SCORE SETS IN ORIENTED BIPARTITE GRAPHS

S. Pirzada ${ }^{1}$, T. A. Naikoo ${ }^{1}$, T. A. Chishti ${ }^{2}$

Abstract

The set A of distinct scores of the vertices of an oriented bipartite graph $D(U, V)$ is called its score set. We consider the following question: given a finite, nonempty set A of positive integers, is there an oriented bipartite graph $D(U, V)$ such that score set of $D(U, V)$ is A ? We conjecture that there is an affirmative answer, and verify this conjecture when $|A|=1,2,3$, or when A is a geometric or arithmetic progression.

AMS Mathematics Subject Classification (1991): 05C
Key words and phrases: Oriented graph, Bipartite and k-partite, Tournament, Score sequence, Score set

1. Introduction

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. Let D be an oriented graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let d_{v}^{+}and d_{v}^{-}denote the outdegree and indegree respectively of a vertex v. Avery [1] defined $a_{v}=n-1+d_{v}^{+}-d_{v}^{-}$, the score of v, so that $0 \leq a_{v} \leq 2 n-2$. Then, the sequence $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ in non-decreasing order is called the score sequence of D.

Avery [1] obtained the following criterion for score sequences in oriented graphs.

Theorem 1.1. A non-decreasing sequence of non-negative integers $\left[a_{1}, a_{2}, \ldots\right.$, a_{n}] is the score sequence of an oriented graph if and only if

$$
\sum_{i=1}^{k} a_{i} \geq k(k-1), \text { for } 1 \leq k \leq n
$$

with equality when $k=n$.
Pirzada and Naikoo [7] obtained the following results for score sets in oriented graphs.

Theorem 1.2. Let $A=\left\{a, a d, a d^{2}, \ldots, a d^{n}\right\}$, where a and d are positive integers with $a>0$ and $d>1$. Then, there exists an oriented graph D with score set A, except for $a=1, d=2, n>0$ and for $a=1, d=3, n>0$.

[^0]Theorem 1.3. If $a_{1}, a_{2}, \ldots, a_{n}$ are n non-negative integers with $a_{1}<a_{2}<$ $\ldots<a_{n}$, then there exists an oriented graph D with score set $A=\left\{a_{1}^{\prime}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}\right\}$, where

$$
a_{i}^{\prime}= \begin{cases}a_{i-1}+a_{i}+1, & \text { for } i>1 \\ a_{i}, & \text { for } i=1\end{cases}
$$

The study of score sets in tournaments (complete oriented graphs) can be found in $[2,5,8,10,11]$.

An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the parts of an oriented bipartite graph $D(U, V)$. For any vertex x in $D(U, V)$, let d_{x}^{+}and d_{x}^{-}respectively be the outdegree and indegree of x. Define $a_{u}=$ $n+d_{u}^{+}-d_{u}^{-}$and $b_{v}=m+d_{v}^{+}-d_{v}^{-}$respectively as the scores of u in U and v in V. Clearly, $0 \leq a_{u} \leq 2 n$ and $0 \leq b_{v} \leq 2 m$. The sequences $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ and $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ in non-decreasing order are called the score sequences of $D(U, V)$.

The following result due to Pirzada, Merajuddin and Yin [4] is the bipartite version of Theorem 1.1.

Theorem 1.4. Two non-decreasing sequences $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ and $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ of non-negative integers are the score sequences of some oriented bipartite graph if and only if

$$
\sum_{i=1}^{p} a_{i}+\sum_{j=1}^{q} b_{j} \geq 2 p q, \text { for } 1 \leq p \leq m \text { and } 1 \leq q \leq n
$$

with equality when $p=m$ and $q=n$.
The study of score sets for bipartite tournaments (complete oriented bipartite graphs) can be found in $[3,9,12]$ and for k-partite tournaments (complete oriented k-partite graphs) in [6].

2. Score sets in oriented bipartite graphs

Definition 2.1. The set A of distinct scores of the vertices in an oriented bipartite graph $D(U, V)$ is called its score set. If there is an arc from a vertex u to a vertex v, then we say that the vertex u dominates vertex v.

We have the following results.
Theorem 2.1. Every singleton or doubleton set of positive integers is a score set of some oriented bipartite graph.

Proof. Case I. Let $A=\{a\}$, where a is a positive integer. When a is even, construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{1} \cup X_{2} \\
V=Y_{1} \cup Y_{2}
\end{gathered}
$$

with $X_{1} \cap X_{2}=\phi, Y_{1} \cap Y_{2}=\phi,\left|X_{1}\right|=\left|X_{2}\right|=\left|Y_{1}\right|=\left|Y_{2}\right|=\frac{a}{2}$. Let every vertex of X_{i} dominate each vertex of Y_{i}, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i \neq j$ so that we get the oriented bipartite graph $D(U, V)$ with

$$
|U|=\left|X_{1}\right|+\left|X_{2}\right|=\left|Y_{1}\right|+\left|Y_{2}\right|=|V|=\frac{a}{2}+\frac{a}{2}=a
$$

