Novi Sad J. Math. Vol. 36, No. 1, 2006, 55-63

(m+1)-DIMENSIONAL SPACELIKE PARALLEL p_i -EQUIDISTANT RULED SURFACES IN THE MINKOWSKI SPACE R_1^n

${\bf Melek}~{\bf Masal}^1$

Abstract. In this paper, spacelike parallel p_i -equidistant ruled surfaces in 3-dimensional Minkowski space R_1^3 ,[1] are generalized to n-dimensional Minkowski space R_1^n . Then some characteristic results related with algebraic invariants of shape operator of the (m+1)-dimensional spacelike parallel p_i -equidistant ruled surfaces are given in the Minkowski space R_1^n .

AMS Mathematics Subject Classification (2000): 53C50,53B30, 51B20

Key words and phrases: Lorentz space, Minkowski space, ruled surface, parallel p_i -equidistant, spacelike, timelike, curvatures

1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc... are differentiable of class C^{∞} . First of all, we give some properties of a general submanifold M in R_1^n , [2]. Suppose that \overline{D} is the Levi-Civita connection of R_1^n , while D is the Levi-Civita connection of M. If X and Y are vector fields of M and if V is the second fundamental tensor of M, then we find by decomposing $\overline{D}_X Y$ into a tangent and normal component

(1.1) $\overline{D}_X Y = D_X Y + V(X,Y).$

The equation (I.1) is called *Gauss Equation*.

If ξ is a normal vector field on M, we find the Weingarten Equation by decomposing $\overline{D}_X \xi$ in a tangent and a normal component as

(1.2) $\overline{D}_X \xi = -A_{\xi}(X) + D_X^{\perp} \xi.$

 A_{ξ} determines at each point a self-adjoint linear map and D^{\perp} is a metric connection in the normal bundle $\chi^{\perp}(M)$. We use the same notation A_{ξ} for the linear map and the matrix of the linear map.

If the metric tensor of R_1^n is denoted by \langle , \rangle , we have

 $(1.3) \ < V(X,Y), \xi > = < Y, A_{\xi}(X) >.$

Let M be an m-dimensional semi-Riemannian manifold in R_1^n and A_{ξ} be a linear map. If $\zeta \in \chi^{\perp}(M)$ is a normal unit vector at the point $P \in M$, then (1.4) $G(P;\xi) = \det A_{\xi}$

is called the *Lipschitz-Killing curvature* of M at P in the direction ξ .

If $\xi_1, \xi_2, ..., \xi_{n-m}$ constitute an orthonormal base field of the normal bundle $\chi^{\perp}(M)$, then the *mean curvature* H is given by

(1.5) $H = \sum_{j=1}^{n-m} \frac{\text{tr}A_{\xi_j}}{\dim M} \xi_j.$

 $^{^1} Ondokuz$ Mayıs University, Science and Arts Faculty, Department of Mathematics, 55139 Kurupelit, Samsun-TURKEY, e-mail: mmasal@omu.edu.tr

For every $X_i \in \chi(M)$, $1 \le i \le 4$ the 4^{th} order covariant tensor field defined by R as

 $(1.6) R(X_1, X_2, X_3, X_4) = < X_1, R(X_3, X_4) X_2 >$

is called the *Riemannian curvature tensor field* and its value at a point $P \in M$ is called *Riemannian curvature* of M at P.

Let \prod be a tangent plane of M at P. For all $X_p, Y_p \in \prod$, the real valued function K defined by

(1.7) $K(X_P, Y_P) = \frac{\langle R(X_P, Y_P) X_P, Y_P \rangle}{\langle X_P, X_P \rangle \langle Y_P, Y_P \rangle - \langle X_P, Y_P \rangle^2}$

is called the sectional curvature function. $K(X_P, Y_P)$ is called the sectional curvature of M at P.

