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(m+1)-DIMENSIONAL SPACELIKE PARALLEL
pi-EQUIDISTANT RULED SURFACES IN THE

MINKOWSKI SPACE Rn
1

Melek Masal1

Abstract. In this paper, spacelike parallel pi-equidistant ruled surfaces
in 3-dimensional Minkowski space R3

1,[1] are generalized to n-dimensional
Minkowski space Rn

1 . Then some characteristic results related with al-
gebraic invariants of shape operator of the (m+1)-dimensional spacelike
parallel pi-equidistant ruled surfaces are given in the Minkowski space Rn

1 .
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1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc...
are differentiable of class C∞. First of all, we give some properties of a general
submanifold M in Rn

1 , [2] . Suppose that D is the Levi-Civita connection of Rn
1 ,

while D is the Levi-Civita connection of M. If X and Y are vector fields of M
and if V is the second fundamental tensor of M, then we find by decomposing
DXY into a tangent and normal component
(1.1) DXY = DXY + V (X,Y ).

The equation (I.1) is called Gauss Equation.
If ξ is a normal vector field on M, we find the Weingarten Equation by

decomposing DX ξ in a tangent and a normal component as
(1.2) DXξ = −Aξ(X) + D⊥

Xξ.
Aξ determines at each point a self-adjoint linear map and D⊥ is a metric

connection in the normal bundle χ⊥(M). We use the same notation Aξ for the
linear map and the matrix of the linear map.

If the metric tensor of Rn
1 is denoted by <,>, we have

(1.3) < V (X,Y ), ξ >=< Y,Aξ(X) >.
Let M be an m-dimensional semi-Riemannian manifold in Rn

1 and Aξ be a
linear map. If ζ ∈ χ⊥(M) is a normal unit vector at the point P ∈ M , then
(1.4) G(P ; ξ) = det Aξ

is called the Lipschitz-Killing curvature of M at P in the direction ξ.
If ξ1, ξ2, ..., ξn−m constitute an orthonormal base field of the normal bundle

χ⊥(M), then the mean curvature H is given by

(1.5) H =
n−m∑
j=1

trAξj

dimM
ξj .
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For every Xi ∈ χ(M) , 1 ≤ i ≤ 4 the 4th order covariant tensor field defined
by R as
(1.6) R(X1, X2, X3, X4) =< X1, R(X3, X4)X2 >
is called the Riemannian curvature tensor field and its value at a point P ∈ M
is called Riemannian curvature of M at P.

Let
∏

be a tangent plane of M at P. For all Xp, Yp ∈
∏

, the real valued
function K defined by
(1.7) K(XP , YP ) = <R(XP ,YP )XP ,YP >

<XP ,XP ><YP ,YP >−<XP ,YP >2

is called the sectional curvature function. K(XP , YP ) is called the sectional
curvature of M at P .

Let R be the Riemannian curvature tensor of M . The Ricci curvature tensor
field S of M is by

(1.8) S(X, Y ) =
m∑

i=1

εi < R(ei, X)Y, ei >,

where {e1, e2, ..., em} is a system of orthonormal base of TM (P ) and the value
of S(X, Y ) at P ∈ M is called the Ricci curvature, where

εi =< ei, ei >=
{ −1, if ei timelike

1, if ei spacelike

The scalar curvature rsk of M is given by
(1.9) rsk =

∑
i 6=j

K(ei, ej) = 2
∑
i<j

K(ei, ej).

Let {ξ1, ξ2, ..., ξn−m} be an orthonormal base field of χ⊥(M). Then the
scalar normal curvature KN of M is given by

(1.10) KN =
n−m∑
i,j=1

M
(
AξiAξj −Aξj Aξi

)
,

where M is defined as M(A) =
∑
i,j

(aij)2, A = [aij ].

