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QUATERNIONIC MAPS BETWEEN A

HYPER-KAHLER MANIFOLD AND A 3-ALMOST
CONTACT MANIFOLD

Dorel Fetcu!

Abstract. We prove that any quaternionic map between a hyper-
Kahler manifold and a 3-almost contact manifold with a certain property
is a harmonic map and we give some results about the stability of such a
map and about the stability of a quaternionic map between hyper-Kéhler
manifolds.
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1. Preliminaries

Let us recall that a hyper almost complex manifold is a manifold endowed
with three almost complex structures, J,, a = 1, 3, satisfying the quaternionic
identities

(1.1) Jy = Jodg = —JgJa,

for any even permutation {«, 3,7} of {1,2,3}. If these three almost complex
structures are Kéhler then the manifold is called a hyper-Kéahler manifold.

For any real numbers a, b, ¢ with a® + b> + ¢ = 1, one obtains a covariant
complex structure aJy + bJo + ¢J3. As in [3], we shall refer this S2-family of
complex structures as the hyper-Kéhler S2. Therefore, SO(3) acts naturally on
the covariant complex structures. Every SO(3) matrix preserves the identities
1.1. A hyper-Kéahler manifold is of dimension 4n.

In order to introduce the 3-almost contact manifolds and the hyperframed
manifolds let us recall some basic notions and properties of the framed -
manifolds.

Let M be an m-dimensional smooth manifold endowed with a tensor field ¢
of type (1,1), satisfying the algebraic condition

(1.2) P +p=0.

The geometric structure on M defined by ¢ is called a @-structure of rank r
if the rank r of ¢ is constant on M and, in this case, M is called a p-manifold.
It follows easily that 7 is an even number.
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If M is a @-manifold and if there are m — r vector fields & and m — r
differential 1-forms n; satisfying

m—r

(1.3) ¢ =—-I+ Z ni©&, mi(&) =5,

=1

where 4,5 = 1,2,...,m —r, M is said to be globally framed or to have a framed
p-structure. In this case M is called a globally framed (p-manifold or, simply, a
framed (p-manifold. From (1.3), by some algebraic computations, one obtains,

(1.4) & =0, nop=0, ¢ +p=0.

If m =2n+ 1 and rank ¢ = 2n one obtains an almost contact structure on
M.

Let M be an m-dimensional globally framed ¢-manifold with structure ten-
sors (p,&;,n;) with rank ¢ = r, and consider the manifold M x R™~". We
denote a vector field on M x R™™" by (X, 31" " fi-2:) where X is tangent
to M, {t!,...,t™ "} are the usual coordinates on R™~" and {fi,..., fn_r} are
functions on M x R™~". Define an almost complex structure on M x R™~" by

J(X, Z fl%) = (pX — Z fi&i, Z WZ(X)%)
i=1 =1 i—1

It is easy to check that J? = —I. If J is integrable we say that the framed
p-structure is normal. A framed @-structure is normal if the tensor field S of
type (1,2) defined by

m—r

(1.5) S=No+ > dni®&,

i=1

vanishes, (see [7]), where N, (X,Y) = [0 X, pY|—0[pX, Y]—0[X, pY]|+¢*[ X, Y],
for X, Y € x(M), is the Nijenhuis tensor field of ¢.
If g is a (semi-)Riemannian metric on M such that

m—r

(1.6) 9P X, 0Y) = g(X,Y) = > n(X)mi(Y),
=1

then we say that (¢,&;,7n:,g) is a metric framed ¢-structure and M is called a
metric framed p-manifold. The metric g is called an associated (semi-)Riema-
nnian metric.

The fundamental 2-form €2 of the considered metric framed ¢-manifold M, is
defined just like in the case of the almost Hermitian and almost contact metric
manifold, by 2 = g(X, ¢Y), for any X,Y € x(M).