Let R be the Riemannian curvature tensor of M. The *Ricci curvature tensor* field S of M is by

(1.8)
$$S(X,Y) = \sum_{i=1}^{m} \varepsilon_i < R(e_i,X)Y, e_i >,$$

where $\{e_1, e_2, ..., e_m\}$ is a system of orthonormal base of $T_M(P)$ and the value of S(X, Y) at $P \in M$ is called *the Ricci curvature*, where

$$\varepsilon_i = \langle e_i, e_i \rangle = \begin{cases} -1, & \text{if } e_i \text{ timelike} \\ 1, & \text{if } e_i \text{ spacelike} \end{cases}$$

The scalar curvature r_{sk} of M is given by (1.9) $r_{sk} = \sum_{i \neq j} K(e_i, e_j) = 2 \sum_{i < j} K(e_i, e_j).$

Let $\{\xi_1, \xi_2, ..., \xi_{n-m}\}$ be an orthonormal base field of $\chi^{\perp}(M)$. Then the scalar normal curvature K_N of M is given by

(1.10)
$$K_N = \sum_{i,j=1}^{n-m} \overline{M} \left(A_{\xi_i} A_{\xi_j} - A_{\xi_j} A_{\xi_i} \right),$$

where \overline{M} is defined as $\overline{M}(A) = \sum_{i,j} (a_{ij})^2, A = [a_{ij}].$

2. The Curvatures Of (m+1)-Dimensional Spacelike Parallel p_i -Equidistant Ruled Surfaces in the Minkowski Space R_1^n

Ι

Let α and α^* be two unit-speed spacelike curves in R_1^n and let $\{V_1, V_2, ..., V_k\}$ and $\{V_1^*, V_2^*, ..., V_k^*\}$, $k \leq n$, be their Frenet frames at the points $\alpha(t)$ and $\alpha^*(t^*)$, respectively. Let **M** and **M*** be (m+1)-dimensional generalized spacelike ruled surfaces in R_1^n and $E_m(t)$ and $E_m(t^*)$, $1 \leq m \leq k-2$, be spacelike generating spaces of **M** and **M***, respectively. Then **M** and **M*** can be given by the following parametric form:

(2.1)
$$M: X(t, u_1, \dots, u_m) = \alpha(t) + \sum_{i=1}^m u_i V_i(t),$$

rank $\{X_t, X_{u_1}, \dots, X_{u_m}\} = m + 1,$
(2.2) $M^*: X^*(t^*, u_1^*, \dots, u_m^*) = \alpha^*(t^*) + \sum_{i=1}^m u_i^* V_i^*(t^*),$

(m+1)-Dimensional spacelike parallel p_i -equidistant ruled surfaces....

 $\begin{aligned} & \operatorname{rank}\left\{X_{t^*}^*, X_{u_1^*}^*, \dots, X_{u_m^*}^*\right\} = m+1, \\ & \operatorname{where}\left\{V_1, V_2, \dots, V_m\right\} \text{ and } \{V_1^*, V_2^*, \dots, V_m^*\} \text{ are the orthonormal basis of } E_m(t) \end{aligned}$ and $E_m(t^*)$, respectively.

Definition 2.1. Let M and M^* be (m+1)-dimensional two spacelike ruled surfaces and p_i be the distances between the (k-1)-dimensional osculator planes obtained by the vanishing the i^{th} term from

 $Sp\{V_1, V_2, ..., V_i, ..., V_k\}$ and $Sp\{V_1^*, V_2^*, ..., V_i^*, ..., V_k^*\}$. If 1) V_1 and V_1^* are parallel,

2) the distances $p_i, 1 \le i \le k$, between the (k-1)-dimensional osculator planes at the corresponding points of αr and α^* are constant, then the pair of ruled surfaces M and M^{*} are called the (m+1)-dimensional spacelike parallel p_i equidistant ruled surfaces.

From now on \mathbf{M} and \mathbf{M}^* will be assumed (m+1)-dimensional spacelike parallel p_i -equidistant ruled surfaces.