2. The Curvatures Of (m+1)-Dimensional Spacelike Par-
allel pi-Equidistant Ruled Surfaces in the Minkowski
Space Rn

1

I

Let α and α* be two unit-speed spacelike curves in Rn
1 and let {V1, V2, ..., Vk}

and {V ∗
1 , V ∗

2 , . . . , V ∗
k }, k ≤ n, be their Frenet frames at the points α(t) and

α*(t*), respectively. Let M and M* be (m+1)-dimensional generalized spacelike
ruled surfaces in Rn

1 and Em(t) and Em(t∗), 1 ≤ m ≤ k − 2, be spacelike
generating spaces of M and M*, respectively. Then M and M* can be given
by the following parametric form:

(2.1) M : X(t, u1, . . . , um) = α(t) +
m∑

i=1

uiVi(t),

rank {Xt, Xu1 , . . . , Xum} = m + 1,

(2.2) M∗ : X∗ (t∗, u∗1, . . . , u
∗
m) = α∗(t∗) +

m∑
i=1

u∗i V
∗
i (t∗),
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rank
{

X∗
t∗ , X

∗
u∗1

, . . . , X∗
u∗m

}
= m + 1,

where {V1, V2, . . . , Vm} and {V ∗
1 , V ∗

2 , . . . , V ∗
m} are the orthonormal basis of Em(t)

and Em(t∗), respectively.

Definition 2.1. Let M and M* be (m+1)-dimensional two spacelike ruled
surfaces and pi be the distances between the (k-1)-dimensional osculator planes
obtained by the vanishing the ith term from

Sp {V1, V2, ..., Vi, ..., Vk}and Sp {V ∗
1 , V ∗

2 , ..., V ∗
i , ..., V ∗

k }.
If
1) V1 and V ∗

1 are parallel,
2) the distances pi,1 ≤ i ≤ k, between the (k-1)-dimensional osculator planes

at the corresponding points of αr and α∗ are constant, then the pair of ruled
surfaces M and M* are called the (m+1)-dimensional spacelike parallel pi-
equidistant ruled surfaces.

From now on M and M* will be assumed (m+1)-dimensional spacelike par-
allel pi-equidistant ruled surfaces.

The following theorem can be given by means of definition 2.1 without proof:

Theorem 2.1. i) The Frenet frames {V1, V2, . . . , Vk} and {V ∗
1 , V ∗

2 , . . . , V ∗
k }

are equivalent at the corresponding points on α and α*.
ii) For the curvatures ki and k∗i of α and α*, respectively, we have

k∗i =
dt

dt∗
ki, 1 ≤ i < k.

Theorem 2.2. The relation between the base curves of M and M*, is

α∗ = α+p1V1+p2V2+· · ·+pmVm+εm+1pm+1Vm+1+εm+2pm+2Vm+2+...+εkpkVk.

Proof. Since the vector αα* can be written as:

αα∗ = a1V1+a2V2+· · ·+amVm+am+1Vm+1+...+akVk, ai ∈ IR, 1 ≤ i ≤ k,

we find { 〈αα∗, Vi〉 = ai , 1 ≤ i ≤ m
〈αα∗, Vi〉 = aiεi , εi = 〈Vi, Vi〉 , m + 1 ≤ i ≤ k

.

Also, the distance between the osculator planes is

pi =
{ |ai| , 1 ≤ i ≤ m
|aiεi| , m + 1 ≤ i ≤ k

and thus

α∗ = α+p1V1+p2V2+· · ·+pmVm+εm+1pm+1Vm+1+εm+2pm+2Vm+2+...+εkpkVk

2
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Theorem 2.3. All the asymptotic and tangential bundles of M and M* are
equal.

Proof. Let A(t) and A(t∗) be asymptotic bundles of M and M∗, respectively,
then we have

A(t) = Sp {V1, V2, . . . , Vm, V ′
1 , V ′

2 , . . . , V ′
m}

and
A(t∗) = Sp

{
V ∗

1 , V ∗
2 , . . . , V ∗

m, V ∗
1
′, V ∗

2
′, . . . , V ∗

m
′} .

