QUATERNIONIC MAPS BETWEEN A HYPER-KÄHLER MANIFOLD AND A 3-ALMOST CONTACT MANIFOLD

Dorel Fetcu ${ }^{1}$

Abstract

We prove that any quaternionic map between a hyperKähler manifold and a 3 -almost contact manifold with a certain property is a harmonic map and we give some results about the stability of such a map and about the stability of a quaternionic map between hyper-Kähler manifolds.

AMS Mathematics Subject Classification (2000): 58E20, 53C26, 53D15
Key words and phrases: Quaternionic map, harmonic map, hyper-Kähler manifold, 3-almost contact manifold

1. Preliminaries

Let us recall that a hyper almost complex manifold is a manifold endowed with three almost complex structures, $J_{\alpha}, \alpha=\overline{1,3}$, satisfying the quaternionic identities

$$
\begin{equation*}
J_{\gamma}=J_{\alpha} J_{\beta}=-J_{\beta} J_{\alpha} \tag{1.1}
\end{equation*}
$$

for any even permutation $\{\alpha, \beta, \gamma\}$ of $\{1,2,3\}$. If these three almost complex structures are Kähler then the manifold is called a hyper-Kähler manifold.

For any real numbers a, b, c with $a^{2}+b^{2}+c^{2}=1$, one obtains a covariant complex structure $a J_{1}+b J_{2}+c J_{3}$. As in [3], we shall refer this \mathbb{S}^{2}-family of complex structures as the hyper-Kähler \mathbb{S}^{2}. Therefore, $S O(3)$ acts naturally on the covariant complex structures. Every $S O(3)$ matrix preserves the identities 1.1. A hyper-Kähler manifold is of dimension $4 n$.

In order to introduce the 3 -almost contact manifolds and the hyperframed manifolds let us recall some basic notions and properties of the framed φ manifolds.

Let M be an m-dimensional smooth manifold endowed with a tensor field φ of type $(1,1)$, satisfying the algebraic condition

$$
\begin{equation*}
\varphi^{3}+\varphi=0 \tag{1.2}
\end{equation*}
$$

The geometric structure on M defined by φ is called a φ-structure of rank r if the rank r of φ is constant on M and, in this case, M is called a φ-manifold. It follows easily that r is an even number.

[^0]If M is a φ-manifold and if there are $m-r$ vector fields ξ_{i} and $m-r$ differential 1-forms η_{i} satisfying

$$
\begin{equation*}
\varphi^{2}=-I+\sum_{i=1}^{m-r} \eta_{i} \otimes \xi_{i}, \quad \eta_{i}\left(\xi_{j}\right)=\delta_{j}^{i} \tag{1.3}
\end{equation*}
$$

where $i, j=1,2, \ldots, m-r, M$ is said to be globally framed or to have a framed φ-structure. In this case M is called a globally framed φ-manifold or, simply, a framed φ-manifold. From (1.3), by some algebraic computations, one obtains,

$$
\begin{equation*}
\varphi \xi_{i}=0, \quad \eta_{i} \circ \varphi=0, \quad \varphi^{3}+\varphi=0 \tag{1.4}
\end{equation*}
$$

If $m=2 n+1$ and $\operatorname{rank} \varphi=2 n$ one obtains an almost contact structure on M.

Let M be an m-dimensional globally framed φ-manifold with structure tensors $\left(\varphi, \xi_{i}, \eta_{i}\right)$ with rank $\varphi=r$, and consider the manifold $M \times \mathbb{R}^{m-r}$. We denote a vector field on $M \times \mathbb{R}^{m-r}$ by ($X, \sum_{i=1}^{m-r} f_{i} \frac{\partial}{\partial t^{i}}$) where X is tangent to $M,\left\{t^{1}, \ldots, t^{m-r}\right\}$ are the usual coordinates on \mathbb{R}^{m-r}, and $\left\{f_{1}, \ldots, f_{m-r}\right\}$ are functions on $M \times \mathbb{R}^{m-r}$. Define an almost complex structure on $M \times \mathbb{R}^{m-r}$ by

$$
J\left(X, \sum_{i=1}^{m-r} f_{i} \frac{\partial}{\partial t^{i}}\right)=\left(\varphi X-\sum_{i=1}^{m-r} f_{i} \xi_{i}, \sum_{i=1}^{m-r} \eta_{i}(X) \frac{\partial}{\partial t^{i}}\right) .
$$

It is easy to check that $J^{2}=-I$. If J is integrable we say that the framed φ-structure is normal. A framed φ-structure is normal if the tensor field S of type $(1,2)$ defined by

$$
\begin{equation*}
S=N_{\varphi}+\sum_{i=1}^{m-r} d \eta_{i} \otimes \xi_{i} \tag{1.5}
\end{equation*}
$$

vanishes, (see [7]), where $N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y]$, for $X, Y \in \chi(M)$, is the Nijenhuis tensor field of φ.

If g is a (semi-)Riemannian metric on M such that

$$
\begin{equation*}
g(\varphi X, \varphi Y)=g(X, Y)-\sum_{i=1}^{m-r} \eta_{i}(X) \eta_{i}(Y), \tag{1.6}
\end{equation*}
$$

then we say that $\left(\varphi, \xi_{i}, \eta_{i}, g\right)$ is a metric framed φ-structure and M is called a metric framed φ-manifold. The metric g is called an associated (semi-)Riemannian metric.

The fundamental 2-form Ω of the considered metric framed φ-manifold M, is defined just like in the case of the almost Hermitian and almost contact metric manifold, by $\Omega=g(X, \varphi Y)$, for any $X, Y \in \chi(M)$.

The framed φ-manifold M with structure tensors $\left(\varphi, \xi_{i}, \eta_{i}\right)$ is called a \mathcal{C} manifold if it is normal, $d \Omega=0$ and $d \eta_{i}=0, i=1, \ldots, m-r$, (see [2]).

If on an almost contact manifold (M, φ, ξ, η) it is defined an associated Riemannian metric g then $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold. If on an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ we have $\Omega=d \eta$, where Ω is the fundamental 2-form on M, then we say that $(M, \varphi, \xi, \eta, g)$ is a contact metric manifold. If for an almost contact metric structure (φ, ξ, η, g) which is normal we have $d \eta=0$ and $d \Omega=0$, then $(N, \varphi, \xi, \eta, g)$ is called a cosymplectic manifold.

In [1] the following result is proved.
Theorem 1.1. An almost contact metric structure (φ, ξ, η, g) is cosymplectic if and only if φ is parallel.

In the same way one obtains
Theorem 1.2. If $\left(M, \varphi, \xi_{i}, \eta_{i}, g\right)$ is a \mathcal{C}-manifold then φ is parallel.
In 1969 in [13] and in 1970 in [11], the authors defined the almost contact 3 -structure (or the coquaternionic structure) on an odd dimensional manifold M, as follows.