The following theorem can be given by means of definition 2.1 without proof:

Theorem 2.1. *i)* The Frenet frames $\{V_1, V_2, ..., V_k\}$ and $\{V_1^*, V_2^*, ..., V_k^*\}$ are equivalent at the corresponding points on α and α^* .

ii) For the curvatures k_i and k_i^* of α and α^* , respectively, we have

$$k_i^* = \frac{dt}{dt^*} k_i, \quad 1 \le i < k.$$

Theorem 2.2. The relation between the base curves of M and M^* , is

 $\alpha^* = \alpha + p_1 V_1 + p_2 V_2 + \dots + p_m V_m + \varepsilon_{m+1} p_{m+1} V_{m+1} + \varepsilon_{m+2} p_{m+2} V_{m+2} + \dots + \varepsilon_k p_k V_k.$

Proof. Since the vector $\alpha \alpha^*$ can be written as:

 $\alpha \alpha^* = a_1 V_1 + a_2 V_2 + \dots + a_m V_m + a_{m+1} V_{m+1} + \dots + a_k V_k, \quad a_i \in IR, \quad 1 \le i \le k,$

we find

$$\begin{cases} \langle \alpha \alpha^*, V_i \rangle = a_i , \ 1 \le i \le m \\ \langle \alpha \alpha^*, V_i \rangle = a_i \varepsilon_i , \ \varepsilon_i = \langle V_i, V_i \rangle , \ m+1 \le i \le k \end{cases}$$

Also, the distance between the osculator planes is

$$p_i = \begin{cases} |a_i|, & 1 \le i \le m \\ |a_i \varepsilon_i|, & m+1 \le i \le k \end{cases}$$

and thus

$$\alpha^* = \alpha + p_1 V_1 + p_2 V_2 + \dots + p_m V_m + \varepsilon_{m+1} p_{m+1} V_{m+1} + \varepsilon_{m+2} p_{m+2} V_{m+2} + \dots + \varepsilon_k p_k V_k$$

Theorem 2.3. All the asymptotic and tangential bundles of M and M^* are equal.

Proof. Let A(t) and $A(t^*)$ be asymptotic bundles of **M** and **M**^{*}, respectively, then we have

$$A(t) = Sp\{V_1, V_2, \dots, V_m, V'_1, V'_2, \dots, V'_m\}$$

and

$$A(t^*) = Sp\left\{V_1^*, V_2^*, \dots, V_m^*, V_1^{*\prime}, V_2^{*\prime}, \dots, V_m^{*\prime}\right\}.$$

Similarly, if T(t) and $T(t^*)$ are the tangential bundles of **M** and **M**^{*}, respectively, then from the definition of the tangential bundles we also have

$$T(t) = Sp\{V_1, V_2, \dots, V_m, V'_1, V'_2, \dots, V'_m, \alpha'\}$$

and

$$T(t^*) = Sp\left\{V_1^*, V_2^*, \dots, V_m^*, V_1^{*\prime}, V_2^{*\prime}, \dots, V_m^{*\prime}, \alpha^{*\prime}\right\}$$

From the definition 2.1 and Theorem 2.1

$$A(t) = A(t^*) = T(t) = T(t^*)$$

is obtained.

Π

In this part, we will study the matrices A_{ξ_j} and $A_{\xi_j^*}$, $1 \le j \le n - m - 1$, of **M** and **M**^{*}, respectively. Using equation (2.1) and (2.2), we can write

$$X_t = V_1 + \sum_{i=1}^m u_i V'_i, \quad X_{u_1} = V_1, \dots, \quad X_{u_m} = V_m$$

and

$$X_{t^*}^* = V_1^* + \sum_{i=1}^m u_i^* V_i^{*'}, \quad X_{u_1^*}^* = V_1^*, \dots, \quad X_{u_m^*}^* = V_m^*$$