Similarly, if T(t) and T (t∗) are the tangential bundles of M and M*, re-
spectively, then from the definition of the tangential bundles we also have

T (t) = Sp {V1, V2, . . . , Vm, V ′
1 , V ′

2 , . . . , V ′
m, α′}

and
T (t∗) = Sp

{
V ∗

1 , V ∗
2 , . . . , V ∗

m, V ∗
1
′, V ∗

2
′, . . . , V ∗

m
′, α∗′

}
.

From the definition 2.1 and Theorem 2.1

A(t) = A(t∗) = T (t) = T (t∗)

is obtained. 2

II

In this part, we will study the matrices Aξj and Aξ∗j , 1 ≤ j ≤ n−m− 1, of
M and M*, respectively. Using equation (2.1) and (2.2), we can write

Xt = V1 +
m∑

i=1

uiV
′
i , Xu1 = V1, . . . , Xum = Vm

and

X∗
t∗ = V ∗

1 +
m∑

i=1

u∗i V
∗
i
′, X∗

u∗1
= V ∗

1 , . . . , X∗
u∗m

= V ∗
m.

Thus, we obtain the orthonormal bases {V1, . . . , Vm+1} and
{
V ∗

1 , . . . , V ∗
m+1

}
of M and M∗, respectively. If we take the orthonormal bases of the normal
bundles M⊥ and M∗⊥ as

{ξ1, . . . , ξk−m−1, . . . , ξn−m−1} and
{
ξ∗1 , . . . , ξ∗k−m−1, . . . , ξ

∗
n−m−1

}
,

respectively, then we get the orthonormal bases

{V1, . . . , Vm+1, ξ1, . . . , ξk−m−1, . . . , ξn−m−1}

and {
V ∗

1 , . . . , V ∗
m+1, ξ

∗
1 , . . . , ξ∗k−m−1, . . . , ξ

∗
n−m−1

}



(m+1)-Dimensional spacelike parallel pi-equidistant ruled surfaces.... 59

of Rn
1 at P ∈M and at P ∗ ∈M*, respectively, where ξi = Vm+1+i and ξ∗i =

V ∗
m+1+i, 1 ≤ i ≤ k −m − 1. Let the connections of Rn

1 , M and M* be D̄, D
and D∗, respectively. Then we have the following Weingarten equations:

(2.3)





D̄V1ξj =
m+1∑
i=1

aj
1iVi +

n−m−1∑
q=1

bj
1qξq,

...

D̄Vm+1ξj =
m+1∑
i=1

aj
(m+1)iVi +

n−m−1∑
q=1

bj
(m+1)qξq,

1 ≤ j ≤ n−m− 1

1 ≤ j ≤ n−m− 1 .

So, the matrix Aξj
, 1 ≤ j ≤ n−m− 1, can be written as:

(2.4) Aξj
= −




aj
11 aj

12 · · · aj
1(m+1)

...
...

...
aj
(m+1)1 aj

(m+1)2 · · · aj
(m+1)(m+1)


.

Since α is a spacelike curve and Em(t) is a spacelike subspace, we obtain

(2.5)





aj
11 =< D̄V1ξj , V1 > · · · aj

(m+1)1 =< D̄Vm+1ξj , V1 >
...

...
aj
1m =< D̄V1ξj , Vm > · · · aj

(m+1)m =< D̄Vm+1ξj , Vm >

aj
1(m+1)

= εm+1 < D̄V1ξj , Vm+1 > · · · aj
(m+1)(m+1)

= εm+1 < D̄Vm+1ξj , Vm+1 >

where εm+1 = 〈Vm+1, Vm+1〉.
Similarly, for any normal vector field ξ∗ on M∗, we can write

D̄X∗ξ∗ = −Aξ∗(X∗) + D∗
X∗

⊥ξ∗.

Then we obtain:

(2.6)





D̄V ∗1 ξ∗j =
m+1∑
i=1

cj
1iV

∗
i +

n−m−1∑
q=1

dj
1qξ

∗
q ,

...