If the manifold M admits three almost contact structure $\left(\varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}\right), \alpha=$ $\overline{1,3}$, satisfying

$$
\begin{gather*}
\varphi_{\gamma}=\varphi_{\alpha} \varphi_{\beta}-\eta^{\beta} \otimes \xi^{\alpha}=-\varphi_{\beta} \varphi_{\alpha}+\eta^{\alpha} \otimes \xi^{\beta}, \tag{1.7}\\
\xi^{\gamma}=\varphi_{\alpha} \xi^{\beta}=-\varphi_{\beta} \xi^{\alpha}, \quad \eta^{\gamma}=\eta^{\alpha} \circ \varphi_{\beta}=-\eta^{\beta} \circ \varphi_{\alpha},
\end{gather*}
$$

for any even permutation $\{\alpha, \beta, \gamma\}$ of $\{1,2,3\}$, then the manifold is said to have an almost contact 3 -structure.

It is proved (see [11]) that there exists an associated metric to each of this three structures. If all structures are cosymplectic, then we call the manifold M a 3-cosymplectic manifold.

As a generalization of the notion of hyper almost complex manifold and the notion of 3 -almost contact manifold we defined in [4] and [6] the hyperframed manifolds as follows.

If a differentiable manifold M admits three framed φ_{α}-structures, $\left(\varphi_{\alpha}, \xi_{a}^{\alpha}, \eta_{a}^{\alpha}\right)$, such that $\operatorname{dim} M-\operatorname{rank} \varphi_{\alpha}=n$, for any $\alpha=1,2,3$, satisfying the following, for any even permutation (α, β, γ) of $(1,2,3)$,

$$
\begin{gather*}
\varphi_{\gamma}=\varphi_{\alpha} \varphi_{\beta}-\sum_{a=1}^{n} \eta_{a}^{\beta} \otimes \xi_{a}^{\alpha}=-\varphi_{\beta} \varphi_{\alpha}+\sum_{a=1}^{n} \eta_{a}^{\alpha} \otimes \xi_{a}^{\beta} \\
\xi_{a}^{\gamma}=\varphi_{\alpha} \xi_{a}^{\beta}=-\varphi_{\beta} \xi_{a}^{\alpha}, \quad \eta_{a}^{\gamma}=\eta_{a}^{\alpha} \circ \varphi_{\beta}=-\eta_{a}^{\beta} \circ \varphi_{\alpha} \tag{1.8}
\end{gather*}
$$

then the manifold is said to be a hyperframed manifold. A hyperframed manifold is of dimension $4 m+3 n$.

Obviously a 3 -almost contact manifold is a hyperframed manifold.
Note that for any real numbers p, q, r with $p^{2}+q^{2}+r^{2}=1$ we obtain a framed φ-structure $\left(p \varphi_{1}+q \varphi_{2}+r \varphi_{3}, p \xi_{a}^{1}+q \xi_{a}^{2}+r \xi_{a}^{3}, p \eta_{a}^{1}+q \eta_{a}^{2}+r \eta_{a}^{3}\right)$, and that
every $S O(3)$ matrix preserve 1.7 and 1.8. We shall refer this \mathbb{S}^{2}-family of almost contact structures as the 3 -almost contact \mathbb{S}^{2}.

In [6], we prove that there exists a Riemannian metric associated to all three framed φ_{α}-structures. If the framed φ_{α}-structures are \mathcal{C}-structures we call the manifold M a hyper \mathcal{C}-manifold.

2. Quaternionic maps

Definition 2.1. Let (M, J, g) be an almost Kähler manifold and let $\left(N, \varphi, \xi_{a}\right.$, $\left.\eta_{a}, h\right)$ be a metric framed φ-manifold. A smooth $\operatorname{map} f: M \rightarrow N$ is called a $\pm(J, \varphi)$-holomorphic map if $d f J= \pm \varphi d f$, where $d f: T M \rightarrow T N$ denotes the induced tangent map of f.

Definition 2.2. Let $\left(M, J_{\alpha}, g\right)$ be a hyper almost Kähler manifold and let $\left(N, \varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}, h\right)$ be a metric 3 -almost contact manifold. We call a smooth map $f: M \rightarrow N$ a quaternionic map if

$$
\begin{equation*}
A^{\alpha \beta} \varphi_{\beta} d f J_{\alpha}=d f \tag{2.1}
\end{equation*}
$$

where $A^{\alpha \beta}$ are the entries of a matrix A in $S O(3)$.
It is easy to verify that any $\pm(J, \varphi)$-holomorphic map with respect to an almost complex structure $a J_{1}+b J_{2}+c J_{3}$, with $a^{2}+b^{2}+c^{2}=1$ and an almost contact structure $\left(p \varphi_{1}+q \varphi_{2}+r \varphi_{3}, p \xi^{1}+q \xi^{2}+r \xi^{3}, p \eta^{1}+q \eta^{2}+r \eta^{3}\right)$, with $p^{2}+q^{2}+r^{2}=1$, is a quaternionic map.

Since $S O(3)$ preserves the identities 1.1 and 1.7 , we can choose the complex structures J_{α} for M and the almost contact structures $\left(\varphi_{\beta}, \xi^{\beta}, \eta^{\beta}\right)$ for N such that $A^{\alpha \beta}=\delta_{\alpha \beta}$ in 2.1. In the sequel, we shall assume that $A^{\alpha \beta}=\delta_{\alpha \beta}$.

In the following let us consider two manifolds M and N as in Definition 2.2, and suppose that M is compact. As in [3] (for the case of the maps between hyper-Kähler manifolds), for a smooth map $f: M \rightarrow N$, consider the energy functional

$$
E(f)=\frac{1}{2}\|d f\|^{2}=\frac{1}{2} \int_{M} g^{i j} h_{m n} \partial_{i} f^{m} \partial_{j} f^{n} * 1,
$$

where $* 1$ is the volume element of M, the functional

$$
E_{T}(f)=\int_{M} \sum_{\alpha}\left\langle J_{\alpha}, f^{*} \varphi_{\alpha}\right\rangle * 1=\frac{1}{2} \int_{M} \sum_{\alpha}\left(J_{\alpha}\right)^{p q}\left(\varphi_{\alpha}\right)_{m k} \partial_{p} f^{m} \partial_{q} f^{k} * 1,
$$

and

$$
I(f)=\frac{1}{2} \int_{M}\left(\left|d f-\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\right|^{2}+\left\langle\sum_{\alpha} \eta^{\alpha} \circ d f \circ J_{\alpha}, \sum_{\alpha} \eta^{\alpha} \circ d f \circ J_{\alpha}\right\rangle\right) * 1 .
$$

Remark 2.1. Since for a quaternionic map one obtains easily that $\sum_{\alpha} \eta^{\alpha} \circ$ $d f \circ J_{\alpha}=0$, it follows that f is a quaternionic map if and only if $I(f)=0$.