The framed @-manifold M with structure tensors (p,&;,n;) is called a C-
manifold if it is normal, d2 =0 and dn; =0, i =1,...,m —r, (see [2]).
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If on an almost contact manifold (M, ¢, &, n) it is defined an associated Rie-
mannian metric g then (M, ¢, &, 7, g) is called an almost contact metric manifold.
If on an almost contact metric manifold (M, ¢, &, n,g) we have Q = dn, where
Q is the fundamental 2-form on M, then we say that (M, ¢,£,n,g) is a contact
metric manifold. If for an almost contact metric structure (¢, &,7,g) which is
normal we have dn = 0 and dQ2 = 0, then (N, ¢,&,7,g) is called a cosymplectic
manifold.

In [1] the following result is proved.

Theorem 1.1. An almost contact metric structure (v,&,1,9g) is cosymplectic
if and only if ¢ is parallel.

In the same way one obtains

Theorem 1.2. If (M,¢,&;,m:,9) is a C-manifold then ¢ is parallel.

In 1969 in [13] and in 1970 in [11], the authors defined the almost contact
3-structure (or the coquaternionic structure) on an odd dimensional manifold
M, as follows.

If the manifold M admits three almost contact structure (@4, &%, n%), a =
1,3, satisfying

Oy = Paps — NP ®E* = —pgpa + 1% ® &P,
(1.7)

£ =P = —ppt®, N =n%0ps=—n"o0p,,

for any even permutation {«, 8,7} of {1, 2,3}, then the manifold is said to have
an almost contact 3-structure.

It is proved (see [11]) that there exists an associated metric to each of this
three structures. If all structures are cosymplectic, then we call the manifold
M a 3-cosymplectic manifold.

As a generalization of the notion of hyper almost complex manifold and the
notion of 3-almost contact manifold we defined in [4] and [6] the hyperframed
manifolds as follows.

If a differentiable manifold M admits three framed @, -structures, (¢4, 5, n2),
such that dim M — rank ¢, = n, for any o = 1,2, 3, satisfying the following,
for any even permutation («, 3,7) of (1,2, 3),

Py = PP — D ay Mo QEX = —ppPa + Y ay Ne ®EL,
(1.8)

€1 = 0ol = s, nl =n2ops=—n80pa,

then the manifold is said to be a hyperframed manifold. A hyperframed manifold
is of dimension 4m + 3n.

Obviously a 3-almost contact manifold is a hyperframed manifold.

Note that for any real numbers p,q,r with p? + ¢ + 72 = 1 we obtain a

framed p-structure (pp1 + g2 + 13, p& +q€% + 165, pig +aqng +71;), and that
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every SO(3) matrix preserve 1.7 and 1.8. We shall refer this S2-family of almost
contact structures as the 3-almost contact S2.

In [6], we prove that there exists a Riemannian metric associated to all three
framed @q-structures. If the framed ¢,-structures are C-structures we call the
manifold M a hyper C-manifold.

2. Quaternionic maps

Definition 2.1. Let (M, J,g) be an almost K&hler manifold and let (N, ¢, &,,
7, h) be a metric framed ¢-manifold. A smooth map f: M — N is called a
+(J, ¢)-holomorphic map if df J = +pdf, where df : TM — TN denotes the
induced tangent map of f.

Definition 2.2. Let (M, J,,g) be a hyper almost Kéhler manifold and let
(N, ©a, €% 1%, h) be a metric 3-almost contact manifold. We call a smooth map
f: M — N a quaternionic map if

(2.1) AP ppdf Jo = df,
where A%? are the entries of a matrix A in SO(3).

It is easy to verify that any =£(.J, ¢)-holomorphic map with respect to an
almost complex structure aJ; + bJs + ¢Js, with a? + b% + ¢ = 1 and an almost
contact structure (pp; + qa + 73, pEY + q€% + re3,pnt + qn? + rn?), with
p? + ¢ + 12 =1, is a quaternionic map.

Since SO(3) preserves the identities 1.1 and 1.7, we can choose the complex
structures J, for M and the almost contact structures (¢g,&?,1%) for N such
that AP = dap in 2.1. In the sequel, we shall assume that AoB = dag-

In the following let us consider two manifolds M and N as in Definition 2.2,
and suppose that M is compact. As in [3] (for the case of the maps between
hyper-Kéhler manifolds), for a smooth map f : M — N, consider the energy
functional

1 1 iy
B =5 1 IP=5 [ 0 hmdif™0;07 51

where *1 is the volume element of M, the functional
* 1 m
Er() = [ S0at a1 =5 [ S0 a) sy "0 51

and

1) =5 [ 1 =S padida P+ odf 0 1o om0 df o o)) +1.

