - \sum_{a=1}^{n} \eta_{a}^{\beta} \otimes \xi_{a}^{\alpha} = -\varphi_{\beta}\varphi_{\alpha} + \sum_{a=1}^{n} \eta_{a}^{\alpha} \otimes \xi_{a}^{\beta},$$
$$\xi_{a}^{\gamma} = \varphi_{\alpha}\xi_{a}^{\beta} = -\varphi_{\beta}\xi_{a}^{\alpha}, \quad \eta_{a}^{\gamma} = \eta_{a}^{\alpha} \circ \varphi_{\beta} = -\eta_{a}^{\beta} \circ \varphi_{\alpha},$$

then the manifold is said to be a hyperframed manifold. A hyperframed manifold is of dimension 4m + 3n.

Obviously a 3-almost contact manifold is a hyperframed manifold.

Note that for any real numbers p, q, r with $p^2 + q^2 + r^2 = 1$ we obtain a framed φ -structure $(p\varphi_1 + q\varphi_2 + r\varphi_3, p\xi_a^1 + q\xi_a^2 + r\xi_a^3, p\eta_a^1 + q\eta_a^2 + r\eta_a^3)$, and that

every SO(3) matrix preserve 1.7 and 1.8. We shall refer this S²-family of almost contact structures as the 3-almost contact S².

In [6], we prove that there exists a Riemannian metric associated to all three framed φ_{α} -structures. If the framed φ_{α} -structures are *C*-structures we call the manifold M a hyper *C*-manifold.

2. Quaternionic maps

Definition 2.1. Let (M, J, g) be an almost Kähler manifold and let $(N, \varphi, \xi_a, \eta_a, h)$ be a metric framed φ -manifold. A smooth map $f : M \to N$ is called a $\pm (J, \varphi)$ -holomorphic map if $dfJ = \pm \varphi df$, where $df : TM \to TN$ denotes the induced tangent map of f.

Definition 2.2. Let (M, J_{α}, g) be a hyper almost Kähler manifold and let $(N, \varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}, h)$ be a metric 3-almost contact manifold. We call a smooth map $f: M \to N$ a quaternionic map if

(2.1)
$$A^{\alpha\beta}\varphi_{\beta}df J_{\alpha} = df,$$

where $A^{\alpha\beta}$ are the entries of a matrix A in SO(3).

It is easy to verify that any $\pm(J,\varphi)$ -holomorphic map with respect to an almost complex structure $aJ_1 + bJ_2 + cJ_3$, with $a^2 + b^2 + c^2 = 1$ and an almost contact structure $(p\varphi_1 + q\varphi_2 + r\varphi_3, p\xi^1 + q\xi^2 + r\xi^3, p\eta^1 + q\eta^2 + r\eta^3)$, with $p^2 + q^2 + r^2 = 1$, is a quaternionic map.

Since SO(3) preserves the identities 1.1 and 1.7, we can choose the complex structures J_{α} for M and the almost contact structures $(\varphi_{\beta}, \xi^{\beta}, \eta^{\beta})$ for N such that $A^{\alpha\beta} = \delta_{\alpha\beta}$ in 2.1. In the sequel, we shall assume that $A^{\alpha\beta} = \delta_{\alpha\beta}$.

In the following let us consider two manifolds M and N as in Definition 2.2, and suppose that M is compact. As in [3] (for the case of the maps between hyper-Kähler manifolds), for a smooth map $f: M \to N$, consider the energy functional

$$E(f) = \frac{1}{2} \parallel df \parallel^2 = \frac{1}{2} \int_M g^{ij} h_{mn} \partial_i f^m \partial_j f^n * 1,$$

where *1 is the volume element of M, the functional

$$E_T(f) = \int_M \sum_{\alpha} \langle J_{\alpha}, f^* \varphi_{\alpha} \rangle * 1 = \frac{1}{2} \int_M \sum_{\alpha} (J_{\alpha})^{pq} (\varphi_{\alpha})_{mk} \partial_p f^m \partial_q f^k * 1,$$

and

$$I(f) = \frac{1}{2} \int_{M} (|df - \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}|^{2} + \langle \sum_{\alpha} \eta^{\alpha} \circ df \circ J_{\alpha}, \sum_{\alpha} \eta^{\alpha} \circ df \circ J_{\alpha} \rangle) * 1.$$

Remark 2.1. Since for a quaternionic map one obtains easily that $\sum_{\alpha} \eta^{\alpha} \circ df \circ J_{\alpha} = 0$, it follows that f is a quaternionic map if and only if I(f) = 0.

Remark 2.2. Note that, if J is an almost Kähler structure on (M, g), with the fundamental 2-form ω , and if (φ, ξ, η, h) is a metric almost contact structure on N such that the fundamental 2-form Ω on N is closed, then any $\pm(J, \varphi)$ -holomorphic map between M and N is a minimum of the energy integral in its homotopy class, since

(2.2)
$$E(f) + \int_M \langle J, f^*\varphi \rangle * 1 = \frac{1}{4} \int_M (|df - \varphi df J|^2 + \langle \eta \circ df, \eta \circ df \rangle) * 1,$$

where we use the fact that $\int_M \langle J, f^* \varphi \rangle * 1 = \int_M \langle \omega, f^* \Omega \rangle * 1$ which is a homotopy invariant, (see [5]).