Remark 2.2. Note that, if J is an almost Kähler structure on (M, g), with the fundamental 2-form ω, and if (φ, ξ, η, h) is a metric almost contact structure on N such that the fundamental 2-form Ω on N is closed, then any $\pm(J, \varphi)$ holomorphic map between M and N is a minimum of the energy integral in its homotopy class, since

$$
\begin{equation*}
E(f)+\int_{M}\left\langle J, f^{*} \varphi\right\rangle * 1=\frac{1}{4} \int_{M}\left(|d f-\varphi d f J|^{2}+\langle\eta \circ d f, \eta \circ d f\rangle\right) * 1 \tag{2.2}
\end{equation*}
$$

where we use the fact that $\int_{M}\left\langle J, f^{*} \varphi\right\rangle * 1=\int_{M}\left\langle\omega, f^{*} \Omega\right\rangle * 1$ which is a homotopy invariant, (see [5]).

Theorem 2.3. Let $f: M \rightarrow N$ be a smooth map between two manifolds M and N as above. Then

$$
\begin{equation*}
E(f)+E_{T}(f)=\frac{1}{4} I(f) \tag{2.3}
\end{equation*}
$$

If the fundamental 2-forms on N corresponding to the three almost contact structures are closed and if f is a quaternionic map, then f is a minimum of the energy in its homotopy class.
Proof. After a straightforward computation one obtains

$$
\begin{aligned}
I(f)= & E(f)+2 E_{T}(f)+\frac{1}{2} \int_{M}\left(\left\langle\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\right\rangle+\right. \\
& \left.+\left\langle\sum_{\alpha} \eta^{\alpha} \circ d f \circ J_{\alpha}, \sum_{\alpha} \eta^{\alpha} \circ d f \circ J_{\alpha}\right\rangle\right) * 1
\end{aligned}
$$

Let $\left\{e_{i}, J_{1} e_{i}, J_{2} e_{i}, J_{3} e_{i}\right\}$ be an orthonormal local framed field on M adapted to the hyper almost Kähler structure. One obtains

$$
\begin{gathered}
\frac{1}{2} \int_{M}\left\langle\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\right\rangle * 1=\frac{1}{2} \int_{M} \sum_{i=1}^{m}\left[h\left(\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\left(e_{i}\right), \sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\left(e_{i}\right)\right)+\right. \\
+\sum_{\beta} h\left(\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\left(J_{\beta} e_{i}\right), \sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\left(J_{\beta} e_{i}\right)\right) * 1
\end{gathered}
$$

where $\operatorname{dim} M=4 m$. Using the definition of the hyper almost Kähler structure and the definition of the almost contact 3-structure, it follows easily

$$
\begin{aligned}
& \frac{1}{2} \int_{M}\left\langle\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}, \sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\right\rangle * 1=3 E(f)+2 E_{T}(f)- \\
& \quad-\frac{1}{2} \int_{M} \sum_{i=1}^{m}\left\{\left[\sum_{\alpha} \eta^{\alpha}\left(d f J_{\alpha}\left(e_{i}\right)\right)\right]\left[\sum_{\alpha} \eta^{\alpha}\left(d f J_{\alpha}\left(e_{i}\right)\right)\right]+\right. \\
& \left.\quad+\sum_{\beta}\left[\sum_{\alpha} \eta^{\alpha}\left(d f J_{\alpha}\left(J_{\beta} e_{i}\right)\right)\right]\left[\sum_{\alpha} \eta^{\alpha}\left(d f J_{\alpha}\left(J_{\beta} e_{i}\right)\right)\right]\right\} * 1
\end{aligned}
$$

Hence $E(f)+E_{T}(f)=\frac{1}{4} I(f)$. For a pair of structures $\left(J^{\alpha}, \varphi^{\beta}\right), E_{T}$ is a homotopy invariant, (see [5]). If f is a quaternionic map, that means $I(f)=0$, then f is a minimum of the energy in its homotopy class.

Defining the quaternionic maps between a hyper almost Kähler manifold and a hyperframed manifold in the same way as the quaternionic maps with the target manifold a 3-almost contact manifold, one obtains the following

Theorem 2.4. Let $\left(M, J_{\alpha}, g\right)$ be a compact hyper almost Kähler manifold and let $\left(N, \varphi_{\alpha}, \xi_{a}^{\alpha}, \eta_{a}^{\alpha}, h\right), r=\overline{1, r}$, be a metric hyperframed manifold. Then, for any smooth map $f: M \rightarrow N$, we have $E(f)+E_{T}(f)=\frac{1}{4} I(f)$, where $E(f)$ and $E_{T}(f)$ are defined as above and
$I(f)=\frac{1}{2} \int_{M}\left(\left|d f-\sum_{\alpha} \varphi_{\alpha} d f J_{\alpha}\right|^{2}+\sum_{a=1}^{r}\left\langle\sum_{\alpha} \eta_{a}^{\alpha} \circ d f \circ J_{\alpha}, \sum_{\alpha} \eta_{a}^{\alpha} \circ d f \circ J_{\alpha}\right\rangle\right) * 1$.
If the fundamental 2-forms on N corresponding to the three framed φ_{α}-structures are closed and if f is a quaternionic map, then f is a minimum of the energy in its homotopy class.

Remark 2.5. Note that a map f defined as in the previous theorem is quaternionic if and only if $I(f)=0$.

Just like in [3], where the target manifold is a hyper-Kähler manifold, a criterion which detects when a quaternionic map is a (J, φ)-holomorphic map with respect to a structure in the hyper-Kähler \mathbb{S}^{2} and a structure in the 3almost contact \mathbb{S}^{2}, can be obtained.

Theorem 2.6. Let $f: M \rightarrow N$ be a quaternionic map between a hyper-Kähler manifold and a 3-almost contact manifold. Let A be a 3×3-matrix whose (α, β)entries are $-\int_{M}\left\langle J_{\alpha}, f^{*} \varphi_{\beta}\right\rangle * 1$ for $\alpha, \beta=1,2,3$. Then

$$
(\operatorname{tr} A)^{2} \geqslant \max \left\{\text { eigenvalues of } A A^{t}\right\}
$$

and the equality holds if and only if f is a (J, φ)-holomorphic map with respect to a structure in the hyper-Kähler \mathbb{S}^{2} and a structure in the 3-almost contact \mathbb{S}^{2}.