Thus, we obtain the orthonormal bases $\{V_1, \ldots, V_{m+1}\}$ and $\{V_1^*, \ldots, V_{m+1}^*\}$ of **M** and **M**^{*}, respectively. If we take the orthonormal bases of the normal bundles \mathbf{M}^{\perp} and $\mathbf{M}^{*\perp}$ as

$$\{\xi_1,\ldots,\xi_{k-m-1},\ldots,\xi_{n-m-1}\}$$
 and $\{\xi_1^*,\ldots,\xi_{k-m-1}^*,\ldots,\xi_{n-m-1}^*\}$,

respectively, then we get the orthonormal bases

$$\{V_1, \ldots, V_{m+1}, \xi_1, \ldots, \xi_{k-m-1}, \ldots, \xi_{n-m-1}\}$$

and

$$\left\{V_1^*, \dots, V_{m+1}^*, \xi_1^*, \dots, \xi_{k-m-1}^*, \dots, \xi_{n-m-1}^*\right\}$$

of R_1^n at $P \in \mathbf{M}$ and at $P^* \in \mathbf{M}^*$, respectively, where $\xi_i = V_{m+1+i}$ and $\xi_i^* = V_{m+1+i}^*$, $1 \le i \le k - m - 1$. Let the connections of R_1^n , \mathbf{M} and \mathbf{M}^* be \overline{D} , \overline{D} and D^* , respectively. Then we have the following Weingarten equations:

$$(2.3) \begin{cases} \bar{D}_{V_1}\xi_j = \sum_{i=1}^{m+1} a_{1i}^j V_i + \sum_{q=1}^{n-m-1} b_{1q}^j \xi_q, & 1 \le j \le n-m-1 \\ \vdots \\ \bar{D}_{n-1}\xi_j = \sum_{i=1}^{m+1} a_{1i}^j V_i + \sum_{q=1}^{n-m-1} b_{1q}^j \xi_q, & 1 \le j \le n-m-1 \end{cases}$$

 $\begin{bmatrix} \bar{D}_{V_{m+1}}\xi_j = \sum_{i=1}^{m-1} a_{(m+1)i}^j V_i + \sum_{q=1}^{m-1} b_{(m+1)q}^j \xi_q, & 1 \le j \le \\ \text{So, the matrix } A_{\xi_j}, & 1 \le j \le n-m-1, \text{ can be written as:} \\ \begin{bmatrix} a_{11}^j & a_{12}^j & \cdots & a_{1d}^j \end{bmatrix}$

(2.4)
$$A_{\xi_j} = -\begin{bmatrix} a_{11}^{i_1} & a_{12}^{i_2} & \cdots & a_{1(m+1)}^{i_1} \\ \vdots & \vdots & \vdots \\ a_{(m+1)1}^{j} & a_{(m+1)2}^{j} & \cdots & a_{(m+1)(m+1)}^{j} \end{bmatrix}$$
.
Since α is a spacelike curve and $E_m(t)$ is a spacelike subspace, we obtain
 $\begin{bmatrix} a_{11}^{j} = \langle \bar{D}_{V_1}\xi_j, V_1 \rangle & \cdots & a_{(m+1)1}^{j} = \langle \bar{D}_{V_{m+1}}\xi_j, V_1 \rangle \\ \vdots & \vdots \\ \ddots & \vdots \end{bmatrix}$.

$$(2.5) \begin{cases} \vdots & \vdots \\ a_{1m}^{j} = \langle \bar{D}_{V_{1}}\xi_{j}, V_{m} \rangle & \cdots & a_{(m+1)m}^{j} = \langle \bar{D}_{V_{m+1}}\xi_{j}, V_{m} \rangle \\ a_{1(m+1)}^{j} = \varepsilon_{m+1} \langle \bar{D}_{V_{1}}\xi_{j}, V_{m+1} \rangle & \cdots & a_{(m+1)(m+1)}^{j} = \varepsilon_{m+1} \langle \bar{D}_{V_{m+1}}\xi_{j}, V_{m+1} \rangle \\ \text{where } \varepsilon_{m+1} = \langle V_{m+1}, V_{m+1} \rangle. \end{cases}$$