Theorem 2.3. Let $f: M \to N$ be a smooth map between two manifolds M and N as above. Then

(2.3)
$$E(f) + E_T(f) = \frac{1}{4}I(f).$$

If the fundamental 2-forms on N corresponding to the three almost contact structures are closed and if f is a quaternionic map, then f is a minimum of the energy in its homotopy class.

Proof. After a straightforward computation one obtains

$$\begin{split} I(f) &= E(f) + 2E_T(f) + \frac{1}{2} \int_M (\langle \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} df J_{\alpha} \rangle + \\ &+ \langle \sum_{\alpha} \eta^{\alpha} \circ df \circ J_{\alpha}, \sum_{\alpha} \eta^{\alpha} \circ df \circ J_{\alpha} \rangle) * 1. \end{split}$$

Let $\{e_i, J_1e_i, J_2e_i, J_3e_i\}$ be an orthonormal local framed field on M adapted to the hyper almost Kähler structure. One obtains

$$\begin{split} \frac{1}{2} \int_{M} \langle \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} df J_{\alpha} \rangle * 1 &= \frac{1}{2} \int_{M} \sum_{i=1}^{m} [h(\sum_{\alpha} \varphi_{\alpha} df J_{\alpha}(e_{i}), \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}(e_{i})) + \\ &+ \sum_{\beta} h(\sum_{\alpha} \varphi_{\alpha} df J_{\alpha}(J_{\beta} e_{i}), \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}(J_{\beta} e_{i})) * 1, \end{split}$$

where $\dim M = 4m$. Using the definition of the hyper almost Kähler structure and the definition of the almost contact 3-structure, it follows easily

$$\frac{1}{2} \int_{M} \langle \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} df J_{\alpha} \rangle * 1 = 3E(f) + 2E_{T}(f) - \frac{1}{2} \int_{M} \sum_{i=1}^{m} \{ \sum_{\alpha} \eta^{\alpha} (df J_{\alpha}(e_{i}))] [\sum_{\alpha} \eta^{\alpha} (df J_{\alpha}(e_{i}))] + \sum_{\beta} [\sum_{\alpha} \eta^{\alpha} (df J_{\alpha}(J_{\beta}e_{i}))] [\sum_{\alpha} \eta^{\alpha} (df J_{\alpha}(J_{\beta}e_{i}))] \} * 1,$$

Hence $E(f) + E_T(f) = \frac{1}{4}I(f)$. For a pair of structures $(J^{\alpha}, \varphi^{\beta})$, E_T is a homotopy invariant, (see [5]). If f is a quaternionic map, that means I(f) = 0, then f is a minimum of the energy in its homotopy class.

Defining the quaternionic maps between a hyper almost Kähler manifold and a hyperframed manifold in the same way as the quaternionic maps with the target manifold a 3-almost contact manifold, one obtains the following

Theorem 2.4. Let (M, J_{α}, g) be a compact hyper almost Kähler manifold and let $(N, \varphi_{\alpha}, \xi_{a}^{\alpha}, \eta_{a}^{\alpha}, h), r = \overline{1, r}$, be a metric hyperframed manifold. Then, for any smooth map $f : M \to N$, we have $E(f) + E_T(f) = \frac{1}{4}I(f)$, where E(f) and $E_T(f)$ are defined as above and

$$I(f) = \frac{1}{2} \int_{M} (|df - \sum_{\alpha} \varphi_{\alpha} df J_{\alpha}|^{2} + \sum_{a=1}^{r} \langle \sum_{\alpha} \eta_{a}^{\alpha} \circ df \circ J_{\alpha}, \sum_{\alpha} \eta_{a}^{\alpha} \circ df \circ J_{\alpha} \rangle) * 1.$$

If the fundamental 2-forms on N corresponding to the three framed φ_{α} -structures are closed and if f is a quaternionic map, then f is a minimum of the energy in its homotopy class.

Remark 2.5. Note that a map f defined as in the previous theorem is quaternionic if and only if I(f) = 0.

Just like in [3], where the target manifold is a hyper-Kähler manifold, a criterion which detects when a quaternionic map is a (J, φ) -holomorphic map with respect to a structure in the hyper-Kähler \mathbb{S}^2 and a structure in the 3-almost contact \mathbb{S}^2 , can be obtained.

Theorem 2.6. Let $f: M \to N$ be a quaternionic map between a hyper-Kähler manifold and a 3-almost contact manifold. Let A be a 3×3 -matrix whose (α, β) entries are $-\int_M \langle J_\alpha, f^* \varphi_\beta \rangle * 1$ for $\alpha, \beta = 1, 2, 3$. Then

$$(tr \ A)^2 \ge max\{eigenvalues \ of \ AA^t\}$$

and the equality holds if and only if f is a (J, φ) -holomorphic map with respect to a structure in the hyper-Kähler \mathbb{S}^2 and a structure in the 3-almost contact \mathbb{S}^2 .