and the scores of vertices

$$
a_{x_{1}}=|V|+\left|Y_{1}\right|-\left|Y_{2}\right|=|U|+\left|X_{1}\right|-\left|X_{2}\right|=a_{y_{2}}=a+\frac{a}{2}-\frac{a}{2}=a
$$

for all $x_{1} \in X_{1}, y_{2} \in Y_{2}$ and

$$
a_{x_{2}}=|V|+\left|Y_{2}\right|-\left|Y_{1}\right|=|U|+\left|X_{2}\right|-\left|X_{1}\right|=a_{y_{1}}=a+\frac{a}{2}-\frac{a}{2}=a
$$

for all $x_{2} \in X_{2}, y_{1} \in Y_{1}$.
Therefore, score set of $D(U, V)$ is $A=\{a\}$.
Now, when a is odd, construct an oriented bipartite graph $D(U, V)$ as follows.
Let

$$
\begin{gathered}
U=X_{1} \cup X_{2} \cup\{x\}, \\
V=Y_{1} \cup Y_{2} \cup\{y\}
\end{gathered}
$$

with $X_{1} \cap X_{2}=\phi, X_{i} \cap\{x\}=\phi, Y_{1} \cap Y_{2}=\phi, Y_{i} \cap\{y\}=\phi,\left|X_{1}\right|=\left|X_{2}\right|=\left|Y_{1}\right|=$ $\left|Y_{2}\right|=\frac{a-1}{2}$. Let every vertex of X_{i} dominate each vertex of Y_{i}, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i \neq j$ so that we get the oriented bipartite graph $D(U, V)$ with

$$
|U|=\left|X_{1}\right|+\left|X_{2}\right|+|\{x\}|=\left|Y_{1}\right|+\left|Y_{2}\right|+|\{y\}|=|V|=\frac{a-1}{2}+\frac{a-1}{2}+1=a
$$

and the scores of vertices

$$
a_{x_{1}}=|V|+\left|Y_{1}\right|-\left|Y_{2}\right|=|U|+\left|X_{1}\right|-\left|X_{2}\right|=a_{y_{2}}=a+\frac{a-1}{2}-\frac{a-1}{2}=a
$$

for all $x_{1} \in X_{1}, y_{2} \in Y_{2}$,

$$
a_{x_{2}}=|V|+\left|Y_{2}\right|-\left|Y_{1}\right|=|U|+\left|X_{2}\right|-\left|X_{1}\right|=a_{y_{1}}=a+\frac{a-1}{2}-\frac{a-1}{2}=a
$$

for all $x_{2} \in X_{2}, y_{1} \in Y_{1}$ and

$$
a_{x}=|V|+0-0=|U|+0-0=a_{y}=a,
$$

for the vertices x and y.
Thus, score set of $D(U, V)$ is $A=\{a\}$.
Note that an empty oriented bipartite graph $D(U, V)$ with $|U|=|V|=a$ has also score set $A=\{a\}$.

Case II. Let $A=\left\{a_{1}, a_{2}\right\}$, where a_{1} and a_{2} are positive integers with $a_{1}<a_{2}$. As in case I, there exists an oriented bipartite graph $D(U, V)$ with $|U|=|V|=a_{1}$, and the scores of vertices $a_{u}=a_{v}=a_{1}$, for all $u \in U, v \in V$.

Since $a_{2}>a_{1}$ or $a_{2}-a_{1}>0$, construct oriented bipartite graph $D\left(U_{1}, V_{1}\right)$ as follows.

Let $U_{1}=U \cup X, V_{1}=V, U \cap X=\phi,|X|=a_{2}-a_{1}$. Let there be no arc between the vertices of V and X, so that we get the oriented bipartite graph $D\left(U_{1}, V_{1}\right)$ with

$$
\left|U_{1}\right|=|U|+|X|=a_{1}+a_{2}-a_{1}=a_{2},\left|V_{1}\right|=a_{1}
$$

and the scores of vertices $a_{u}=a_{1}$, for all $u \in U, a_{x}=\left|V_{1}\right|+0-0=a_{1}$, for all $x \in X$, and $a_{v}=a_{1}+|X|=a_{1}+a_{2}-a_{1}=a_{2}$, for all $v \in V$.

Hence, the score set of $D\left(U_{1}, V_{1}\right)$ is $A=\left\{a_{1}, a_{2}\right\}$.
Again, note that an empty oriented bipartite graph $D(U, V)$ with $|U|=a_{1}$, $|V|=a_{2}$ has also the score set $A=\left\{a_{1}, a_{2}\right\}$.

Theorem 2.2. Every set of three positive integers is a score set of some oriented bipartite graph.

Proof. Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$, where a_{1}, a_{2}, a_{3} are positive integers with $a_{1}<$ $a_{2}<a_{3}$.