[e3%

Remark 2.1. Since for a quaternionic map one obtains easily that ) 7o
df o J, =0, it follows that f is a quaternionic map if and only if I(f) = 0.
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Remark 2.2. Note that, if J is an almost Kéhler structure on (M, g), with
the fundamental 2-form w, and if (¢, &, n, k) is a metric almost contact structure
on N such that the fundamental 2-form Q on N is closed, then any +(J,p)-

holomorphic map between M and N is a minimum of the energy integral in its
homotopy class, since

2 BN+ [ res=1 [ (4 =edtd P rwodgodn) 1.

where we use the fact that [, (J, f*p)*1 = [, (w, f*Q) 1 which is a homotopy
invariant, (see [5]).

Theorem 2.3. Let f : M — N be a smooth map between two manifolds M
and N as above. Then

(23) B(f) + Er(f) = {107,

If the fundamental 2-forms on N corresponding to the three almost contact struc-
tures are closed and if f is a quaternionic map, then f is a minimum of the
energy in its homotopy class.

Proof. After a straightforward computation one obtains

1) = B+ 2B0(0) + 5 | (0 0adfTar 3 padido)+

+(O) n“odf o Ja, Y n“odf oJs)) 1.

Let {e;, Jie;, Jo€;, J3e;} be an orthonormal local framed field on M adapted
to the hyper almost Kéahler structure. One obtains

3 [ pettde Y atrtat = 5 [ S cad e 3 padi e+

+ 3 (Y Padf Tal(sei), Y adf Ja(Tger) * 1,
Jé] « o

where dim M = 4m. Using the definition of the hyper almost Kéahler structure
and the definition of the almost contact 3-structure, it follows easily

1
5 /M<; (pocdf‘]aa ;‘padea> *1= 3E(f) + 2ET(f)_

-3 [, O @S @ el
+ D D (df Ja(Tpe) Iy n* (df Ja(Jpea))} + 1,
B [e7 o
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Hence E(f) + Er(f) = $I(f). For a pair of structures (J%,¢”), Er is a
homotopy invariant, (see [5]). If f is a quaternionic map, that means I(f) = 0,
then f is a minimum of the energy in its homotopy class.

Defining the quaternionic maps between a hyper almost Kéhler manifold
and a hyperframed manifold in the same way as the quaternionic maps with the
target manifold a 3-almost contact manifold, one obtains the following

Theorem 2.4. Let (M, J,,g) be a compact hyper almost Kihler manifold and
let (N, ¢q,E8,n%, ), = 1,7, be a metric hyperframed manifold. Then, for any
smooth map f : M — N, we have E(f) + Er(f) = $1(f), where E(f) and
Er(f) are defined as above and

1) =5 [0 =S padtda P+ 3t odf o o S odf o o) +1.
a a=1 « a

If the fundamental 2-forms on N corresponding to the three framed g -structu-
res are closed and if f is a quaternionic map, then f is a minimum of the energy
i its homotopy class.

Remark 2.5. Note that a map f defined as in the previous theorem is quater-
nionic if and only if I(f) = 0.

Just like in [3], where the target manifold is a hyper-Kéhler manifold, a
criterion which detects when a quaternionic map is a (J, ¢)-holomorphic map
with respect to a structure in the hyper-Kihler S? and a structure in the 3-
almost contact S?, can be obtained.

Theorem 2.6. Let f: M — N be a quaternionic map between a hyper-Kdhler
manifold and a 3-almost contact manifold. Let A be a 3 x 3-matriz whose (o, 3)-
entries are — [, (Jo, f*g) 1 for a, =1,2,3. Then

(tr A)? > max{eigenvalues of AA'}

and the equality holds if and only if f is a (J,p)-holomorphic map with respect
to a structure in the hyper-Kihler S? and a structure in the 3-almost contact
S2.