Proof. Set $J = X^{\alpha}J_{\alpha}$ with |X| = 1 and $\varphi = Y^{\beta}\varphi_{\beta}$, $\eta = \sum_{\beta}Y^{\beta}\eta^{\beta}$, $\xi = \sum_{\beta}Y^{\beta}\xi^{\beta}$, with |Y| = 1. Then, from 2.2 one obtains

$$E(f) = XAY^{t} + \frac{1}{4} \int_{M} (|df - \varphi df J|^{2} + \langle \eta \circ df \circ J, \eta \circ df \circ J \rangle) * 1.$$

Since f is quaternionic, from 2.3, we have E(f) = tr A. It follows that $tr A \ge XA^tY$, for any unit vectors X, Y. The equality holds if and only if f is holomorphic with respect J and φ .

All eigenvalues of AA^t are nonnegative. Let $4\lambda^2$ be an eigenvalue of AA^t with $\lambda \ge 0$. Then there is a unit vector Y_{λ} in \mathbb{R}^3 such that $AA^tY_{\lambda}^t = 4\lambda^2Y_{\lambda}^t$. Hence

$$Y_{\lambda}(A^{t}AY_{\lambda}^{t}) = Y_{\lambda}(AA^{t}Y_{\lambda}^{t}) = 4\lambda^{2}Y_{\lambda}Y_{\lambda}^{t}.$$

We have $|AY_{\lambda}^{t}| = 2\lambda$. Suppose $\lambda \neq 0$ and we choose $X_{\lambda}^{t} = \frac{1}{2\lambda}AY_{\lambda}^{t}$. It follows $X_{\lambda}AY_{\lambda}^{t} = 2\lambda$. Then $tr \ A \geq 2\lambda$. Hence $(tr \ A)^{2} \geq max\{eigenvalues \ of \ AA^{t}\}$. If all the eigenvalues of AA^{t} are 0 that is trivially true.

For the second part of the theorem let us consider the Lagrange multiplier

$$F(X,Y) = XAY^{t} - \lambda(|X|^{2} - 1) - \mu(|Y|^{2} - 1).$$

If XAY^t attains its maximum at two unit vector fields $V, W \in \mathbb{R}^3$, then $F_X = 0$, $F_Y = 0$ in X = V, Y = W. One obtains $AW^t = 2\lambda V^t$, $VA = 2\mu W$. Then $2\lambda = 2\lambda | V |^2 = VAW^t = 2\mu | W |^2 = 2\mu$. This implies $A^tAW^t = 2\lambda A^tV^t = 4\lambda\mu W^t = 4\lambda^2 W^t$. That is $4\lambda^2$ is an eigenvalue of A^tA . If f is (J, φ) -holomorphic with respect to a complex structure in the hyper-Kähler \mathbb{S}^2 , on M and an almost contact structure in the 3-almost contact \mathbb{S}^2 , on N, then XAY^t attains its maximum tr A. On the other hand, $tr A = XAY^t = 2\lambda$ and then $4\lambda^2$ is an eigenvalue of A^tA .

Conversely, if $tr A = max\{eigenvalues of AA^t\}$, we take $2\lambda = tr A$ and it follows that $4\lambda^2$ is an eigenvalue of A^tA . Suppose |Y| = 1 and $A^tAY^t = 4\lambda^2Y^t$. It follows that $YA^tAY^t = 4\lambda^2$ and then $|AY^t|^2 = 4\lambda^2$. Taking $X^t = \frac{1}{2\lambda}AY^t$ one obtains $XAY^t = 2\lambda = tr A$. Hence f is a (J, φ) -holomorphic map with respect to a complex structure in the hyper-Kähler \mathbb{S}^2 , on M and an almost contact structure in the 3-almost contact \mathbb{S}^2 , on N. Note that if A is the zero matrix, then the quaternionic map is a constant.

3. The stability of the quaternionic maps

Let $f: M \to N$ be a smooth map between two Riemannian manifolds (M, g)and (N, h). We should recall some notions and results related to the induced bundle over M of TN, as they are presented in [14].

Let $f^{-1}(TN)$ be the induced bundle over M of TN defined as follows, denote by $\pi: TN \to N$ the projection. Then

$$f^{-1}TN = \{(x, u) \in M \times TN, \pi(u) = f(x), x \in M\} = \bigcup_{x \in M} T_{f(x)}N.$$

The set of all C^{∞} -sections of $f^{-1}TN$, denoted by $\Gamma(f^{-1}TN)$ is

$$\Gamma(f^{-1}TN) = \{V : M \to TN, C^{\infty} - map, V(x) \in T_{f(x)}N, x \in M\}.$$

Denote by ∇^M, ∇^N , the Levi-Civita connections on (M, g) and (N, h) respectively. Then, for a smooth map f between (M, g) and (N, h), we define the induced connection $\widetilde{\nabla}$ on the induced bundle $f^{-1}TN$ as follows, for $X \in \chi(M), V \in \Gamma(f^{-1}TN)$, define $\widetilde{\nabla}_X V \in \Gamma(f^{-1}TN)$ by $\widetilde{\nabla}_X V = \nabla^N_{dfX} V$.