Similarly, for any normal vector field ξ^* on \mathbf{M}^* , we can write

$$\bar{D}_{X^*}\xi^* = -A_{\xi^*}(X^*) + {D_{X^*}^*}^{\perp}\xi^*.$$

Then we obtain:

$$(2.6) \begin{cases} \bar{D}_{V_1^*}\xi_j^* = \sum_{i=1}^{m+1} c_{1i}^j V_i^* + \sum_{q=1}^{n-m-1} d_{1q}^j \xi_q^*, & 1 \le j \le n-m-1 \\ \vdots & & \\ \vdots & & \\ - & & \frac{m+1}{2} i = \frac{n-m-1}{2} i = \frac{n-m-1}{2} i \le n-m-1 \end{cases}$$

$$\begin{bmatrix} \bar{D}_{V_{m+1}^*}\xi_j^* = \sum_{i=1}^{m+1} c_{(m+1)i}^j V_i^* + \sum_{q=1}^{n-m-1} d_{(m+1)q}^j \xi_q^*, & 1 \le j \le n-m-1. \\
\text{Thus, we obtain the matrix } A_{\xi_j^*}, 1 \le j \le n-m-1, \text{ as follows:}
\end{bmatrix}$$

(2.7)
$$A_{\xi_j^*} = -\begin{bmatrix} c_{11}^j & c_{12}^j & \cdots & c_{1(m+1)}^j \\ \vdots & \vdots & \vdots \\ c_{(m+1)1}^j & c_{(m+1)2}^j & \cdots & c_{(m+1)(m+1)}^j \end{bmatrix}, \ 1 \le j \le n-m-1.$$

Since α^* is a spacelike curve and $E_m(t^*)$ is a spacelike subspace, we get

$$(2.8) \begin{cases} c_{11}^{j} = \langle \bar{D}_{V_{1}^{*}}\xi_{j}^{*}, V_{1}^{*} \rangle & \cdots & c_{(m+1)1}^{j} = \langle \bar{D}_{V_{m+1}^{*}}\xi_{j}^{*}, V_{1}^{*} \rangle \\ \vdots & \vdots \\ c_{1m}^{j} = \langle \bar{D}_{V_{1}^{*}}\xi_{j}^{*}, V_{m}^{*} \rangle & \cdots & c_{(m+1)m}^{j} = \langle \bar{D}_{V_{m+1}^{*}}\xi_{j}^{*}, V_{m}^{*} \rangle \\ c_{1(m+1)}^{j} = \varepsilon_{m+1} \langle \bar{D}_{V_{1}^{*}}\xi_{j}^{*}, V_{m+1}^{*} \rangle & \cdots & c_{(m+1)(m+1)}^{j} = \varepsilon_{m+1} \langle \bar{D}_{V_{m+1}^{*}}\xi_{j}^{*}, V_{m+1}^{*} \rangle \\ \text{where } \varepsilon_{m+1} = \langle V_{m+1}^{*}, V_{m+1}^{*} \rangle. \text{ Hence, the following theorems can be given:} \end{cases}$$

Theorem 2.4. If M is (m+1)-dimensional spacelike ruled surface in \mathbb{R}^n_1 , then

M. Masal

$$A_{\xi_1} = A_{V_{m+2}} = \begin{bmatrix} 0 & \cdots & 0 & \varepsilon_{m+1}k_{m+1} \\ 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}_{(m+1)\times(m+1)} and A_{\xi_j} = 0,$$

$$2 \le j \le n - m - 1.$$

Theorem 2.5. If M^* is (m+1)-dimensional spacelike ruled surface in R_1^n , then

$$A_{\xi_1^*} = A_{V_{m+2}^*} = \begin{bmatrix} 0 & \cdots & 0 & \varepsilon_{m+1}k_{m+1}^* \\ 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}_{(m+1)\times(m+1)} and A_{\xi_j^*} = 0$$