Proof.  Set J = X*J, with | X |= 1 and ¢ = YPgg, n = 3,V ¢ =
PP YB¢B with | Y |= 1. Then, from 2.2 one obtains

E(f) :XAYt—i—i/M(\ df —@df J > +(nodf o Jmodfold)) 1.

Since f is quaternionic, from 2.3, we have E(f) = ¢r A. Tt follows that
tr A > XA'Y, for any unit vectors X,Y. The equality holds if and only if f is
holomorphic with respect J and ¢.
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All eigenvalues of AA? are nonnegative. Let 4)\? be an eigenvalue of AA*
with A > 0. Then there is a unit vector Yy in R? such that AA'Y} = 4\2Y].
Hence

Ya(A'AYY) = Yy (AATYY) = 402Y, Y
We have | AY{ |= 2X. Suppose A # 0 and we choose X§ = 5+ AYY. It follows
X\AY{ = 2)\. Then tr A > 2\. Hence (tr A)? > max{eigenvalues of AA'}.
If all the eigenvalues of AA! are 0 that is trivially true.
For the second part of the theorem let us consider the Lagrange multiplier

F(X,Y)=XAY" - X\(| X > =1) —u(|Y > -1).

If XAY! attains its maximum at two unit vector fields V,WW € R3, then
Fx =0,Fy =0in X =V, Y = W. One obtains AW? = 2A\V!, VA = 2uW.
Then 2\ = 2X\ | V = VAW?! = 2u | W |*>= 2u. This implies A'AW? =
2ANATVE = 4 W't = 4X2W. That is 4\? is an eigenvalue of A'A. If f is (J, p)-
holomorphic with respect to a complex structure in the hyper-Kahler S?, on M
and an almost contact structure in the 3-almost contact S?, on N, then X AY'*
attains its maximum ¢r A. On the other hand, tr A = XAY? = 2X and then
4)? is an eigenvalue of A*A.

Conversely, if tr A = maz{eigenvalues of AA'}, we take 2\ = tr A and it
follows that 4\? is an eigenvalue of A'A. Suppose | Y |= 1 and APAY? = 4)\2Y".
It follows that Y A'AY" = 4A? and then | AY" |?= 42, Taking X' = ;; AY"'
one obtains XAY? = 2\ = tr A. Hence f is a (J, p)-holomorphic map with
respect to a complex structure in the hyper-Kihler S?, on M and an almost
contact structure in the 3-almost contact S2, on N. Note that if A is the zero
matrix, then the quaternionic map is a constant.

3. The stability of the quaternionic maps

Let f: M — N be a smooth map between two Riemannian manifolds (M, g)
and (N, h). We should recall some notions and results related to the induced
bundle over M of TN, as they are presented in [14].

Let f~1(TN) be the induced bundle over M of TN defined as follows, denote
by 7 : TN — N the projection. Then

fTITN = {(z,u) € M x TN, 7(u) = f(z),z € M} = | Ty)N.
xeM

The set of all C*-sections of f~!TN, denoted by I'(f~!TN) is
L(f7'TN)={V:M — TN,C*® —map, V(z) € Ty N,z € M}.

Denote by VM V¥ the Levi-Civita connections on (M, g) and (N,h) re-
spectively. Then, for a smooth map f between (M,g) and (N,h), we de-
fine the induced connection V on the induced bundle f:lTN as follows, for
X € x(M),V eT(f7'TN), define VxV € I(f"'TN) by VxV =V} V.

Then the connection V and the metric h are compatible, that is, for V;,V; €
I(f~'TN),X € x(M) we have X (h(V1,V2)) = h(VxV1,V3) + h(V1,VxVa).
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Theorem 3.1. Let f : M — N be a quaternionic map between two hyper-
Kahler manifolds, (M, Jo,g) and (N, Jq,h). If M is compact, then

1
/h(JfV,V)*lzf/ h(DV,DV)x1 >0,
M 4 Jm

where V € T(f~'TN), and Jy is the Jacobi operator of f defined by

m

TV == (VeVe, = Vv, )V = 3 RV(Vidfe)dfe;, V € T(f7'TN),

i=1 i=1
where RN denote the curvature tensor on N. For each V € T(f~'TN), DV is
an element of T(f'TN @ T*M) defined by

DV(X) =" JaVyxV = VxV,X € x(M),

Then
1) f is weakly stable, that is, each eigenvalue of Jy is nonnegative.
2) ker J; ={V e D(f~'TN),DV = 0}.