Then the connection $\widetilde{\nabla}$ and the metric h are compatible, that is, for $V_1, V_2 \in \Gamma(f^{-1}TN), X \in \chi(M)$ we have $X(h(V_1, V_2)) = h(\widetilde{\nabla}_X V_1, V_2) + h(V_1, \widetilde{\nabla}_X V_2).$

Theorem 3.1. Let $f : M \to N$ be a quaternionic map between two hyper-Kähler manifolds, (M, J_{α}, g) and $(N, \mathcal{J}_{\alpha}, h)$. If M is compact, then

$$\int_M h(J_f V, V) * 1 = \frac{1}{4} \int_M h(DV, DV) * 1 \ge 0,$$

where $V \in \Gamma(f^{-1}TN)$, and J_f is the Jacobi operator of f defined by

$$J_f V = -\sum_{i=1}^m (\widetilde{\nabla}_{e_i} \widetilde{\nabla}_{e_i} - \widetilde{\nabla}_{\nabla_{e_i} e_i}) V - \sum_{i=1}^m R^N(V, df e_i) df e_i, V \in \Gamma(f^{-1}TN),$$

where \mathbb{R}^N denote the curvature tensor on N. For each $V \in \Gamma(f^{-1}TN)$, DV is an element of $\Gamma(f^{-1}TN \otimes T^*M)$ defined by

$$DV(X) = \sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha}X} V - \widetilde{\nabla}_X V, X \in \chi(M),$$

Then

1) f is weakly stable, that is, each eigenvalue of J_f is nonnegative. 2) ker $J_f = \{V \in \Gamma(f^{-1}TN), DV = 0\}.$

Proof. Let $\{e_i, J_1e_i, J_2e_i, J_3e_i\}_{i=1}^m$ be an orthonormal local frame field on M adapted to the hyper-Kähler structure on M.

According to the definition of DV, one obtains, for any $V \in \Gamma(f^{-1}TN)$,

$$(3.1) \ h(DV, DV) = \sum_{i=1}^{m} \{h(DV(e_i), DV(e_i)) + \sum_{\alpha} h(DV(J_{\alpha}e_i), DV(J_{\alpha}e_i))\} = \\ = \sum_{i=1}^{m} \{h(\sum_{\alpha} \mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V - \widetilde{\nabla}_{e_i}V, \sum_{\alpha} \mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V - \widetilde{\nabla}_{e_i}V) + \\ + \sum_{\alpha} h(\sum_{\beta} \mathcal{J}_{\beta}\widetilde{\nabla}_{J_{\beta}J_{\alpha}e_i}V - \widetilde{\nabla}_{J_{\alpha}e_i}V, \sum_{\beta} \mathcal{J}_{\beta}\widetilde{\nabla}_{J_{\beta}J_{\alpha}e_i}V - \widetilde{\nabla}_{J_{\alpha}e_i}V)\} = \\ = \sum_{i=1}^{m} \{4h(\widetilde{\nabla}_{e_i}V, \widetilde{\nabla}_{e_i}V) + 4\sum_{\alpha} h(\widetilde{\nabla}_{J_{\alpha}e_i}V, \widetilde{\nabla}_{J_{\alpha}e_i}V) - 8h(\widetilde{\nabla}_{e_i}V, \sum_{\alpha} \mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V) + \\ + 8\sum_{\alpha\neq\beta} h(\mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V, \mathcal{J}_{\beta}\widetilde{\nabla}_{J_{\beta}e_i}V)\}, \end{cases}$$

since the two manifolds are hyper-Kähler. Next we shall prove that

(3.2)
$$R^{N}(V, dfe_{i})dfe_{i} + \sum_{\alpha} R^{N}(V, dfJ_{\alpha}e_{i})dfJ_{\alpha}e_{i} =$$
$$= -\sum_{\alpha} \mathcal{J}_{\alpha}R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V + \mathcal{J}_{3}R^{N}(dfJ_{2}e_{i}, dfJ_{1}e_{i})V +$$

Quaternionic maps between a hyper-Kähler manifold.....

$$+\mathcal{J}_2 R^N (df J_1 e_i, df J_3 e_i) V + \mathcal{J}_1 R^N (df J_3 e_i, df J_2 e_i) V.$$

Since f is a quaternionic map one obtains

$$\begin{split} R^{N}(V, dfe_{i})dfe_{i} + \sum_{\alpha} R^{N}(V, dfJ_{\alpha}e_{i})dfJ_{\alpha}e_{i} = \\ &= \sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(V, dfe_{i})dfJ_{\alpha}e_{i} + \sum_{\alpha} \sum_{\beta} \mathcal{J}_{\beta} R^{N}(V, dfJ_{\alpha}e_{i})dfJ_{\beta}J_{\alpha}e_{i} = \\ &= -\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(dfe_{i}, V)dfJ_{\alpha}e_{i} + \sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(dfJ_{\alpha}e_{i}, V)dfe_{i} + A = \\ &= -\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V + A, \end{split}$$

where A is the sum of the last three terms in the right side of 3.2 and where we used the formulas, for $X,Y,Z\in\chi(N)$