Theorem 2.6. Let M and M^* be (m+1)-dimensional spacelike parallel p_i -equidistant ruled surfaces in \mathbb{R}^n_1 . For the matrices of M and M^* , we have

$$A_{\xi_1^*} = \frac{dt}{dt^*} A_{\xi_1}$$
 , $A_{\xi_j^*} = A_{\xi_j} = 0$, $2 \le j \le n - m - 1$.

Theorem 2.7. The Lipschitz-Killing curvatures of M and M^* in all normal directions are zero.

 $\mathit{Proof.}$ From the definition of Lipschitz-Killing curvature in the direction of ξ_j , we can write

 $G(P,\xi_j) = \det A_{\xi_j} = 0$ for all $P \in \mathbf{M}, \ 1 \le j \le n - m - 1$.

Similarly, the Lipschitz-Killing curvature in the direction of ξ_j^* of \mathbf{M}^* , we get

$$G(P^*,\xi_j^*) = \det A_{\xi_j^*} = 0 \ , \ 1 \le j \le n-m-1 \ , \ for \ all \ P^* \in S^*.$$

Theorem 2.8. M and M^* are minimal and the scalar normal curvatures of M and M^* are zero.

Proof. If H and K_N (H^{*} and K_{N^*}) are the mean curvature vector and the scalar normal curvature of $\mathbf{M}(\mathbf{M}^*)$, then from Theorem 2.4 and Theorem 2.5, we have $H = H^* = 0$ and $K_N = K_{N^*} = 0$.

Thus, \mathbf{M} and \mathbf{M}^* are the minimal ruled surfaces.

III

If X and Y are vector fields and V is the second fundamental form of \mathbf{M} , then from (1.2) and (1.3) we can write

(m+1)-Dimensional spacelike parallel p_i -equidistant ruled surfaces....

$$\langle \bar{D}_X Y, \xi \rangle = \langle V(X,Y), \xi \rangle = \langle A_{\xi}(X), Y \rangle , \quad \xi \in \mathbf{M}^{\perp} \text{ and}$$

 $V(X,Y) = -\sum_{j=1}^{n-m-1} \langle Y, \bar{D}_X \xi_j \rangle \xi_j.$

So, for the Frenet vectors V_i and V_j , $1 \le i, j \le m+1$, we obtain

$$V(V_i, V_j) = -\sum_{s=1}^{n-m-1} \langle V_j, \bar{D}_{V_i}\xi_s \rangle \xi_s, \quad 1 \le i, j \le m+1.$$

Thus, from (2.3) we get

$$V(V_i, V_j) = -\sum_{s=1}^{n-m-1} \varepsilon_j a_{ij}^s \xi_s.$$

Using Theorem 2.4, we have

$$(2.9) \begin{cases} V(V_1, V_{m+1}) = -\sum_{s=1}^{n-m-1} \varepsilon_{m+1} a_{1(m+1)}^s \xi_s = \varepsilon_{m+1}^2 k_{m+1} V_{m+2} \\ V(V_i, V_j) = -\sum_{s=1}^{n-m-1} \varepsilon_j a_{ij}^s \xi_s = 0 \\ \sum_{s=1}^{n-m-1} \varepsilon_j a_{ij}^s \xi_s = 0 \\ \sum_{s=1}^{n-m-1} \varepsilon_j a_{ij}^s \xi_s = 0 \end{cases}, \quad 1 \le i, j \le m+1.$$