Proof. Set $J=X^{\alpha} J_{\alpha}$ with $|X|=1$ and $\varphi=Y^{\beta} \varphi_{\beta}, \eta=\sum_{\beta} Y^{\beta} \eta^{\beta}$, $\xi=$ $\sum_{\beta} Y^{\beta} \xi^{\beta}$, with $|Y|=1$. Then, from 2.2 one obtains

$$
E(f)=X A Y^{t}+\frac{1}{4} \int_{M}\left(|d f-\varphi d f J|^{2}+\langle\eta \circ d f \circ J, \eta \circ d f \circ J\rangle\right) * 1
$$

Since f is quaternionic, from 2.3, we have $E(f)=\operatorname{tr} A$. It follows that $\operatorname{tr} A \geqslant X A^{t} Y$, for any unit vectors X, Y. The equality holds if and only if f is holomorphic with respect J and φ.

All eigenvalues of $A A^{t}$ are nonnegative. Let $4 \lambda^{2}$ be an eigenvalue of $A A^{t}$ with $\lambda \geqslant 0$. Then there is a unit vector Y_{λ} in \mathbb{R}^{3} such that $A A^{t} Y_{\lambda}^{t}=4 \lambda^{2} Y_{\lambda}^{t}$. Hence

$$
Y_{\lambda}\left(A^{t} A Y_{\lambda}^{t}\right)=Y_{\lambda}\left(A A^{t} Y_{\lambda}^{t}\right)=4 \lambda^{2} Y_{\lambda} Y_{\lambda}^{t} .
$$

We have $\left|A Y_{\lambda}^{t}\right|=2 \lambda$. Suppose $\lambda \neq 0$ and we choose $X_{\lambda}^{t}=\frac{1}{2 \lambda} A Y_{\lambda}^{t}$. It follows $X_{\lambda} A Y_{\lambda}^{t}=2 \lambda$. Then $\operatorname{tr} A \geqslant 2 \lambda$. Hence $(\operatorname{tr} A)^{2} \geqslant \max \left\{\right.$ eigenvalues of $\left.A A^{t}\right\}$. If all the eigenvalues of $A A^{t}$ are 0 that is trivially true.

For the second part of the theorem let us consider the Lagrange multiplier

$$
F(X, Y)=X A Y^{t}-\lambda\left(|X|^{2}-1\right)-\mu\left(|Y|^{2}-1\right)
$$

If $X A Y^{t}$ attains its maximum at two unit vector fields $V, W \in \mathbb{R}^{3}$, then $F_{X}=0, F_{Y}=0$ in $X=V, Y=W$. One obtains $A W^{t}=2 \lambda V^{t}, V A=2 \mu W$. Then $2 \lambda=2 \lambda|V|^{2}=V A W^{t}=2 \mu|W|^{2}=2 \mu$. This implies $A^{t} A W^{t}=$ $2 \lambda A^{t} V^{t}=4 \lambda \mu W^{t}=4 \lambda^{2} W^{t}$. That is $4 \lambda^{2}$ is an eigenvalue of $A^{t} A$. If f is $(J, \varphi)-$ holomorphic with respect to a complex structure in the hyper-Kähler \mathbb{S}^{2}, on M and an almost contact structure in the 3 -almost contact \mathbb{S}^{2}, on N, then $X A Y^{t}$ attains its maximum $\operatorname{tr} A$. On the other hand, $\operatorname{tr} A=X A Y^{t}=2 \lambda$ and then $4 \lambda^{2}$ is an eigenvalue of $A^{t} A$.

Conversely, if $\operatorname{tr} A=\max \left\{\right.$ eigenvalues of $\left.A A^{t}\right\}$, we take $2 \lambda=\operatorname{tr} A$ and it follows that $4 \lambda^{2}$ is an eigenvalue of $A^{t} A$. Suppose $|Y|=1$ and $A^{t} A Y^{t}=4 \lambda^{2} Y^{t}$. It follows that $Y A^{t} A Y^{t}=4 \lambda^{2}$ and then $\left|A Y^{t}\right|^{2}=4 \lambda^{2}$. Taking $X^{t}=\frac{1}{2 \lambda} A Y^{t}$ one obtains $X A Y^{t}=2 \lambda=\operatorname{tr} A$. Hence f is a (J, φ)-holomorphic map with respect to a complex structure in the hyper-Kähler \mathbb{S}^{2}, on M and an almost contact structure in the 3 -almost contact \mathbb{S}^{2}, on N. Note that if A is the zero matrix, then the quaternionic map is a constant.

3. The stability of the quaternionic maps

Let $f: M \rightarrow N$ be a smooth map between two Riemannian manifolds (M, g) and (N, h). We should recall some notions and results related to the induced bundle over M of $T N$, as they are presented in [14].

Let $f^{-1}(T N)$ be the induced bundle over M of $T N$ defined as follows, denote by $\pi: T N \rightarrow N$ the projection. Then

$$
f^{-1} T N=\{(x, u) \in M \times T N, \pi(u)=f(x), x \in M\}=\bigcup_{x \in M} T_{f(x)} N
$$

The set of all C^{∞}-sections of $f^{-1} T N$, denoted by $\Gamma\left(f^{-1} T N\right)$ is

$$
\Gamma\left(f^{-1} T N\right)=\left\{V: M \rightarrow T N, C^{\infty}-\operatorname{map}, V(x) \in T_{f(x)} N, x \in M\right\}
$$

Denote by ∇^{M}, ∇^{N}, the Levi-Civita connections on (M, g) and (N, h) respectively. Then, for a smooth map f between (M, g) and (N, h), we define the induced connection $\widetilde{\nabla}$ on the induced bundle $f^{-1} T N$ as follows, for $X \in \chi(M), V \in \Gamma\left(f^{-1} T N\right)$, define $\widetilde{\nabla}_{X} V \in \Gamma\left(f^{-1} T N\right)$ by $\widetilde{\nabla}_{X} V=\nabla_{d f X}^{N} V$.

Then the connection $\widetilde{\nabla}$ and the metric h are compatible, that is, for $V_{1}, V_{2} \in$ $\Gamma\left(f^{-1} T N\right), X \in \chi(M)$ we have $X\left(h\left(V_{1}, V_{2}\right)\right)=h\left(\widetilde{\nabla}_{X} V_{1}, V_{2}\right)+h\left(V_{1}, \widetilde{\nabla}_{X} V_{2}\right)$.