$$R^{N}(X,Y)Z + R^{N}(Y,X)Z = 0, \quad R^{N}(X,Y)Z + R^{N}(Y,Z)X + R^{N}(Z,X)Y = 0.$$

Since

$$\int_{M} h(J_{f}V, V) * 1 = \int_{M} \sum_{i=1}^{m} \{h(\widetilde{\nabla}_{e_{i}}V, \widetilde{\nabla}_{e_{i}}V) + \sum_{\alpha} h(\widetilde{\nabla}_{J_{\alpha}e_{i}}V, \widetilde{\nabla}_{J_{\alpha}e_{i}}V) - h(R^{N}(V, dfe_{i})dfe_{i}, V) - \sum_{\alpha} h(R^{N}(V, dfJ_{\alpha}e_{i})dfJ_{\alpha}e_{i}, V)\} * 1, (\text{see}[14]),$$

we have

(3.3)

$$\int_{M} [h(J_{f}V, V) - \frac{1}{4}h(DV, DV)] * 1 =$$

$$= \int_{M} \{\sum_{i=1}^{m} \{h(\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V, V) -$$

$$-h(A, V) + 2h(\widetilde{\nabla}_{e_{i}}V, \sum_{\alpha} \mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_{i}}V) - 2\sum_{\alpha \neq \beta} h(\mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_{i}}V, \mathcal{J}_{\beta}\widetilde{\nabla}_{J_{\beta}e_{i}}V)\} * 1.$$

We have

$$(3.4) -h(\mathcal{J}_{\alpha}R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V, V) = h(R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V, \mathcal{J}_{\alpha}V) = \\ = h(\widetilde{\nabla}_{e_{i}}\widetilde{\nabla}_{J_{\alpha}e_{i}}V - \widetilde{\nabla}_{J_{\alpha}e_{i}}\widetilde{\nabla}_{e_{i}}V - \widetilde{\nabla}_{[e_{i},J_{\alpha}e_{i}]}V, \mathcal{J}_{\alpha}V) = \\ = e_{i}(h(\widetilde{\nabla}_{J_{\alpha}e_{i}}V, \mathcal{J}_{\alpha}V)) - h(\widetilde{\nabla}_{J_{\alpha}e_{i}}V, \widetilde{\nabla}_{e_{i}}\mathcal{J}_{\alpha}V) - \\ -J_{\alpha}e_{i}(h(\widetilde{\nabla}_{e_{i}}V, \mathcal{J}_{\alpha}V)) + h(\widetilde{\nabla}_{e_{i}}V, \widetilde{\nabla}_{J_{\alpha}e_{i}}\mathcal{J}_{\alpha}V) - h(\widetilde{\nabla}_{\nabla_{e_{i}}J_{\alpha}e_{i}}V, \mathcal{J}_{\alpha}V) + \\ +h(\widetilde{\nabla}_{\nabla_{J_{\alpha}e_{i}}e_{i}}V, \mathcal{J}_{\alpha}V), \end{aligned}$$

29

for any $\alpha = 1, 2, 3$, since $\widetilde{\nabla}$ and h are compatible, where ∇ denote the Levi-Civita connection on M. In the same way we can compute h(A, V). If we denote

$$\sum_{i=1}^{m} \{h(\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}(dfe_{i}, dfJ_{\alpha}e_{i})V, V) - h(A, V)\} = B,$$

we obtain $B = B_1 + B_2$, where

$$\begin{split} B_1 &= \sum_{i=1}^m \{ \sum_{\alpha} [-e_i h(\widetilde{\nabla}_{J_{\alpha}e_i}V, \mathcal{J}_{\alpha}V) + J_{\alpha}e_i h(\widetilde{\nabla}_{e_i}V, \mathcal{J}_{\alpha}V) + h(\widetilde{\nabla}_{\nabla_{e_i}J_{\alpha}e_i}V, \mathcal{J}_{\alpha}V) - \\ &-h(\widetilde{\nabla}_{\nabla_{J_{\alpha}e_i}e_i}V, \mathcal{J}_{\alpha}V)] + J_2e_i h(\widetilde{\nabla}_{J_1e_i}V, \mathcal{J}_{3}V) - J_1e_i h(\widetilde{\nabla}_{J_2e_i}V, \mathcal{J}_{3}V) - \\ &-h(\widetilde{\nabla}_{\nabla_{J_2e_i}J_1e_i}V, \mathcal{J}_{3}V) + h(\widetilde{\nabla}_{\nabla_{J_1e_i}J_2e_i}V, \mathcal{J}_{3}V) + J_1e_i h(\widetilde{\nabla}_{J_3e_i}V, \mathcal{J}_{2}V) - \\ &-J_3e_i h(\widetilde{\nabla}_{J_1e_i}V, \mathcal{J}_{2}V) - h(\widetilde{\nabla}_{\nabla_{J_1e_i}J_3e_i}V, \mathcal{J}_{2}V) + h(\widetilde{\nabla}_{\nabla_{J_3e_i}J_1e_i}V, \mathcal{J}_{2}V) + \\ &+J_3e_i h(\widetilde{\nabla}_{J_2e_i}V, \mathcal{J}_{1}V) - J_2e_i h(\widetilde{\nabla}_{J_3e_i}V, \mathcal{J}_{1}V) - h(\widetilde{\nabla}_{\nabla_{J_3e_i}J_2e_i}V, \mathcal{J}_{1}V) + \\ &+h(\widetilde{\nabla}_{\nabla_{J_2e_i}J_3e_i}V, \mathcal{J}_{1}V) \}, \end{split}$$