First assume $a_{3}>2 a_{2}$ so that $a_{3}-2 a_{2}>0$, and since $a_{2}>a_{1}$, therefore $a_{3}-2 a_{1}>0$. Now, construct an oriented bipartite graph $D(U, V)$ as follows. Let $U=X_{1} \cup X_{2}, V=Y_{1} \cup Y_{2}$ with $X_{1} \cap X_{2}=\phi, Y_{1} \cap Y_{2}=\phi,\left|X_{1}\right|=a_{2},\left|X_{2}\right|=$ $a_{3}-2 a_{2},\left|Y_{1}\right|=a_{1},\left|Y_{2}\right|=a_{3}-2 a_{1}$. Let every vertex of X_{2} dominate each vertex of Y_{1}, and every vertex of Y_{2} dominate each vertex of X_{1}, so that we get the oriented bipartite graph $D(U, V)$ with

$$
\begin{gathered}
|U|=\left|X_{1}\right|+\left|X_{2}\right|=a_{2}+a_{3}-2 a_{2}=a_{3}-a_{2} \\
|V|=\left|Y_{1}\right|+\left|Y_{2}\right|=a_{1}+a_{3}-2 a_{1}=a_{3}-a_{1}
\end{gathered}
$$

and the scores of vertices

$$
\begin{aligned}
& a_{x_{1}}=|V|+0-\left(a_{3}-2 a_{1}\right)=a_{3}-a_{1}-a_{3}+2 a_{1}=a_{1}, \text { for all } x_{1} \in X_{1} \text {, } \\
& a_{x_{2}}=|V|+a_{1}-0=a_{3}-a_{1}+a_{1}=a_{3} \text {, for all } x_{2} \in X_{2}, \\
& a_{y_{1}}=|U|+0-\left(a_{3}-2 a_{2}\right)=a_{3}-a_{2}-a_{3}+2 a_{2}=a_{2} \text {, for all } y_{1} \in Y_{1} \text {, } \\
& \text { and } a_{y_{2}}=|U|+a_{2}-0=a_{3}-a_{2}+a_{2}=a_{3}, \text { for all } y_{2} \in Y_{2} . \\
& \text { Therefore, the score set of } \mathrm{D}(\mathrm{U}, \mathrm{~V}) \text { is } A=\left\{a_{1}, a_{2}, a_{3}\right\} .
\end{aligned}
$$

Now, assume $a_{3} \leq 2 a_{2}$ so that $2 a_{2}-a_{3} \geq 0$. Construct an oriented bipartite graph $D(U, V)$ as follows.

Let $U=X_{1}, V=Y_{1} \cup Y_{2}$ with $Y_{1} \cap Y_{2}=\phi,\left|X_{1}\right|=a_{2},\left|Y_{1}\right|=a_{1},\left|Y_{2}\right|=a_{2}-a_{1}$. Let every vertex of Y_{2} dominate $a_{3}-a_{2}$ vertices of X_{1} (out of a_{2}), so that we get the oriented bipartite graph $D(U, V)$ with

$$
|U|=\left|X_{1}\right|=a_{2},|V|=\left|Y_{1}\right|+\left|Y_{2}\right|=a_{1}+a_{2}-a_{1}=a_{2}
$$

and the scores of vertices
$a_{x_{1}}=|V|+0-\left(a_{2}-a_{1}\right)=a_{2}-a_{2}+a_{1}=a_{1}$, for the $a_{3}-a_{2}$ vertices of X_{1},
$a_{x_{1}^{\prime}}=|V|+0-0=a_{2}$, for the remaining $a_{2}-\left(a_{3}-a_{2}\right)=2 a_{2}-a_{3}$ vertices of X_{1},
$a_{y_{1}}=|U|+0-0=a_{2}$, for all $y_{1} \in Y_{1}$,
and $a_{y_{2}}=|U|+a_{3}-a_{2}-0=a_{2}+a_{3}-a_{2}=a_{3}$, for all $y_{2} \in Y_{2}$.
Thus, the score set of $D(U, V)$ is $A=\left\{a_{1}, a_{2}, a_{3}\right\}$.
The next result shows that every set of positive integers in geometric progression is a score set of some oriented bipartite graph.

Theorem 2.3. Let $A=\left\{a, a d, a d^{2}, \ldots, a d^{n}\right\}$, where a and d are positive integers with $a>0$ and $d>1$. Then, there exists an oriented bipartite graph with the score set A.

Proof. First assume $d>2$. Induct on n. If $n=0$, then by Theorem 2.1, there exists an oriented bipartite graph $D(U, V)$ with score set $A=\{a\}$.