Theorem 3.1. Let $f: M \rightarrow N$ be a quaternionic map between two hyperKähler manifolds, $\left(M, J_{\alpha}, g\right)$ and $\left(N, \mathcal{J}_{\alpha}, h\right)$. If M is compact, then

$$
\int_{M} h\left(J_{f} V, V\right) * 1=\frac{1}{4} \int_{M} h(D V, D V) * 1 \geqslant 0
$$

where $V \in \Gamma\left(f^{-1} T N\right)$, and J_{f} is the Jacobi operator of f defined by

$$
J_{f} V=-\sum_{i=1}^{m}\left(\widetilde{\nabla}_{e_{i}} \widetilde{\nabla}_{e_{i}}-\widetilde{\nabla}_{\nabla_{e_{i} e_{i}}}\right) V-\sum_{i=1}^{m} R^{N}\left(V, d f e_{i}\right) d f e_{i}, V \in \Gamma\left(f^{-1} T N\right)
$$

where R^{N} denote the curvature tensor on N. For each $V \in \Gamma\left(f^{-1} T N\right), D V$ is an element of $\Gamma\left(f^{-1} T N \otimes T^{*} M\right)$ defined by

$$
D V(X)=\sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} X} V-\widetilde{\nabla}_{X} V, X \in \chi(M)
$$

Then

1) f is weakly stable, that is, each eigenvalue of J_{f} is nonnegative.
2) ker $J_{f}=\left\{V \in \Gamma\left(f^{-1} T N\right), D V=0\right\}$.

Proof. Let $\left\{e_{i}, J_{1} e_{i}, J_{2} e_{i}, J_{3} e_{i}\right\}_{i=1}^{m}$ be an orthonormal local frame field on M adapted to the hyper-Kähler structure on M.

According to the definition of $D V$, one obtains, for any $V \in \Gamma\left(f^{-1} T N\right)$,

$$
\begin{aligned}
& \text { (3.1) } h(D V, D V)=\sum_{i=1}^{m}\left\{h\left(D V\left(e_{i}\right), D V\left(e_{i}\right)\right)+\sum_{\alpha} h\left(D V\left(J_{\alpha} e_{i}\right), D V\left(J_{\alpha} e_{i}\right)\right)\right\}= \\
& =\sum_{i=1}^{m}\left\{h\left(\sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V-\widetilde{\nabla}_{e_{i}} V, \sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V-\widetilde{\nabla}_{e_{i}} V\right)+\right. \\
& \left.+\sum_{\alpha} h\left(\sum_{\beta} \mathcal{J}_{\beta} \widetilde{\nabla}_{J_{\beta} J_{\alpha} e_{i}} V-\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \sum_{\beta} \mathcal{J}_{\beta} \widetilde{\nabla}_{J_{\beta} J_{\alpha} e_{i}} V-\widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)\right\}= \\
& =\sum_{i=1}^{m}\left\{4 h\left(\widetilde{\nabla}_{e_{i}} V, \widetilde{\nabla}_{e_{i}} V\right)+4 \sum_{\alpha} h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)-8 h\left(\widetilde{\nabla}_{e_{i}} V, \sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)+\right. \\
& \left.+8 \sum_{\alpha \neq \beta} h\left(\mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V, \mathcal{J}_{\beta} \widetilde{\nabla}_{J_{\beta} e_{i}} V\right)\right\},
\end{aligned}
$$

since the two manifolds are hyper-Kähler.
Next we shall prove that

$$
\begin{gather*}
R^{N}\left(V, d f e_{i}\right) d f e_{i}+\sum_{\alpha} R^{N}\left(V, d f J_{\alpha} e_{i}\right) d f J_{\alpha} e_{i}= \tag{3.2}\\
=-\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V+\mathcal{J}_{3} R^{N}\left(d f J_{2} e_{i}, d f J_{1} e_{i}\right) V+
\end{gather*}
$$

$$
+\mathcal{J}_{2} R^{N}\left(d f J_{1} e_{i}, d f J_{3} e_{i}\right) V+\mathcal{J}_{1} R^{N}\left(d f J_{3} e_{i}, d f J_{2} e_{i}\right) V
$$

Since f is a quaternionic map one obtains

$$
\begin{gathered}
R^{N}\left(V, d f e_{i}\right) d f e_{i}+\sum_{\alpha} R^{N}\left(V, d f J_{\alpha} e_{i}\right) d f J_{\alpha} e_{i}= \\
=\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(V, d f e_{i}\right) d f J_{\alpha} e_{i}+\sum_{\alpha} \sum_{\beta} \mathcal{J}_{\beta} R^{N}\left(V, d f J_{\alpha} e_{i}\right) d f J_{\beta} J_{\alpha} e_{i}= \\
=-\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, V\right) d f J_{\alpha} e_{i}+\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f J_{\alpha} e_{i}, V\right) d f e_{i}+A= \\
=-\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V+A,
\end{gathered}
$$

where A is the sum of the last three terms in the right side of 3.2 and where we used the formulas, for $X, Y, Z \in \chi(N)$

$$
R^{N}(X, Y) Z+R^{N}(Y, X) Z=0, \quad R^{N}(X, Y) Z+R^{N}(Y, Z) X+R^{N}(Z, X) Y=0
$$

Since

$$
\begin{aligned}
& \int_{M} h\left(J_{f} V, V\right) * 1=\int_{M} \sum_{i=1}^{m}\left\{h\left(\widetilde{\nabla}_{e_{i}} V, \widetilde{\nabla}_{e_{i}} V\right)+\sum_{\alpha} h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)-\right. \\
& \left.-h\left(R^{N}\left(V, d f e_{i}\right) d f e_{i}, V\right)-\sum_{\alpha} h\left(R^{N}\left(V, d f J_{\alpha} e_{i}\right) d f J_{\alpha} e_{i}, V\right)\right\} * 1,(\operatorname{see}[14]),
\end{aligned}
$$

we have

$$
\begin{gather*}
\int_{M}\left[h\left(J_{f} V, V\right)-\frac{1}{4} h(D V, D V)\right] * 1= \tag{3.3}\\
=\int_{M}\left\{\sum _ { i = 1 } ^ { m } \left\{h\left(\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V, V\right)-\right.\right. \\
\left.-h(A, V)+2 h\left(\widetilde{\nabla}_{e_{i}} V, \sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)-2 \sum_{\alpha \neq \beta} h\left(\mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V, \mathcal{J}_{\beta} \widetilde{\nabla}_{J_{\beta} e_{i}} V\right)\right\} * 1 .
\end{gather*}
$$