and

$$B_2 = \sum_{i=1}^{m} \{ \sum_{\alpha} [h(\widetilde{\nabla}_{J_{\alpha}e_i}V, \widetilde{\nabla}_{e_i}\mathcal{J}_{\alpha}V) - h(\widetilde{\nabla}_{e_i}V, \widetilde{\nabla}_{J_{\alpha}e_i}\mathcal{J}_{\alpha}V)] -$$

$$-h(\nabla_{J_1e_i}V, \nabla_{J_2e_i}\mathcal{J}_3V) + h(\nabla_{J_2e_i}V, \nabla_{J_1e_i}\mathcal{J}_3V) - h(\nabla_{J_3e_i}V, \nabla_{J_1e_i}\mathcal{J}_2V) + \\ +h(\widetilde{\nabla}_{J_1e_i}V, \widetilde{\nabla}_{J_3e_i}\mathcal{J}_2V) - h(\widetilde{\nabla}_{J_2e_i}V, \widetilde{\nabla}_{J_3e_i}\mathcal{J}_1V) + h(\widetilde{\nabla}_{J_3e_i}V, \widetilde{\nabla}_{J_2e_i}\mathcal{J}_1V) \} = \\ = 2\{\sum_{i=1}^{m} [\sum_{\alpha} h(\mathcal{J}_{\alpha}\widetilde{\nabla}_{e_i}V, \widetilde{\nabla}_{J_{\alpha}e_i}V) + h(\widetilde{\nabla}_{J_1e_i}\mathcal{J}_3V, \widetilde{\nabla}_{J_2e_i}V) + \\ +h(\widetilde{\nabla}_{J_3e_i}\mathcal{J}_2V, \widetilde{\nabla}_{J_1e_i}V) + h(\widetilde{\nabla}_{J_2e_i}\mathcal{J}_1V, \widetilde{\nabla}_{J_3e_i}V)] \} = \\ = -2\sum_{i=1}^{m} [h(\widetilde{\nabla}_{e_i}V, \sum_{\alpha} \mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V) - 2\sum_{\alpha\neq\beta} h(\mathcal{J}_{\alpha}\widetilde{\nabla}_{J_{\alpha}e_i}V, \mathcal{J}_{\beta}\widetilde{\nabla}_{J_{\beta}e_i}V)],$$

since the two manifolds are hyper-Kähler.

Consider the vector field $X \in \chi(M)$ defined by 1

$$g(X,Y) = -\sum_{\alpha} h(\widetilde{\nabla}_{J_{\alpha}Y}V, \mathcal{J}_{\alpha}V),$$

for any $Y \in \chi(M)$. By a straightforward computation one obtains $div X = B_1$. From the expressions of B_1 and B_2 by using the Green's formula, it follows that

$$\int_{M} h(J_{f}V, V) * 1 = \frac{1}{4} \int_{M} h(DV, DV) * 1.$$

Theorem 3.2. Let $f: M \to N$ be a quaternionic map between a hyper-Kähler manifold, (M, J_{α}, g) and a 3-cosymplectic manifold $(N, \varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}, h)$. If M is compact, then

$$\int_{M} h(J_{f}V, V) * 1 = \frac{1}{4} \int_{M} h(DV, DV) * 1 + \frac{1}{12} \int_{M} \sum_{\alpha} tr \ (\eta^{\alpha} \otimes \eta^{\alpha})(DV, DV) * 1,$$

where, for any $V \in \Gamma(f^{-1}TN)$, $DV(X) = \sum_{\alpha} \varphi_{\alpha} \widetilde{\nabla}_{J_{\alpha}X} V - \widetilde{\nabla}_{X} V$, $X \in \chi(M)$, and

$$(\eta^{\alpha} \otimes \eta^{\alpha})(DV, DV)(X, Y) = \eta^{\alpha}(DV(X))\eta^{\alpha}(DV(Y)).$$

Then

1) f is weakly stable, that is, each eigenvalue of J_f is nonnegative.

2) ker $J_f = \{ V \in \Gamma(f^{-1}TN), DV = 0 \}.$

Proof. After a similar computation with that in Theorem 3.1, based on the definitions of the hyper-Kähler structure and of the 3-cosymplectic structure, on the definitions of the Levi-Civita connections on the domain and the target manifolds and on Theorem 1.1, one obtains that in the expression of $\int_M h(J_f V, V) * 1 - \frac{1}{4} \int_M h(DV, DV) * 1$ the following new terms arise