For $n=1$, construct an oriented bipartite graph $D(U, V)$ as follows.
Let $U=X_{1} \cup X_{2}, V=Y_{1} \cup Y_{2}$ with $X_{1} \cap X_{2}=\phi, Y_{1} \cap Y_{2}=\phi,\left|X_{1}\right|=\left|Y_{1}\right|=a$, $\left|X_{2}\right|=\left|Y_{2}\right|=a d-2 a>0$ as $a>0, d>2$. Let every vertex of X_{2} dominate each vertex of Y_{1}, and every vertex of Y_{2} dominate each vertex of X_{1}, so that we get the oriented bipartite graph $D(U, V)$ with

$$
\begin{gathered}
|U|=\left|X_{1}\right|+\left|X_{2}\right|=a+a d-2 a=a d-a \\
|V|=\left|Y_{1}\right|+\left|Y_{2}\right|=a+a d-2 a=a d-a
\end{gathered}
$$

and the scores of vertices
$a_{x_{1}}=|V|+0-(a d-2 a)=a d-a-a d+2 a=a$, for all $x_{1} \in X_{1}$,
$a_{x_{2}}=|V|+a-0=a d-a+a=a d$, for all $x_{2} \in X_{2}$,
$a_{y_{1}}=|U|+0-(a d-2 a)=a d-a-a d+2 a=a$, for all $y_{1} \in Y_{1}$,
and $a_{y_{2}}=|U|+a-0=a d-a+a=a d$, for all $y_{2} \in Y_{2}$.
Thus, the score set of $D(U, V)$ is $A=\{a, a d\}$.
Assume the result to be true for all $p \geq 1$. We show that the result is true for $p+1$.

Let a and d be positive integers with $a>0$ and $d>2$. Therefore, by induction hypothesis, there exists an oriented bipartite graph $D(U, V)$ with

$$
|U|=|V|=a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)
$$

and $a, a d, a d^{2}, \ldots, a d^{p}$ as the scores of the vertices of $D(U, V)$. As $a>0, d>2$, therefore $a d^{p+1}-2\left(a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)\right)>0$. Now, construct an oriented bipartite graph $D\left(U_{1}, V_{1}\right)$ as follows.

Let $U_{1}=U \cup X, V_{1}=V \cup Y$ with $U \cap X=\phi, V \cap Y=\phi$,

$$
|X|=|Y|=a d^{p+1}-2\left(a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)\right)
$$

Let every vertex of X dominate each vertex of V, and every vertex of Y dominate each vertex of U, so that we get the oriented bipartite graph $D\left(U_{1}, V_{1}\right)$ with

$$
\left|U_{1}\right|=|U|+|X|=|V|+|Y|=\left|V_{1}\right|
$$

$$
\begin{aligned}
= & a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)+a d^{p+1} \\
& -2\left(a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)\right) \\
= & a d^{p+1}-\left(a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p+1} a\right)\right)
\end{aligned}
$$

and since $|X|=|Y|$, therefore $a+|X|-|X|=a, a d+|X|-|X|=a d, a d^{2}+$ $|X|-|X|=a d^{2}, \ldots, a d^{p}+|X|-|X|=a d^{p}$ are the scores of the vertices of U and V, and
$a_{x}=\left|V_{1}\right|+|V|-0=\left|U_{1}\right|+|U|-0=a_{y}=a d^{p+1}-\left(a d^{p}-\left(a d^{p-1}-\right.\right.$ $\left.\left.a d^{p-2}+\ldots(-1)^{p+1} a\right)\right)+a d^{p}-\left(a d^{p-1}-a d^{p-2}+\ldots(-1)^{p-1} a\right)=a d^{p+1}$, for all $x \in X, y \in Y$.

Therefore, the score set of $D\left(U_{1}, V_{1}\right)$ is $A=\left\{a, a d, a d^{2}, \ldots, a d^{p}, a d^{p+1}\right\}$.
Now, assume $d=2$. Then the set A becomes $A=\left\{a, 2 a, 2^{2} a, \ldots, 2^{n} a\right\}$. Construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup X_{3} \cup X_{4} \cup \ldots \cup X_{n} \\
V=Y_{0} \cup Y_{2} \cup Y_{3} \cup Y_{4} \cup \ldots \cup Y_{n}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j)$. Let $\left|X_{0}\right|=\left|X_{1}\right|=\left|Y_{0}\right|=\left|Y_{2}\right|=a$, and for $3 \leq i \leq n$

$$
\begin{equation*}
\left|X_{i}\right|=\left|Y_{i}\right|=2^{i} a-2\left(\sum_{j=0, j \neq 2}^{i-1}\left|X_{j}\right|\right), \tag{2.3.1}
\end{equation*}
$$

which is clearly greater than zero. Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j$, so that we get the oriented bipartite graph $D(U, V)$ with the scores of vertices
$a_{x_{0}}=|V|+0-\sum_{j=2}^{n}\left|Y_{j}\right|=\sum_{j=0, j \neq 1}^{n}\left|Y_{j}\right|-\sum_{j=2}^{n}\left|Y_{j}\right|=\left|Y_{0}\right|=a$, for all $x_{0} \in X_{0}$,

$$
a_{x_{1}}=|V|+\left|Y_{0}\right|-\sum_{j=2}^{n}\left|Y_{j}\right|=\sum_{j=0, j \neq 1}^{n}\left|Y_{j}\right|+a-\sum_{j=2}^{n}\left|Y_{j}\right|=\left|Y_{0}\right|+a=2 a
$$ for all $x_{1} \in X_{1}$,