D̄V ∗m+1
ξ∗j =

m+1∑
i=1

cj
(m+1)iV

∗
i +

n−m−1∑
q=1

dj
(m+1)qξ

∗
q ,

1 ≤ j ≤ n−m− 1

1 ≤ j ≤ n−m− 1 .

Thus, we obtain the matrix Aξ∗j ,1 ≤ j ≤ n−m− 1, as follows:

(2.7) Aξ∗j = −




cj
11 cj

12 · · · cj
1(m+1)

...
...

...
cj
(m+1)1 cj

(m+1)2 · · · cj
(m+1)(m+1)


, 1 ≤ j ≤ n−m− 1.

Since α∗ is a spacelike curve and Em(t∗) is a spacelike subspace, we get

(2.8)





cj
11 =< D̄V ∗1 ξ∗j , V ∗

1 > · · · cj
(m+1)1 =< D̄V ∗m+1

ξ∗j , V ∗
1 >

...
...

cj
1m =< D̄V ∗1 ξ∗j , V ∗

m > · · · cj
(m+1)m =< D̄V ∗m+1

ξ∗j , V ∗
m >

cj
1(m+1)

= εm+1 <D̄V ∗1 ξ∗j , V ∗
m+1 > · · · cj

(m+1)(m+1)
= εm+1 <D̄V ∗m+1

ξ∗j , V ∗
m+1 >

where εm+1 =
〈
V ∗

m+1 , V ∗
m+1

〉
. Hence, the following theorems can be given:

Theorem 2.4. If M is (m+1)-dimensional spacelike ruled surface in Rn
1 , then
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Aξ1 = AVm+2 =




0 · · · 0 εm+1km+1

0 · · · 0 0
...

...
...

0 · · · 0 0




(m+1)×(m+1)

and Aξj
= 0,

2 ≤ j ≤ n−m− 1.

Theorem 2.5. If M* is (m+1)-dimensional spacelike ruled surface in Rn
1 ,

then

Aξ∗1 = AV ∗m+2
=




0 · · · 0 εm+1k
∗
m+1

0 · · · 0 0
...

...
...

0 · · · 0 0




(m+1)×(m+1)

and Aξ∗j = 0,

2 ≤ j ≤ n−m− 1.

Theorem 2.6. Let M and M* be (m+1)-dimensional spacelike parallel pi-
equidistant ruled surfaces in Rn

1 . For the matrices of M and M*, we have

Aξ∗1 =
dt

dt∗
Aξ1 , Aξ∗j = Aξj = 0 , 2 ≤ j ≤ n−m− 1.

Theorem 2.7. The Lipschitz-Killing curvatures of M and M∗ in all normal
directions are zero.

Proof. From the definition of Lipschitz-Killing curvature in the direction of
ξj , we can write

G(P, ξj) = det Aξj = 0 for all P ∈ M, 1 ≤ j ≤ n−m− 1.
Similarly, the Lipschitz-Killing curvature in the direction of ξ∗j of M*, we

get
G(P ∗, ξ∗j ) = det Aξ∗j = 0 , 1 ≤ j ≤ n−m− 1 , for all P ∗ ∈S*. 2

Theorem 2.8. M and M* are minimal and the scalar normal curvatures of
M and M* are zero.

Proof. If H and KN (H* and KN∗) are the mean curvature vector and the scalar
normal curvature of M(M*), then from Theorem 2.4 and Theorem 2.5, we have

H = H∗ = 0 and KN = KN∗ = 0.
Thus, M and M* are the minimal ruled surfaces. 2

III

If X and Y are vector fields and V is the second fundamental form of M,
then from (1.2) and (1.3) we can write
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< D̄XY , ξ >=< V (X, Y ) , ξ >=< Aξ(X) , Y > , ξ ∈M⊥ and

V (X, Y ) = −
n−m−1∑

j=1

< Y , D̄Xξj > ξj .