$$\sum_{i=1}^{m} \left\{ \int_{M} \frac{1}{4} \left[\sum_{\alpha} \sum_{\beta} \eta_{\alpha} (\widetilde{\nabla}_{J_{\beta}e_{i}}V) \eta_{\alpha} (\widetilde{\nabla}_{J_{\beta}e_{i}}V) + \sum_{\alpha} \eta_{\alpha} (\widetilde{\nabla}_{e_{i}}V) \eta_{\alpha} (\widetilde{\nabla}_{e_{i}}V) \right] * 1 + \right. \\ \left. + \int_{M} \frac{1}{2} \left[\sum_{\alpha \neq \beta} \eta_{\alpha} (\widetilde{\nabla}_{J_{\alpha}e_{i}}V) \eta_{\beta} (\widetilde{\nabla}_{J_{\beta}e_{i}}V) - \sum_{\alpha \neq \beta} \eta_{\alpha} (\widetilde{\nabla}_{J_{\beta}e_{i}}V) \eta_{\beta} (\widetilde{\nabla}_{J_{\alpha}e_{i}}V) \right] * 1 - \right. \\ \left. - \int_{M} \frac{1}{2} \left[\eta_{1} (\widetilde{\nabla}_{e_{i}}V) (\eta_{3} (\widetilde{\nabla}_{J_{2}e_{i}}V) - \eta_{2} (\widetilde{\nabla}_{J_{3}e_{i}}V)) + \right] \right]$$

 $+\eta_2(\widetilde{\nabla}_{e_i}V)(\eta_1(\widetilde{\nabla}_{J_3e_i}V)-\eta_3(\widetilde{\nabla}_{J_1e_i}V))+\eta_3(\widetilde{\nabla}_{e_i}V)(\eta_2(\widetilde{\nabla}_{J_1e_i}V)-\eta_1(\widetilde{\nabla}_{J_2e_i}V))]*1.$ After a straightforward computation, one obtains that this is

$$\frac{1}{12}\int_M \sum_\alpha tr \ (\eta^\alpha \otimes \eta^\alpha)(DV,DV) * 1.$$

In the same way one obtains

Theorem 3.3. Let $f: M \to N$ be a quaternionic map between a hyper-Kähler manifold, (M, J_{α}, g) and a hyper C-manifold $(N, \varphi_{\alpha}, \xi_{a}^{\alpha}, \eta_{a}^{\alpha}, h)$, with $a = \overline{1, r}$. If M is compact, then

$$\int_{M} h(J_{f}V, V) * 1 = \frac{1}{4} \int_{M} h(DV, DV) * 1 + \frac{1}{12} \int_{M} \sum_{a=1}^{r} \sum_{\alpha} tr \ (\eta_{a}^{\alpha} \otimes \eta_{a}^{\alpha})(DV, DV) * 1.$$

Then

1) f is weakly stable, that is, each eigenvalue of J_f is nonnegative. 2) ker $J_f = \{V \in \Gamma(f^{-1}TN), DV = 0\}.$

4. Quaternionic maps between a hyper-Kähler manifold with dimension 4 and a 3-cosymplectic manifold with dimension 3

Let M be a differential manifold which is of real dimension 4. Then the only hyper-Kähler structure on M is defined by the tensor fields of type (1, 1) whose matrix expressions take the following form, (see [9])

$$(4.1) J_1 = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \ J_2 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
$$J_3 = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Concerning the 3-cosymplectic structures which can be defined on a 3-dimensional manifold we can state the following.

Let N be a 3-dimensional manifold. Let us consider on N the almost contact structures given in local coordinates by

$$\varphi_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \ \eta^1 = dx^1, \ \xi^1 = \frac{\partial}{\partial x^1},$$

(4.2)
$$\varphi_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \eta^2 = dx^2, \ \xi^2 = \frac{\partial}{\partial x^2},$$
$$\varphi_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \eta^3 = dx^3, \ \xi^3 = \frac{\partial}{\partial x^3}.$$

It can be easily verified that this structures define an almost contact 3structure on N. Moreover, let us consider the induced almost complex structures on $N \times \mathbb{R}$, defined by $J_i = (X, f \frac{d}{dt}) = (\varphi_i X - f\xi^i, \eta^i(X) \frac{d}{dt}), i = \overline{1,3}$, where $X \in \chi(N)$ and $f \in C^{\infty}(N \times \mathbb{R})$. It is proved in [1] that these tensor fields define three almost contact structures on $N \times \mathbb{R}$. After a straightforward computation one obtains that J_i actually are the tensor fields which define the unique hyper-Kähler structure on $N \times \mathbb{R}$. It follows that the almost contact structures defined on N are normal structures and then on N we obtained a 3-cosymplectic structure, (see [1]).

In the following let us consider a new 3-cosymplectic structure on N, $(\psi_i, \zeta^i, \theta^i)$, $i = \overline{1,3}$, such that the fundamental 2-forms, ω_i , $i = \overline{1,3}$, corresponding to each almost contact structure, are closed. Then, taking the induced almost complex

structures on $N \times \mathbb{R}$ defined as above, and the metric G on $N \times \mathbb{R}$, defined by G = g + dtdt, where g is the Riemannian metric associated to all almost contact structures on N, which gives the fundamental 2-forms ω_i on N, one obtains for the corresponding fundamental 2-forms, Ω_i , $i = \overline{1,3}$, on $N \times \mathbb{R}$, that $\Omega_i = \omega_i - \theta^i \wedge dt$. Hence, if the 1-forms θ^i are closed and the 2-forms ω_i are also closed, then $d\Omega_i = 0$. But, using a Hitchin's lemma one obtains that the induced almost complex structures on $N \times \mathbb{R}$ are normal and then they define a hyper-Kähler structure on $N \times \mathbb{R}$, (see [8], [10]). Since this structure is unique and since the induced Kähler structures on $N \times \mathbb{R}$ are uniquely determined by the cosymplectic structures on N, it follows that the structure defined by 4.2 is the only 3-cosymplectic structure on N.