$a_{y_{0}}=|U|+0-\sum_{j=1, j \neq 2}^{n}\left|X_{j}\right|=\sum_{j=0, j \neq 2}^{n}\left|X_{j}\right|-\sum_{j=1, j \neq 2}^{n}\left|X_{j}\right|=\left|X_{0}\right|=a$, for all $y_{0} \in Y_{0}$,

$$
a_{y_{2}}=|U|+\left|X_{0}\right|+\left|X_{1}\right|-\sum_{j=3}^{n}\left|X_{j}\right|=\sum_{j=0, j \neq 2}^{n}\left|X_{j}\right|+a+a-\sum_{j=3}^{n}\left|X_{j}\right|=
$$ $\left|X_{0}\right|+\left|X_{1}\right|+2 a=a+a+2 a=4 a$, for all $y_{2} \in Y_{2}$,

and for $3 \leq i \leq n$
$a_{x_{i}}=|V|+\sum_{j=0, j \neq 1}^{i-1}\left|Y_{j}\right|-\sum_{j=i+1}^{n}\left|Y_{j}\right|=|U|+\sum_{j=0, j \neq 2}^{i-1}\left|X_{j}\right|-\sum_{j=i+1}^{n}\left|X_{j}\right|=$ $a_{y_{i}}=\sum_{j=0, j \neq 2}^{n}\left|X_{j}\right|+\sum_{j=0, j \neq 2}^{i-1}\left|X_{j}\right|-\sum_{j=i+1}^{n}\left|X_{j}\right|=\sum_{j=0, j \neq 2}^{i} \mid$ $X_{j}\left|+\sum_{j=0, j \neq 2}^{i-1}\right| X_{j}\left|=2 \sum_{j=0, j \neq 2}^{i-1}\right| X_{j}\left|+\left|X_{i}\right|=2 \sum_{j=0, j \neq 2}^{i-1}\right| X_{j} \mid$ $+2^{i} a-2\left(\sum_{j=0, j \neq 2}^{i-1}\left|X_{j}\right|\right)($ By equation (2.3.1))

$$
=2^{i} a, \text { for all } x_{i} \in X_{i}, y_{i} \in Y_{i}
$$

Therefore, the score set of $D(U, V)$ is $A=\left\{a, 2 a, 2^{2} a, \ldots, 2^{n} a\right\}$.
The next result shows that every set of positive integers in arithmetic progression is a score set for some oriented bipartite graph.

Theorem 2.4. Let $A=\{a, a+d, a+2 d, \ldots, a+n d\}$, where a and d are positive integers. Then, there exists an oriented bipartite graph with the score set A.

Proof. (a). Let $d>a$ so that $d-a>0$. Construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup \ldots \cup X_{n} \\
V=Y_{0} \cup Y_{1} \cup \ldots \cup Y_{n}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j)$, and for $0 \leq i \leq n$

$$
\left|X_{i}\right|=\left|Y_{i}\right|= \begin{cases}a, & \text { if } i \text { is even } \tag{2.4.1}\\ d-a, & \text { if } i \text { is odd }\end{cases}
$$

Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j$, so that we get the oriented bipartite graph $D(U, V)$ with

$$
\begin{gather*}
|U|=\sum_{i=0}^{n}\left|X_{i}\right|=\sum_{i=0}^{n}\left|Y_{i}\right|=|V| \\
= \begin{cases}a+d-a+a+d-a+\ldots+d-a+a, & \text { if } n \text { is even, } \\
a+d-a+a+d-a+\ldots+a+d-a, & \text { if } n \text { is odd, }\end{cases} \\
= \begin{cases}\left(\frac{n}{2}+1\right) a+\frac{n}{2}(d-a), & \text { if } n \text { is even, } \\
\left(\frac{n+1}{2}\right) a+\left(\frac{n+1}{2}\right)(d-a), & \text { if } n \text { is odd, },\end{cases} \\
= \begin{cases}\frac{n d}{2}+a, & \text { if } n \text { is even, } \\
\left(\frac{n+1}{2}\right) d, & \text { if } n \text { is odd, }\end{cases} \tag{2.4.2}
\end{gather*}
$$

and the scores of vertices

$$
a_{x_{0}}=|V|+0-\sum_{j=1}^{n}\left|Y_{j}\right|=|U|+0-\sum_{j=1}^{n}\left|X_{j}\right|=a_{y_{0}}=\sum_{j=0}^{n}\left|Y_{j}\right|-
$$ $\sum_{j=1}^{n}\left|Y_{j}\right|=\left|Y_{0}\right|=a$, for all $x_{0} \in X_{0}, y_{0} \in Y_{0}$,

$$
\text { and for } 1 \leq i \leq n
$$

$$
a_{x_{i}}=|V|+\sum_{j=0}^{i-1}\left|Y_{j}\right|-\sum_{j=i+1}^{n}\left|Y_{j}\right|=|U|+\sum_{j=0}^{i-1}\left|X_{j}\right|-\sum_{j=i+1}^{n}\left|X_{j}\right|=a_{y_{i}}=
$$