Similarly, if X^* and Y^* are vector fields and V^* is the second fundamental form of \mathbf{M}^* , then from equations (1.2) and (1.3) we have

$$<\bar{D}_{X^*}Y^*, \xi^*>==$$
, $\xi^*\in M^{*\perp}$

and

$$V^*(X^*, Y^*) = -\sum_{j=1}^{n-m-1} \langle Y^*, \bar{D}_{X^*}\xi_j^* \rangle \xi_j^*.$$

For the Frenet vectors V_i^* and V_j^* , $1 \le i, j \le m + 1$, we have

$$V^*(V_i^*, V_j^*) = -\sum_{s=1}^{n-m-1} \langle V_j^*, \bar{D}_{V_i^*} \xi_s^* \rangle \xi_s^* \quad , \quad 1 \le i, j \le m+1$$

and from equation (2.6) we get

$$V^*(V_i^*, V_j^*) = -\sum_{s=1}^{n-m-1} \varepsilon_j c_{ij}^s \zeta_s^* , \quad 1 \le i, j \le m+1.$$

Using Theorem 2.5, we obtain $(2.10) \begin{cases} V^*(V_1^*, V_{m+1}^*) = \varepsilon_{m+1}^2 k_{m+1}^* V_{m+2}^* , \\ V^*(V_i^*, V_j^*) = 0 \ 1 \le i, j \le m+1 \end{cases}$ and from Theorem 2.1 we get $(2.11) \begin{cases} V^*(V_1^*, V_{m+1}^*) = \frac{dt}{dt^*} V(V_1, V_{m+1}) , \\ V^*(V_i^*, V_j^*) = V(V_i, V_j) = 0 \ 1 \le i, j \le m+1. \end{cases}$ Thus, the following theorems can be given:

Theorem 2.9. V_1 and V_{m+1} are conjugate vectors iff V_1^* and V_{m+1}^* are conjugate vectors.

Theorem 2.10. *i)* For the Riemannian curvature of M in two dimensional direction spanned by V_i and V_j , we have

$$K(V_1, V_{m+1}) = \varepsilon_{m+1} \varepsilon_{m+2} (k_{m+1})^2 \text{ and } K(V_i, V_j) = 0, \quad 1 \le i, j \le m+1, i \ne j.$$

ii) For the Riemannian curvature of M^* in two dimensional direction spanned by V_i^* and V_j^* , we have

$$K(V_1^*, V_{m+1}^*) = \varepsilon_{m+1}\varepsilon_{m+2}(k_{m+1})^2 \text{ and } K(V_i^*, V_j^*) = 0, \quad 1 \le i, j \le m+1, i \ne j.$$

Theorem 2.11. For the Riemannian curvatures of M and M^*

$$\begin{cases} K(V_1^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 K(V_1, V_{m+1}) , \\ K(V_i^*, V_j^*) = K(V_i, V_j) = 0 , \quad 1 \le i, j \le m+1, \ i \ne j \end{cases}$$

are valid.

Theorem 2.12. If $S(V_i, V_i)$, and r_{sk} ($S(V_i^*, V_i^*)$) and r_{sk}^*), $1 \le i \le m+1$, are the Ricci and scalar curvatures of $\mathbf{M}(\mathbf{M}^*)$, then we have

$$S(V_i^*, V_i^*) = S(V_i, V_i) = 0, \ 1 \le i \le m,$$

$$S(V_{m+1}^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 S(V_{m+1}, V_{m+1}),$$
$$r_{sk} = 2\varepsilon_{m+2}S(V_{m+1}, V_{m+1}),$$

$$r_{sk}^* = 2\varepsilon_{m+2}S(V_{m+1}^*, V_{m+1}^*),$$

$$r_{sk}^* = \left(\frac{dt}{dt^*}\right)^2 r_{sk} \quad .$$

Proof. For the Ricci curvature in the direction V_i , $1 \le i \le m+1$, of **M**, we can write

$$S(V_i, V_i) = \sum_{j=1}^{m+1} \varepsilon_j \langle R(V_j, V_i) V_i, V_j \rangle, \ \varepsilon_j = \langle V_j, V_j \rangle$$

$$= \sum_{j=1}^{m+1} \varepsilon_j \{ \langle V(V_j, V_i), V(V_j, V_i) \rangle - \langle V(V_j, V_j), V(V_i, V_i) \rangle \}.$$