Let $f: M \to N$ be a smooth map between a 4-dimensional hyper-Kahler manifold and a 3-dimensional 3-cosymplectic manifold. Then, using 2.1, with $A^{\alpha\beta} = \delta_{\alpha\beta}$, 4.1 and 4.2, one obtains that f is quaternionic map if and only if

(4.3)
$$\begin{cases} f_1^1 + f_2^2 + f_3^3 = 0\\ f_1^2 - f_2^1 - f_4^3 = 0\\ f_1^3 + f_4^2 - f_3^1 = 0\\ -f_4^1 + f_2^3 - f_3^2 = 0 \end{cases}$$

where $f_i^a = \frac{\partial f^a}{\partial x^i}$, $a = \overline{1, 3}$, $i = \overline{1, 4}$. **Example.** Let M and N be \mathbb{R}^4 and \mathbb{R}^3 , respectively, endowed with the hyper-Kähler and the 3-cosymplectic structures and let $f : \mathbb{R}^4 \to \mathbb{R}^3$ be a smooth map, given by

$$f(x^1, x^2, x^3, x^4) = (-2x^1, x^2, x^3).$$

It is easy to see from 4.3 that f is a quaternionic map. The matrix of df is

$$\left(\begin{array}{rrrr} -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Since the rank of this matrix is 3 and the rank of a $\pm (J, \varphi)$ -holomorphic map must be even, it follows that f is a quaternionic map which is non- $\pm(J, \varphi)$ holomorphic with respect to any almost complex structure on \mathbb{R}^4 and to any almost contact structure on \mathbb{R}^3 .

Using Theorem 3.2, after a straightforward computation, one obtains, for a vector field $V \in \Gamma(f^{-1}T\mathbb{R}^3)$, that $V \in Ker J_f$ if and only if

$$\left\{ \begin{array}{l} V_3^2-V_2^3=0\\ V_3^1+2V_1^3=0\\ V_2^1+2V_1^2=0\\ 2V_1^1+V_2^2+V_3^3=0 \end{array} \right.$$

where $V = V^i \frac{\partial}{\partial x^i}$ and $V^j_i = \frac{\partial V^j}{\partial x^i}$, $i, j = \overline{1, 4}$, V^i being smooth functions on \mathbb{R}^4 .

References

- Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. pp. x, 260, Birkhäuser Boston, Progress in Mathematics, Volume 203, 2002.
- [2] Blair, D. E., Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$. J. Diff. Geom. 4 (1970), 155-167.
- [3] Chen, J., Li, J., Quternionic maps between hyperkähler manifolds. J. Diff. Geom. 55 (2000), 355-384.
- [4] Fetcu, D., Harmonic maps between framed φ-manifolds. An. USAMV Iaşi, Tom 46, Vol. 2 (2003), Proceedings of the Annual Symposium on Mathematics Applied in Biology and Biophysics, May 30-31, 2003, 129-146.
- [5] Fetcu, D., Maps between almost Kähler manifolds and framed φ -manifolds. Balkan J. Geom. Appl. 9(2)(2004), 13-24.
- [6] Fetcu, D., Some properties of the hyper-framed manifolds. An. USAMV Iaşi, Tom 47, Vol. 2 (2004), Proceedings of the Annual Symposium on Mathematics Applied in Biology and Biophysics, May 28-29, 2004, 151-163.
- [7] Goldberg, S. I., Yano, K., On normal globally framed *f*-manifold. Tôhoku Math. J. 22 (1970), 362-370.
- [8] Hitchin, N. J., The self-duality on a Riemann surface. Proc. London Math. Soc. 55 (1987), 59-126.
- [9] Itoh, M., Quaternion structure on the moduli space of Yang-Mills connections. Math. Ann. 276 (1987), 581-593.
- [10] Kashiwada, T., A note on Hitchin's lemma. Tensor (N.S.) 60 (1998), 323-326.
- [11] Kuo, Y.-Y., On almost contact 3-structure. Tôhoku Math. J. 22(1970), 325-332.
- [12] Oproiu, V., Some remarks on the almost cocomplex connections. Rev. Roum. Math. Pures Appl. 16 (1971), 383-393.
- [13] Udriste, C., Structures presque coquaternioniennies. Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
- [14] Urakawa, H., Calculus of Variation and Harmonic Maps. pp. viii, 251, American Mathematical Society, Providence, Rhode Island, Translations of Mathematical Monographs, 1993.
- [15] Xin, Y.L., Geometry of Harmonic Maps. pp. x, 241, Birkhäuser Boston, Progress in Nonlinear Differential Equations and Their Aplications, 1996.

Received by the editors March 24, 2005