$$
\begin{aligned}
& \sum_{j=0}^{n}\left|X_{j}\right|+\sum_{j=0}^{i-1}\left|X_{j}\right|-\sum_{j=i+1}^{n}\left|X_{j}\right|=\sum_{j=0}^{i}\left|X_{j}\right|+\sum_{j=0}^{i-1}\left|X_{j}\right|=2 \sum_{j=0}^{i-1}\left|X_{j}\right|+ \\
& \left|X_{i}\right|
\end{aligned}
$$

$$
=\left\{\begin{array}{ll}
2 \sum_{j=0}^{i-1}\left|X_{j}\right|+a, & \text { if } i \text { is even, } \\
2 \sum_{j=0}^{i-1}\left|X_{j}\right|+d-a, & \text { if } i \text { is odd, }
\end{array} \quad\right. \text { (By equation (2.4.1)) }
$$

$$
=\left\{\begin{array}{ll}
2\left(\frac{i-1+1}{2}\right) d+a, & \text { if } i \text { is even, } \\
2\left(\left(\frac{i-1}{2}\right) d+a\right)+d-a, & \text { if } i \text { is odd, }
\end{array}\right. \text { (By equation (2.4.2)) }
$$

$$
= \begin{cases}a+i d, & \text { if } i \text { is even } \\ a+i d, & \text { if } i \text { is odd }\end{cases}
$$

That is, $a_{x_{i}}=a_{y_{i}}=a+i d$, for all $x_{i} \in X_{i}, y_{i} \in Y_{i}$ where $1 \leq i \leq n$. Therefore, the score set of $D(U, V)$ is $A=\{a, a+d, a+2 d, \ldots, a+n d\}$.
(b). Let $d=a$. Then the set A becomes $A=\{a, 2 a, 3 a, \ldots,(n+1) a\}$. For $n=0$, the result follows from Theorem 2.1. Now, assume $n \geq 1$.

If n is odd, say $n=2 k-1$ where $k \geq 1$, then construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup X_{3} \cup \ldots \cup X_{2 k-3} \cup X_{2 k-1} \\
V=Y_{0} \cup Y_{2} \cup Y_{4} \cup \ldots \cup Y_{2 k-2}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j)$, and $\left|X_{i}\right|=\left|Y_{j}\right|=a$, for all $i \in$ $\{0,1,3, \ldots, 2 k-1\}, j \in\{0,2,4, \ldots, 2 k-2\}$. Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j>0$, so that we get the oriented bipartite graph $D(U, V)$ with

$$
\begin{gathered}
|U|=\sum_{j \in\{0,1,3, \ldots, 2 k-1\}}\left|X_{j}\right|=a+\left(\frac{2 k-1+1}{2}\right) a=a+k a, \\
|V|=\sum_{j \in\{0,2,4, \ldots, 2 k-2\}}\left|Y_{j}\right|=a+\left(\frac{2 k-2}{2}\right) a=k a,
\end{gathered}
$$

and the scores of vertices
$a_{x_{0}}=|V|+0-0=k a$, for all $x_{0} \in X_{0}$,
for $i \in\{1,3, \ldots, 2 k-1\}$
$a_{x_{i}}=|V|+\left|Y_{0}\right|+\sum_{j \in\{2,4, \ldots, i-1\}}\left|Y_{j}\right|-\sum_{j \in\{i+1, i+3, \ldots, 2 k-2\}}\left|Y_{j}\right|=k a+a+$ $\left(\frac{i-1}{2}\right) a-\left(\frac{2 k-2-(i-1)}{2}\right) a=k a+a+i a-a-k a+a=(i+1) a$, for all $x_{i} \in X_{i}$,
$a_{y_{0}}=|U|+0-\sum_{j \in\{1,3, \ldots, 2 k-1\}}\left|X_{j}\right|=a+k a-\left(\frac{2 k-1+1}{2}\right) a=a$, for all $y_{0} \in Y_{0}$, and for $i \in\{2,4, \ldots, 2 k-2\}$
$a_{y_{i}}=|U|+\sum_{j \in\{1,3, \ldots, i-1\}}\left|X_{j}\right|-\sum_{j \in\{i+1, i+3, \ldots, 2 k-1\}}\left|X_{j}\right|=a+k a+\left(\frac{i-1+1}{2}\right) a-$ $\left(\frac{2 k-1+1-(i-1+1)}{2}\right) a=a+k a+\frac{i a}{2}-k a+\frac{i a}{2}=(i+1) a$, for all $y_{i} \in Y_{i}$.