We have

$$
\begin{align*}
& -h\left(\mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V, V\right)=h\left(R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V, \mathcal{J}_{\alpha} V\right)= \tag{3.4}\\
& =h\left(\widetilde{\nabla}_{e_{i}} \widetilde{\nabla}_{J_{\alpha} e_{i}} V-\widetilde{\nabla}_{J_{\alpha} e_{i}} \widetilde{\nabla}_{e_{i}} V-\widetilde{\nabla}_{\left[e_{i}, J_{\alpha} e_{i}\right]} V, \mathcal{J}_{\alpha} V\right)= \\
& =e_{i}\left(h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \mathcal{J}_{\alpha} V\right)\right)-h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \widetilde{\nabla}_{e_{i}} \mathcal{J}_{\alpha} V\right)- \\
& -J_{\alpha} e_{i}\left(h\left(\widetilde{\nabla}_{e_{i}} V, \mathcal{J}_{\alpha} V\right)\right)+h\left(\widetilde{\nabla}_{e_{i}} V, \widetilde{\nabla}_{J_{\alpha} e_{i}} \mathcal{J}_{\alpha} V\right)-h\left(\widetilde{\nabla}_{\nabla_{e_{i}} J_{\alpha} e_{i}} V, \mathcal{J}_{\alpha} V\right)+ \\
& +h\left(\widetilde{\nabla}_{\nabla_{J_{\alpha} e_{i}} e_{i}} V, \mathcal{J}_{\alpha} V\right),
\end{align*}
$$

for any $\alpha=1,2,3$, since $\widetilde{\nabla}$ and h are compatible, where ∇ denote the LeviCivita connection on M. In the same way we can compute $h(A, V)$. If we denote

$$
\sum_{i=1}^{m}\left\{h\left(\sum_{\alpha} \mathcal{J}_{\alpha} R^{N}\left(d f e_{i}, d f J_{\alpha} e_{i}\right) V, V\right)-h(A, V)\right\}=B
$$

we obtain $B=B_{1}+B_{2}$, where

$$
\begin{aligned}
& B_{1}=\sum_{i=1}^{m}\left\{\sum _ { \alpha } \left[-e_{i} h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \mathcal{J}_{\alpha} V\right)+J_{\alpha} e_{i} h\left(\widetilde{\nabla}_{e_{i}} V, \mathcal{J}_{\alpha} V\right)+h\left(\widetilde{\nabla}_{\nabla_{e_{i}} J_{\alpha} e_{i}} V, \mathcal{J}_{\alpha} V\right)-\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& -h\left(\widetilde{\nabla}_{\nabla_{J_{2} e_{i}} J_{1} e_{i}} V, \mathcal{J}_{3} V\right)+h\left(\widetilde{\nabla}_{\nabla_{J_{1} e_{i}} J_{2} e_{i}} V, \mathcal{J}_{3} V\right)+J_{1} e_{i} h\left(\widetilde{\nabla}_{J_{3} e_{i}} V, \mathcal{J}_{2} V\right)- \\
& -J_{3} e_{i} h\left(\widetilde{\nabla}_{J_{1} e_{i}} V, \mathcal{J}_{2} V\right)-h\left(\widetilde{\nabla}_{\left.\nabla_{J_{1} e_{i} J_{3} e_{i}} V, \mathcal{J}_{2} V\right)+h\left(\widetilde{\nabla}_{\nabla_{J_{3} e_{i}} J_{1} e_{i}} V, \mathcal{J}_{2} V\right)+}\right. \\
& +J_{3} e_{i} h\left(\widetilde{\nabla}_{J_{2} e_{i}} V, \mathcal{J}_{1} V\right)-J_{2} e_{i} h\left(\widetilde{\nabla}_{J_{3} e_{i}} V, \mathcal{J}_{1} V\right)-h\left(\widetilde{\nabla}_{\nabla_{J_{3} e_{i}} J_{2 e_{i}}} V, \mathcal{J}_{1} V\right)+ \\
& \left.+h\left(\widetilde{\nabla}_{\nabla_{J_{2} e_{i}} J_{3} e_{i}} V, \mathcal{J}_{1} V\right)\right\},
\end{aligned}
$$

and

$$
\begin{gathered}
B_{2}=\sum_{i=1}^{m}\left\{\sum_{\alpha}\left[h\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V, \widetilde{\nabla}_{e_{i}} \mathcal{J}_{\alpha} V\right)-h\left(\widetilde{\nabla}_{e_{i}} V, \widetilde{\nabla}_{J_{\alpha} e_{i}} \mathcal{J}_{\alpha} V\right)\right]-\right. \\
-h\left(\widetilde{\nabla}_{J_{1} e_{i}} V, \widetilde{\nabla}_{J_{2} e_{i}} \mathcal{J}_{3} V\right)+h\left(\widetilde{\nabla}_{J_{2} e_{i}} V, \widetilde{\nabla}_{J_{1} e_{i}} \mathcal{J}_{3} V\right)-h\left(\widetilde{\nabla}_{J_{3} e_{i}} V, \widetilde{\nabla}_{J_{1} e_{i}} \mathcal{J}_{2} V\right)+ \\
\left.+h\left(\widetilde{\nabla}_{J_{1} e_{i}} V, \widetilde{\nabla}_{J_{3} e_{i}} \mathcal{J}_{2} V\right)-h\left(\widetilde{\nabla}_{J_{2} e_{i}} V, \widetilde{\nabla}_{J_{3} e_{i}} \mathcal{J}_{1} V\right)+h\left(\widetilde{\nabla}_{J_{3} e_{i}} V, \widetilde{\nabla}_{J_{2} e_{i}} \mathcal{J}_{1} V\right)\right\}= \\
=2\left\{\sum _ { i = 1 } ^ { m } \left[\sum_{\alpha} h\left(\mathcal{J}_{\alpha} \widetilde{\nabla}_{e_{i}} V, \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)+h\left(\widetilde{\nabla}_{J_{1} e_{i}} \mathcal{J}_{3} V, \widetilde{\nabla}_{J_{2} e_{i}} V\right)+\right.\right. \\
\left.\left.\quad+h\left(\widetilde{\nabla}_{J_{3} e_{i}} \mathcal{J}_{2} V, \widetilde{\nabla}_{J_{1} e_{i}} V\right)+h\left(\widetilde{\nabla}_{J_{2} e_{i}} \mathcal{J}_{1} V, \widetilde{\nabla}_{J_{3} e_{i}} V\right)\right]\right\}= \\
=-2 \sum_{\alpha \neq \beta}^{m}\left[h\left(\widetilde{\nabla}_{e_{i}} V, \sum_{\alpha} \mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)-2 \sum_{\alpha} h\left(\mathcal{J}_{\alpha} \widetilde{\nabla}_{J_{\alpha} e_{i}} V, \mathcal{J}_{\beta} \widetilde{\nabla}_{J_{\beta} e V} V\right)\right],
\end{gathered}
$$

since the two manifolds are hyper-Kähler.
Consider the vector field $X \in \chi(M)$ defined by 1

$$
g(X, Y)=-\sum_{\alpha} h\left(\widetilde{\nabla}_{J_{\alpha} Y} V, \mathcal{J}_{\alpha} V\right)
$$

for any $Y \in \chi(M)$. By a straightforward computation one obtains div $X=B_{1}$. From the expressions of B_{1} and B_{2} by using the Green's formula, it follows that

$$
\int_{M} h\left(J_{f} V, V\right) * 1=\frac{1}{4} \int_{M} h(D V, D V) * 1 .
$$