Proof.  Let {e;, Jie;, Jae;, Jse; }7, be an orthonormal local frame field on M
adapted to the hyper-Kahler structure on M.
According to the definition of DV, one obtains, for any V € I'(f~!TN),

(3.1) K(DV,DV) = i{h(DV(ei)vDV(ei» + ) (DV (Jae:), DV (Jaei))} =

i=1

- Z{h(z jaﬁ(]aeiv - 667‘,‘/3 Z j(eraeiV - 6Pl‘/)+
=1 o «a
A WO ToVspeeV = Ve VLY TV apseeV = Ve, V)} =
o B8 B

=) {4h(Ve, ViV V) 44 h(V1,e,ViVie,V) = 8h(Ve V. > TaV e V)+
=1 [ «

+38 Z h(ja%Jaei‘/; jﬂeJﬁeiV)}ﬂ
a#p

since the two manifolds are hyper-Kéahler.
Next we shall prove that

(3.2) RN(Vdfe;)dfe; + Y RN (V,df Joe:)df Jaei =

==Y TJoRN(dfei,df Jae)V + TsRN (df Joei, df Jrei)V +
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+ T2 RN (df Jyei, df Jse)V + Ty RN (df Jzeq, df Jaei)V.

Since f is a quaternionic map one obtains
RN(V,dfe;)dfe; + > RN (V,df Joe:)df Joe; =
= TuRN(Vidfei)df Jaei + > > TaRN (V, df Jae:)df JgJue: =

a
== JuRN(dfe;, V)df Jaei + Y TJaRN (df Jues, V)dfe; + A =

== JaRN(dfes, df Jue:)V + A,

where A is the sum of the last three terms in the right side of 3.2 and where we
used the formulas, for XY, Z € x(N)

RN(X,Y)Z+RN(Y,X)Z =0, RN(X,Y)Z+RM(Y,Z)X + RN(Z, X)Y =0.

Since

/ h(:]f‘/,V) *1 = / Z{h(ﬁel‘/}%ezv) +Zh(6.7aei‘/v %Jaeiv)_
M M

=1 «@
—h(RN(V,dfe;)dfe;, V) =Y (RN (V,df Jue;)df Jae:i, V) } * 1, (see[14]),
we have

(3.3) /M[h(va, V) - ih(DV, DV #1 =

B /M{Z{h(z jaRN(dfei’ df‘]aei)v’ V)i

—h(A V) +20(Ve, V.Y TaVieV) =2 (TaV 1,6, Vo T5V g6, V) } 5 1.
a a#p
We have

(3.4) —h(TJouRN (dfei, df Jue;)V, V) = h(RN (dfe;, df Joe;)V, ToV) =
=h(VeVieV = Vi,e VeV = ViesuedVs JaV) =
= ei(h(V1,e,V.TaV)) = h(V 1,6, V. Ve, TuV)—
~Jai(M(Ve,V, TaV)) + WV, ViV 5,6, TaV) = WV, 506, Vs TaV)+
+h(Vy,,c eV TaV),
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for any a = 1,2, 3, since V and h are compatible, where V denote the Levi-
Civita connection on M. In the same way we can compute h(A, V). If we
denote

SO TR (dfer. df e VLV) — h(A,V)} = B,

i=1 «

we obtain B = By + B, where
By =Y > [~€ih(V 1V, TaV) + Jaih(Ve,V, TaV) + h(Vy,, 1.e, V. TaV)—
=1 «