Thus, the score set of $D(U, V)$ is $A=\{a, 2 a, 3 a, \ldots,(2 k-1) a, 2 k a\}$.
Now, if n is even, say $n=2 k$ where $k \geq 1$, then construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup X_{3} \cup \ldots \cup X_{2 k-1} \\
V=Y_{0} \cup Y_{2} \cup Y_{4} \cup \ldots \cup Y_{2 k}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j)$, and $\left|X_{i}\right|=\left|Y_{j}\right|=a$, for all $i \in$ $\{0,1,3, \ldots, 2 k-1\}, j \in\{0,2,4, \ldots, 2 k\}$. Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j>0$, so that we get the oriented bipartite graph $D(U, V)$ with (as above) $|U|=a+k a,|V|=k a+a=a+k a$, and the scores of vertices
$a_{x_{0}}=k a+\left|Y_{2 k}\right|=k a+a=(k+1) a$, for all $x_{0} \in X_{0}$,
for $i \in\{1,3, \ldots, 2 k-1\}$
$a_{x_{i}}=(i+1) a$, for all $x_{i} \in X_{i}$,
$a_{y_{0}}=a$, for all $y_{0} \in Y_{0}$,
for $i \in\{2,4, \ldots, 2 k-2\}$
$a_{y_{i}}=(i+1) a$, for all $y_{i} \in Y_{i}$, and
$a_{y_{2 k}}=|U|+\sum_{j \in\{1,3, \ldots, 2 k-1\}}\left|X_{j}\right|-0=a+k a+\left(\frac{2 k-1+1}{2}\right) a=(2 k+1) a$, for all $y_{2 k} \in Y_{2 k}$.

Thus, the score set of $D(U, V)$ is $A=\{a, 2 a, 3 a, \ldots, 2 k a,(2 k+1) a\}$.
(c). Let $d<a$, so that $a-d>0$. For $n=0$ or 1 , the result follows from Theorem 2.1. Now, assume that $n \geq 2$.

If n is even, say $n=2 k$ where $k \geq 1$, then construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup X_{3} \cup \ldots \cup X_{2 k-1}, \\
V=Y_{0} \cup Y_{2} \cup Y_{4} \cup \ldots \cup Y_{2 k}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j),\left|X_{0}\right|=\left|Y_{0}\right|=a$, and $\left|X_{i}\right|=\left|Y_{j}\right|=d$, for all $i \in\{1,3, \ldots, 2 k-1\}, j \in\{2,4, \ldots, 2 k\}$. Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j>1$, every vertex of X_{i} dominate d vertices of Y_{0} (out of a) whenever $i>2$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j>0$, so that we get the oriented bipartite graph $D(U, V)$ with

$$
\begin{gathered}
|U|=\sum_{j \in\{0,1,3, \ldots, 2 k-1\}}\left|X_{j}\right|=a+\left(\frac{2 k-1+1}{2}\right) d=a+k d, \\
|V|=\sum_{j \in\{0,2,4, \ldots, 2 k\}}\left|Y_{j}\right|=a+\left(\frac{2 k}{2}\right) d=a+k d,
\end{gathered}
$$

and the scores of vertices
$a_{x_{0}}=|V|+0-0=a+k d$, for all $x_{0} \in X_{0}$,
$a_{x_{1}}=|V|+0-\sum_{j \in\{2,4, \ldots, 2 k\}}\left|Y_{j}\right|=a+k d-\left(\frac{2 k}{2}\right) d=a$, for all $x_{1} \in X_{1}$, for $i \in\{3,5, \ldots, 2 k-1\}$
$a_{x_{i}}=|V|+d+\sum_{j \in\{2,4, \ldots, i-1\}}\left|Y_{j}\right|-\sum_{j \in\{i+1, i+3, \ldots, 2 k\}}\left|Y_{j}\right|=a+k d+d+$ $\left(\frac{i-1}{2}\right) d-\left(\frac{2 k-(i-1)}{2}\right) d=a+k d+d+(i-1) d-k d=a+i d$, for all $x_{i} \in X_{i}$,
$a_{y_{0}}=|U|+0-0=a+k d$, for the $a-d$ vertices of Y_{0},
$a_{y_{0}^{\prime}}=|U|+0-\sum_{j \in\{3,5, \ldots, 2 k-1\}}\left|X_{j}\right|=a+k d-\left(\frac{2 k-1+1-(1+1)}{2}\right) d=a+k d-$ $k d+d=a+d$, for the remaining d vertices of Y_{0}, and for $i \in\{2,4, \ldots, 2 k\}$
$a_{y_{i}}=|U|+\sum_{j \in\{1,3, \ldots, i-1\}}\left|X_{j}\right|-\sum_{j \in\{i+1, i+3, \ldots, 2 k-1\}}\left|X_{j}\right|=a+k d+\left(\frac{i-1+1}{2}\right) d-$ $\left(\frac{2 k-1+1-(i-1+1)}{2}\right) d=a+k d+\frac{i d}{2}-k d+\frac{i d}{2}=a+i d$, for all $y_{i} \in Y_{i}$.

Therefore, the score set of $D(U, V)$ is $A=\{a, a+d, a+2 d, \ldots, a+(2 k-$ 1) $d, a+2 k d\}$.

Now, if n is odd, say $n=2 k+1$ where $k \geq 1$, then construct an oriented bipartite graph $D(U, V)$ as follows.