Theorem 3.2. Let $f: M \rightarrow N$ be a quaternionic map between a hyper-Kähler manifold, $\left(M, J_{\alpha}, g\right)$ and a 3-cosymplectic manifold $\left(N, \varphi_{\alpha}, \xi^{\alpha}, \eta^{\alpha}, h\right)$. If M is compact, then
$\int_{M} h\left(J_{f} V, V\right) * 1=\frac{1}{4} \int_{M} h(D V, D V) * 1+\frac{1}{12} \int_{M} \sum_{\alpha} \operatorname{tr}\left(\eta^{\alpha} \otimes \eta^{\alpha}\right)(D V, D V) * 1$,
where, for any $V \in \Gamma\left(f^{-1} T N\right), D V(X)=\sum_{\alpha} \varphi_{\alpha} \widetilde{\nabla}_{J_{\alpha} X} V-\widetilde{\nabla}_{X} V, X \in \chi(M)$, and

$$
\left(\eta^{\alpha} \otimes \eta^{\alpha}\right)(D V, D V)(X, Y)=\eta^{\alpha}(D V(X)) \eta^{\alpha}(D V(Y))
$$

Then

1) f is weakly stable, that is, each eigenvalue of J_{f} is nonnegative.
2) ker $J_{f}=\left\{V \in \Gamma\left(f^{-1} T N\right), D V=0\right\}$.

Proof. After a similar computation with that in Theorem 3.1, based on the definitions of the hyper-Kähler structure and of the 3-cosymplectic structure, on the definitions of the Levi-Civita connections on the domain and the target manifolds and on Theorem 1.1, one obtains that in the expression of $\int_{M} h\left(J_{f} V, V\right) * 1-\frac{1}{4} \int_{M} h(D V, D V) * 1$ the following new terms arise

$$
\begin{aligned}
& \sum_{i=1}^{m}\left\{\int_{M} \frac{1}{4}\left[\sum_{\alpha} \sum_{\beta} \eta_{\alpha}\left(\widetilde{\nabla}_{J_{\beta} e_{i}} V\right) \eta_{\alpha}\left(\widetilde{\nabla}_{J_{\beta} e_{i}} V\right)+\sum_{\alpha} \eta_{\alpha}\left(\widetilde{\nabla}_{e_{i}} V\right) \eta_{\alpha}\left(\widetilde{\nabla}_{e_{i}} V\right)\right] * 1+\right. \\
& +\int_{M} \frac{1}{2}\left[\sum_{\alpha \neq \beta} \eta_{\alpha}\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V\right) \eta_{\beta}\left(\widetilde{\nabla}_{J_{\beta} e_{i}} V\right)-\sum_{\alpha \neq \beta} \eta_{\alpha}\left(\widetilde{\nabla}_{J_{\beta} e_{i}} V\right) \eta_{\beta}\left(\widetilde{\nabla}_{J_{\alpha} e_{i}} V\right)\right] * 1- \\
& \quad-\int_{M} \frac{1}{2}\left[\eta_{1}\left(\widetilde{\nabla}_{e_{i}} V\right)\left(\eta_{3}\left(\widetilde{\nabla}_{J_{2} e_{i}} V\right)-\eta_{2}\left(\widetilde{\nabla}_{J_{3} e_{i}} V\right)\right)+\right. \\
& \left.+\eta_{2}\left(\widetilde{\nabla}_{e_{i}} V\right)\left(\eta_{1}\left(\widetilde{\nabla}_{J_{3} e_{i}} V\right)-\eta_{3}\left(\widetilde{\nabla}_{J_{1} e_{i}} V\right)\right)+\eta_{3}\left(\widetilde{\nabla}_{e_{i}} V\right)\left(\eta_{2}\left(\widetilde{\nabla}_{J_{1} e_{i}} V\right)-\eta_{1}\left(\widetilde{\nabla}_{J_{2} e_{i}} V\right)\right)\right] * 1 .
\end{aligned}
$$

After a straightforward computation, one obtains that this is

$$
\frac{1}{12} \int_{M} \sum_{\alpha} t r\left(\eta^{\alpha} \otimes \eta^{\alpha}\right)(D V, D V) * 1
$$

In the same way one obtains
Theorem 3.3. Let $f: M \rightarrow N$ be a quaternionic map between a hyper-Kähler manifold, $\left(M, J_{\alpha}, g\right)$ and a hyper \mathcal{C}-manifold $\left(N, \varphi_{\alpha}, \xi_{a}^{\alpha}, \eta_{a}^{\alpha}, h\right)$, with $a=\overline{1, r}$. If M is compact, then
$\int_{M} h\left(J_{f} V, V\right) * 1=\frac{1}{4} \int_{M} h(D V, D V) * 1+\frac{1}{12} \int_{M} \sum_{a=1}^{r} \sum_{\alpha} \operatorname{tr}\left(\eta_{a}^{\alpha} \otimes \eta_{a}^{\alpha}\right)(D V, D V) * 1$.
Then

1) f is weakly stable, that is, each eigenvalue of J_{f} is nonnegative.
2) $\operatorname{ker} J_{f}=\left\{V \in \Gamma\left(f^{-1} T N\right), D V=0\right\}$.

4. Quaternionic maps between a hyper-Kähler manifold with dimension 4 and a 3 -cosymplectic manifold with dimension 3

Let M be a differential manifold which is of real dimension 4 . Then the only hyper-Kähler structure on M is defined by the tensor fields of type $(1,1)$ whose matrix expressions take the following form, (see [9])

$$
\begin{gather*}
J_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), J_{2}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \tag{4.1}\\
J_{3}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) .
\end{gather*}
$$

Concerning the 3-cosymplectic structures which can be defined on a 3dimensional manifold we can state the following.

Let N be a 3 -dimensional manifold. Let us consider on N the almost contact structures given in local coordinates by

$$
\begin{aligned}
& \varphi_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), \eta^{1}=d x^{1}, \xi^{1}=\frac{\partial}{\partial x^{1}} \\
& \varphi_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \eta^{2}=d x^{2}, \xi^{2}=\frac{\partial}{\partial x^{2}} \\
& \varphi_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \eta^{3}=d x^{3}, \xi^{3}=\frac{\partial}{\partial x^{3}}
\end{aligned}
$$

It can be easily verified that this structures define an almost contact 3structure on N. Moreover, let us consider the induced almost complex structures on $N \times \mathbb{R}$, defined by $J_{i}=\left(X, f \frac{d}{d t}\right)=\left(\varphi_{i} X-f \xi^{i}, \eta^{i}(X) \frac{d}{d t}\right), i=\overline{1,3}$, where $X \in \chi(N)$ and $f \in C^{\infty}(N \times \mathbb{R})$. It is proved in [1] that these tensor fields define three almost contact structures on $N \times \mathbb{R}$. After a straightforward computation one obtains that J_{i} actually are the tensor fields which define the unique hyper-Kähler structure on $N \times \mathbb{R}$. It follows that the almost contact structures defined on N are normal structures and then on N we obtained a 3 -cosymplectic structure, (see [1]).