—h(Vy,...e. Vs TV + Jaeih(V 5,6,V V) = Jieih(V 1,6, V, T5V)—

—h(%vJQeiJle,-V, T5V) + h(ﬁvheibeﬂ/’ TsV) + J1eih(V ge,V, TV~

—Jseih(V 3, V, JoV) — h’(evhei-}y"i‘/’ JoV) + h(%vhei‘heiv’ RV)+

+J3eih(V 1o, V, A V) = Jaeih(V 5,e, V, A V) — h(%vlfseibeiv’ SV)+
+h(§v,2eiJge¢V7 JiV)},

and

By = Z{Z[h(ﬁhelvv 6eijav) - h(%eiva 6Jc,eijatv)]—
i=1 «

_h(ﬁJlei V) 6‘]261' j?)V) + h<%J2€L‘/7 %JleLJSV) - h(%Jgel‘/; §J1€1j2v)+
+h(V 5,6, ViV 10e, V) = BV 1,6, ViV 5o, V) + BV 106, ViV gy, V) } =

= 2{2[2 h(jaﬁei‘/? §Jaeiv) + h(ﬁJleij?)‘/’ ﬁJze«iV)_F
i=1

[

+h(6J36is72V7 %Jleiv) + h(%heijﬂ/, %J\sezv)}} =

= =2 Ve VoY TaViaeiV) =2 1TV e, Vo ToV gpe V)],
=1 a a;ﬁﬁ

since the two manifolds are hyper-Ké&hler.
Consider the vector field X € x(M) defined by 1

g(X,Y) ==Y h(VyxV,TuV),

for any Y € x(M). By a straightforward computation one obtains div X = Bj.
From the expressions of By and B by using the Green’s formula, it follows that

1
/h(JfV,V)*lzf/ h(DV,DV) 1.
M 4 M
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Theorem 3.2. Let f: M — N be a quaternionic map between a hyper-Kdhler
manifold, (M, Jy,g) and a 3-cosymplectic manifold (N, pq, % n* h). If M is
compact, then

1 1
/h(JfV,V)*lzf/ h(DMDV)*1+—/ > tr (f* @n*)(DV,DV) *1
M 4 S 12 Jum .

where, for any V € T(f~'TN), DV(X) =Y, ¢aVis.xV —VxV, X € x(M),
and
(n* @n*)(DV,DV)(X,Y) = n*(DV(X))n*(DV(Y)).

Then
1) f is weakly stable, that is, each eigenvalue of J; is nonnegative.

2) kerJ; = {V e I(f'TN),DV = 0}.

Proof. After a similar computation with that in Theorem 3.1, based on
the definitions of the hyper-Kéhler structure and of the 3-cosymplectic struc-
ture, on the definitions of the Levi-Civita connections on the domain and the
target manifolds and on Theorem 1.1, one obtains that in the expression of
Ja R(JFV, V) 51— 1 [, 'h(DV,DV) 1 the following new terms arise

Z{/M %[Z Z na(%‘lﬁmv)na(%eweiv) + Zna(ﬁeiv)na(%eiv)] * 1+
i=1 a g «

/ D 10(Vre VINs(Vae V) = > 10(Vaye, VINg(V e, V)] # 1—
M2 a#f

-/ %[n1<%eiV><n3me,¢V> (Ve V)
M

+7]2(6€i V) (771 (6‘]361' V) -3 (6J1€¢ V))"‘UB(%& V) (772 (6]1% V) -m (6‘]26@ V))} 1.

After a straightforward computation, one obtains that this is
1
3/ > tr (n* @n*)(DV,DV) * 1
M5

In the same way one obtains

Theorem 3.3. Let f: M — N be a quaternionic map between a hyper-Kdhler
manifold, (M, J,,g) and a hyper C-manifold (N, q, X, 0%, h), with a = 1,7. If
M is compact, then

h(DV, DV)*1+12/ ZZtr (n%@n2)(DV, DV)x1

a=1 «o

/ h(JfV, V)xl =
M M
Then
1) f is weakly stable, that is, each eigenvalue of Jy is nonnegative.
2) ker J; ={V e I(f~'TN),DV = 0}.
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4. Quaternionic maps between a hyper-Kahler manifold with
dimension 4 and a 3-cosymplectic manifold with dimen-
sion 3

Let M be a differential manifold which is of real dimension 4. Then the only
hyper-Kéhler structure on M is defined by the tensor fields of type (1,1) whose
matrix expressions take the following form, (see [9])

0 0 0 -1 00 —1 0
0 0 1 0 00 0 -1
(4.1) =l 210 0 |27 10 0 o |
1 0 0 0 01 0 0
0 -1 0 0
1 0 0 0
B=1o 0 0 1
0 0 -1 0

Concerning the 3-cosymplectic structures which can be defined on a 3-
dimensional manifold we can state the following.