Let

$$
\begin{gathered}
U=X_{0} \cup X_{1} \cup X_{3} \cup \ldots \cup X_{2 k-1} \cup X_{2 k+1} \\
V=Y_{0} \cup Y_{2} \cup Y_{4} \cup \ldots \cup Y_{2 k}
\end{gathered}
$$

with $X_{i} \cap X_{j}=\phi, Y_{i} \cap Y_{j}=\phi(i \neq j),\left|X_{0}\right|=\left|Y_{0}\right|=a$, and $\left|X_{i}\right|=\left|Y_{j}\right|=d$, for all $i \in\{1,3, \ldots, 2 k+1\}, j \in\{2,4, \ldots, 2 k\}$. Let every vertex of X_{i} dominate each vertex of Y_{j} whenever $i>j>1$, every vertex of X_{i} dominate d vertices of Y_{0} (out of a) whenever $i>2$, and every vertex of Y_{i} dominate each vertex of X_{j} whenever $i>j>0$, so that we get the oriented bipartite graph $D(U, V)$
with (as above) $|U|=a+k d+d=a+(k+1) d,|V|=a+k d$, and the scores of vertices
$a_{x_{0}}=a+k d$, for all $x_{0} \in X_{0}$,
$a_{x_{1}}=a$, for all $x_{1} \in X_{1}$,
for $i \in\{3,5, \ldots, 2 k-1\}$
$a_{x_{i}}=a+i d$, for all $x_{i} \in X_{i}$,
$a_{x_{2 k+1}}=|V|+d+\sum_{j \in\{2,4, \ldots, 2 k\}}\left|Y_{j}\right|-0=a+k d+d+\left(\frac{2 k}{2}\right) d=a+(2 k+1) d$, for all $x_{2 k+1} \in X_{2 k+1}$,
$a_{y_{0}}=a+k d+\left|X_{2 k+1}\right|=a+k d+d=a+(k+1) d$, for the $a-d$ vertices of Y_{0},
$a_{y_{0}^{\prime}}=a+d$, for the remaining d vertices of Y_{0}, and for $i \in\{2,4, \ldots, 2 k\}$
$a_{y_{i}}=a+i d$, for all $y_{i} \in Y_{i}$.
Hence, the score set of $D(U, V)$ is $A=\{a, a+d, a+2 d, \ldots, a+2 k d, a+(2 k+$ $1) d\}$, and the proof is complete.

Remark 2.1. We note that Theorems 2.1, 2.2, and 2.4 cannot be extended to state that any set of nonnegative integers A is a score set of some oriented bipartite graph when $|A|=1$, 2, 3, or when A is an arithmetic progression, for instance, there is no oriented bipartite graph with score set $\{0\},\{0,1\}$, or $\{0$, 1, 2\}.

We conclude with the following conjecture.
Conjecture 2.1. Every finite set of positive integers is a score set for some oriented bipartite graph.

Acknowledgements

The authors are thankful to the anonymous referee for his suggestions which improved the presentation of the paper.

References

[1] Avery, P., Score sequences of oriented graphs. J. Graph Theory, Vol. 15, No. 3 (1991) 251-257.
[2] Hager, M., On score sets for tournaments. J. Discrete Mathematics 58 (1986) 25-34.
[3] Petrović, V., On bipartite score sets. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 13 (1983) 297-303.
[4] Pirzada, S., Merajuddin, Yin, J., On the scores of oriented bipartite graphs. J. Mathematical Study, Vol. 33, No. 4 (2000) 354-359.
[5] Pirzada, S., Naikoo, T. A., On score sets in tournaments. Vietnam J. of Mathematics, Vol. 34, No. 2 (2006) 157-161.
[6] Pirzada, S., Naikoo, T. A., Score sets in k-partite tournaments. J. of Applied Mathematics and Computing, Vol. 22, No. 1-2 (2006), 237245.
[7] Pirzada, S., Naikoo, T. A., Score sets in oriented graphs. To appear.
[8] Reid, K. B., Score sets for tournaments. Congressus Numerantium XXI, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1978) 607-618.
[9] Wayland, K., Bipartite score sets. Canadian Mathematical Bulletin, Vol. 26, No. 3 (1983) 273-279.
[10] Yao, T. X., Reid's conjecture on score sets in tournaments (in Chinese). Kexue Tongbao 33 (1988) 481-484.
[11] Yao, T. X., On Reid's conjecture of score sets for tournaments. Chinese Sci. Bull. 34 (1989) 804-808.
[12] Yao, T. X., Score sets of bipartite tournaments. Nanjing Daxue Xucbao Ziran Kexue Ban 26 (1990) 19-23.

Received by the editors May 3, 2005

[^0]: ${ }^{1}$ Department of Mathematics, University of Kashmir, Srinagar-190006, India, e-mails: sdpirzada@yahoo.co.in, tariqnaikoo@rediffmail.com
 ${ }^{2}$ Mathematics Section, Centre of Distance Education, University of Kashmir, Srinagar190006, India, e-mail: chishtita@yahoo.co.in