In the following let us consider a new 3 -cosymplectic structure on $N,\left(\psi_{i}, \zeta^{i}, \theta^{i}\right)$, $i=\overline{1,3}$, such that the fundamental 2 -forms, $\omega_{i}, i=\overline{1,3}$, corresponding to each almost contact structure, are closed. Then, taking the induced almost complex
structures on $N \times \mathbb{R}$ defined as above, and the metric G on $N \times \mathbb{R}$, defined by $G=g+d t d t$, where g is the Riemannian metric associated to all almost contact structures on N, which gives the fundamental 2 -forms ω_{i} on N, one obtains for the corresponding fundamental 2-forms, $\Omega_{i}, i=\overline{1,3}$, on $N \times \mathbb{R}$, that $\Omega_{i}=\omega_{i}-\theta^{i} \wedge d t$. Hence, if the 1 -forms θ^{i} are closed and the 2 -forms ω_{i} are also closed, then $d \Omega_{i}=0$. But, using a Hitchin's lemma one obtains that the induced almost complex structures on $N \times \mathbb{R}$ are normal and then they define a hyper-Kähler structure on $N \times \mathbb{R}$, (see [8], [10]). Since this structure is unique and since the induced Kähler structures on $N \times \mathbb{R}$ are uniquely determined by the cosymplectic structures on N, it follows that the structure defined by 4.2 is the only 3 -cosymplectic structure on N.

Let $f: M \rightarrow N$ be a smooth map between a 4 -dimensional hyper-Kahler manifold and a 3 -dimensional 3 -cosymplectic manifold. Then, using 2.1, with $A^{\alpha \beta}=\delta_{\alpha \beta}, 4.1$ and 4.2, one obtains that f is quaternionic map if and only if

$$
\left\{\begin{array}{l}
f_{1}^{1}+f_{2}^{2}+f_{3}^{3}=0 \tag{4.3}\\
f_{1}^{2}-f_{2}^{1}-f_{4}^{3}=0 \\
f_{1}^{3}+f_{4}^{2}-f_{3}^{1}=0 \\
-f_{4}^{1}+f_{2}^{3}-f_{3}^{2}=0
\end{array}\right.
$$

where $f_{i}^{a}=\frac{\partial f^{a}}{\partial x^{i}}, a=\overline{1,3}, i=\overline{1,4}$.
Example. Let M and N be \mathbb{R}^{4} and \mathbb{R}^{3}, respectively, endowed with the hyperKähler and the 3 -cosymplectic structures and let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a smooth map, given by

$$
f\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=\left(-2 x^{1}, x^{2}, x^{3}\right)
$$

It is easy to see from 4.3 that f is a quaternionic map. The matrix of $d f$ is

$$
\left(\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Since the rank of this matrix is 3 and the rank of a $\pm(J, \varphi)$-holomorphic map must be even, it follows that f is a quaternionic map which is non- $\pm(J, \varphi)$ holomorphic with respect to any almost complex structure on \mathbb{R}^{4} and to any almost contact structure on \mathbb{R}^{3}.

Using Theorem 3.2, after a straightforward computation, one obtains, for a vector field $V \in \Gamma\left(f^{-1} T \mathbb{R}^{3}\right)$, that $V \in \operatorname{Ker} J_{f}$ if and only if

$$
\left\{\begin{array}{l}
V_{3}^{2}-V_{2}^{3}=0 \\
V_{3}^{1}+2 V_{1}^{3}=0 \\
V_{2}^{1}+2 V_{1}^{2}=0 \\
2 V_{1}^{1}+V_{2}^{2}+V_{3}^{3}=0
\end{array}\right.
$$

where $V=V^{i} \frac{\partial}{\partial x^{i}}$ and $V_{i}^{j}=\frac{\partial V^{j}}{\partial x^{i}}, i, j=\overline{1,4}, V^{i}$ being smooth functions on \mathbb{R}^{4}.

References

[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. pp. x, 260, Birkhäuser Boston, Progress in Mathematics, Volume 203, 2002.
[2] Blair, D. E., Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$. J. Diff. Geom. 4 (1970), 155-167.
[3] Chen, J., Li, J., Quternionic maps between hyperkähler manifolds. J. Diff. Geom. 55 (2000), 355-384.
[4] Fetcu, D., Harmonic maps between framed φ-manifolds. An. USAMV Iaşi, Tom 46, Vol. 2 (2003), Proceedings of the Annual Symposium on Mathematics Applied in Biology and Biophysics, May 30-31, 2003, 129-146.
[5] Fetcu, D., Maps between almost Kähler manifolds and framed φ-manifolds. Balkan J. Geom. Appl. 9(2)(2004), 13-24.
[6] Fetcu, D., Some properties of the hyper-framed manifolds. An. USAMV Iaşi, Tom 47, Vol. 2 (2004), Proceedings of the Annual Symposium on Mathematics Applied in Biology and Biophysics, May 28-29, 2004, 151-163.
[7] Goldberg, S. I., Yano, K., On normal globally framed f-manifold. Tôhoku Math. J. 22 (1970), 362-370.
[8] Hitchin, N. J., The self-duality on a Riemann surface. Proc. London Math. Soc. 55 (1987), 59-126.
[9] Itoh, M., Quaternion structure on the moduli space of Yang-Mills connections. Math. Ann. 276 (1987), 581-593.
[10] Kashiwada, T., A note on Hitchin's lemma. Tensor (N.S.) 60 (1998), 323-326.
[11] Kuo, Y.-Y., On almost contact 3-structure. Tôhoku Math. J. 22(1970), 325-332.
[12] Oproiu, V., Some remarks on the almost cocomplex connections. Rev. Roum. Math. Pures Appl. 16 (1971), 383-393.
[13] Udriste, C., Structures presque coquaternioniennies. Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
[14] Urakawa, H., Calculus of Variation and Harmonic Maps. pp. viii, 251, American Mathematical Society, Providence, Rhode Island, Translations of Mathematical Monographs, 1993.
[15] Xin, Y.L., Geometry of Harmonic Maps. pp. x, 241, Birkhäuser Boston, Progress in Nonlinear Differential Equations and Their Aplications, 1996.

Received by the editors March 24, 2005

[^0]: ${ }^{1}$ Department of Mathematics, Technical University of Iassy,Carol I Blvd., n. 11, 700506, Iassy, Romania, e-mail: dfetcu@math.tuiasi.ro