Using equation (2.9), we have $(2.12) \begin{cases} S(V_{m+1}, V_{m+1}) = \varepsilon_{m+2}(k_{m+1})^2, \ \varepsilon_{m+2} = \langle V_{m+2}, V_{m+2} \rangle \\ S(V_i, V_i) = 0, \ 1 \le i \le m. \end{cases}$ For the scalar curvature of **M**, we get

$$r_{sk} = \sum_{i \neq j} K(V_i, V_j) = 2 \sum_{i \langle j} K(V_i, V_j).$$

From Theorem 2.10, we obtain

- (2.13) $r_{sk} = 2K(V_1, V_{m+1}) = 2\varepsilon_{m+1}\varepsilon_{m+2}(k_{m+1})^2$. If we use equation (2.12) we have
- (2.14) $r_{sk} = 2\varepsilon_{m+2}S(V_{m+1}, V_{m+1})$, $\varepsilon_{m+2} = \langle V_{m+2}, V_{m+2} \rangle$. Similarly, for the Ricci curvature in the direction V_i^* , $1 \le i \le m+1$, of \mathbf{M}^* we get
- $\begin{array}{l} (2.15) \left\{ \begin{array}{l} S(V_{m+1}^{*},V_{m+1}^{*}) = \varepsilon_{m+1}(k_{m+1}^{*})^{2} , \ \varepsilon_{m+1} = \left\langle V_{m+1}^{*},V_{m+1}^{*} \right\rangle \\ S(V_{i}^{*},V_{i}^{*}) = 0 \ , \ 1 \leq i \leq m \ . \\ \text{Also, for the scalar curvature of } \mathbf{M}^{*} , \text{ we find} \\ (2.16) \ r_{sk}^{*} = 2K(V_{1}^{*},V_{m+1}^{*}) = 2\varepsilon_{m+2}S(V_{m+1}^{*},V_{m+1}^{*}) , \ \varepsilon_{m+2} = \left\langle V_{m+2}^{*},V_{m+2}^{*} \right\rangle \\ \text{From Theorem 2.1 we have} \end{array}$

$$S(V_{m+1}^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 S(V_{m+1}, V_{m+1}) \text{ and } r_{sk}^* = \left(\frac{dt}{dt^*}\right)^2 r_{sk}.$$

Theorem 2.13. Let $X = \sum_{i=1}^{m+1} a_i V_i$, $Y = \sum_{i=1}^{m+1} b_i V_i \in M$. *M* is totally geodesic iff $V(V_1, V_{m+1}) = 0$ or $a_1 b_{m+1} = 0$.

Proof. Since

$$V(X,Y) = \sum_{i,j=1}^{m+1} a_i b_j V(V_i , V_j),$$

using equation (2.9), we get

(2.17) $V(X,Y) = a_1 b_{m+1} V(V_1, V_{m+1}).$

Thus, the definition of totally geodesic completes the proof.

We can give the following corollary:

Corollary 2.1. If $a_1b_{m+1} \neq 0$ and M is totally geodesic, then M^* is totally geodesic and the Riemannian curvatures of M and M^* in the two dimensional direction spanned by V_i and V_j , $1 \leq i, j \leq m+1$, $i \neq j$, are zero.

References

- [1] Masal, M., Kuruoğlu, N., Spacelike Parallel p_i Equidistant Ruled Surfaces In The Minkowski 3-Space R_1^3 . Algebras, Groups and Geometries 22 (2005), 13-24.
- [2] O'Neill, B., Semi-Riemannian Geometry. New York: Academic Press 1983.

Received by the editors June 6, 2005

63

 \square