Let N be a 3-dimensional manifold. Let us consider on N the almost contact
structures given in local coordinates by

0 0 0 P
Y1 = 0 0 1 5 771:d931» glzﬁa
0 -1 0 z
00 —1 5
(42) P2 = 0 0 0 ) 772 = dx27 52 = ﬁ7
10 0 v
0 -1 0 5
3= 1 0 0 ,773:dx37§3zﬁ.
0 0 0 .

It can be easily verified that this structures define an almost contact 3-
structure on N. Moreover, let us consider the induced almost complex struc-
tures on N x R, defined by J; = (X, f4) = (¢ X — f&,n'(X)L), i = 1,3,
where X € x(N) and f € C°(N x R). It is proved in [1] that these tensor
fields define three almost contact structures on N x R. After a straightforward
computation one obtains that J; actually are the tensor fields which define the
unique hyper-Kéhler structure on N x R. It follows that the almost contact
structures defined on N are normal structures and then on N we obtained a
3-cosymplectic structure, (see [1]).

In the following let us consider a new 3-cosymplectic structure on N, (v, ¢, 0%),
i = 1,3, such that the fundamental 2-forms, w;, i = 1,3, corresponding to each
almost contact structure, are closed. Then, taking the induced almost complex




Quaternionic maps between a hyper-Kéahler manifold..... 33

structures on N x R defined as above, and the metric G on N x R, defined
by G = g + dtdt, where g is the Riemannian metric associated to all almost
contact structures on NN, which gives the fundamental 2-forms w; on N, one
obtains for the corresponding fundamental 2-forms, €;, i = 1,3, on N x R, that
Q; = w; — 0" Adt. Hence, if the 1-forms 6° are closed and the 2-forms w; are
also closed, then df2; = 0. But, using a Hitchin’s lemma one obtains that the
induced almost complex structures on N x R are normal and then they define a
hyper-Kéhler structure on NV x R, (see [8], [10]). Since this structure is unique
and since the induced Kéhler structures on N x R are uniquely determined by
the cosymplectic structures on N, it follows that the structure defined by 4.2 is
the only 3-cosymplectic structure on N.

Let f : M — N be a smooth map between a 4-dimensional hyper-Kahler
manifold and a 3-dimensional 3-cosymplectic manifold. Then, using 2.1, with
AP = 5,4, 4.1 and 4.2, one obtains that f is quaternionic map if and only if

A+f+f=0

2 _ £l _ 3 _
(3 Y

—fi+f3-13=0

where [ = gﬁj, a=1,3,i=1,4.
Example. Let M and N be R* and R3, respectively, endowed with the hyper-
Kéhler and the 3-cosymplectic structures and let f : R* — R?® be a smooth

map, given by

f(mla .132, xgv J’A) = (—2371, an xg)'
It is easy to see from 4.3 that f is a quaternionic map. The matrix of df is

-2 0 0 0
0 1 00
0 0 1 0

Since the rank of this matrix is 3 and the rank of a £(.J, ¢)-holomorphic map
must be even, it follows that f is a quaternionic map which is non-+(J, ¢)-
holomorphic with respect to any almost complex structure on R* and to any
almost contact structure on R3.

Using Theorem 3.2, after a straightforward computation, one obtains, for a
vector field V € T'(f~!TR?), that V € Ker Jy if and only if

Vi -V =0
Vi +2V3E =0
Vi +2V2 =0 ’

2V HVE+ VP =0

where V = V-2 and V= %‘;:, i,j = 1,4, V' being smooth functions on R*.
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