So, for the Frenet vectors Vi and Vj , 1 ≤ i, j ≤ m + 1, we obtain

V (Vi , Vj ) = −
n−m−1∑

s=1

< Vj , D̄Vi
ξs > ξs, 1 ≤ i, j ≤ m + 1.

Thus, from (2.3) we get

V (Vi , Vj) = −
n−m−1∑

s=1

εja
s
ijξs.

Using Theorem 2.4, we have

(2.9)





V (V1, Vm+1) = −
n−m−1∑

s=1
εm+1a

s
1(m+1)ξs = ε2

m+1km+1Vm+2

V (Vi, Vj) = −
n−m−1∑

s=1
εja

s
ijξs = 0 , 1 ≤ i, j ≤ m + 1 .

Similarly, if X∗ and Y ∗ are vector fields and V ∗ is the second fundamental
form of M*, then from equations (1.2) and (1.3) we have

< D̄X∗Y ∗, ξ∗ >=< V ∗(X∗, Y ∗), ξ∗ >=< Aξ∗(X∗), Y ∗ > , ξ∗ ∈ M∗⊥

and

V ∗(X∗, Y ∗) = −
n−m−1∑

j=1

< Y ∗, D̄X∗ξ∗j > ξ∗j .

For the Frenet vectors V ∗
i and V ∗

j , 1 ≤ i, j ≤ m + 1, we have

V ∗(V ∗
i , V ∗

j ) = −
n−m−1∑

s=1

< V ∗
j , D̄V ∗i ξ∗s > ξ∗s , 1 ≤ i, j ≤ m + 1

and from equation (2.6) we get

V ∗(V ∗
i , V ∗

j ) = −
n−m−1∑

s=1

εjc
s
ijξ

∗
s , 1 ≤ i, j ≤ m + 1.

Using Theorem 2.5, we obtain

(2.10)
{

V ∗(V ∗
1 , V ∗

m+1) = ε2
m+1k

∗
m+1V

∗
m+2 ,

V ∗(V ∗
i , V ∗

j ) = 0 1 ≤ i, j ≤ m + 1
and from Theorem 2.1 we get

(2.11)
{

V ∗(V ∗
1 , V ∗

m+1) = dt
dt∗V (V1, Vm+1) ,

V ∗(V ∗
i , V ∗

j ) = V (Vi, Vj) = 0 1 ≤ i, j ≤ m + 1.
Thus, the following theorems can be given:
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Theorem 2.9. V1 and Vm+1 are conjugate vectors iff V ∗
1 and V ∗

m+1 are con-
jugate vectors.

Theorem 2.10. i) For the Riemannian curvature of M in two dimensional
direction spanned by Vi and Vj, we have

K(V1, Vm+1) = εm+1εm+2(km+1)2 andK(Vi, Vj) = 0, 1 ≤ i, j ≤ m + 1, i 6= j.

ii) For the Riemannian curvature of M* in two dimensional direction spanned
by V ∗

i and V ∗
j , we have

K(V ∗
1 , V ∗

m+1) = εm+1εm+2(km+1)2 andK(V ∗
i , V ∗

j ) = 0, 1 ≤ i, j ≤ m + 1, i 6= j.

Theorem 2.11. For the Riemannian curvatures of M and M*
{

K(V ∗
1 , V ∗

m+1) =
(

dt
dt∗

)2
K(V1, Vm+1) ,

K(V ∗
i , V ∗

j ) = K(Vi, Vj) = 0 , 1 ≤ i, j ≤ m + 1 , i 6= j

are valid.

Theorem 2.12. If S(Vi, Vi), and rsk (S(V ∗
i , V ∗

i ) and r∗sk), 1 ≤ i ≤ m+1, are
the Ricci and scalar curvatures of M(M∗), then we have

S(V ∗
i , V ∗

i ) = S(Vi, Vi) = 0 , 1 ≤ i ≤ m,

S(V ∗
m+1, V

∗
m+1) =

(
dt

dt∗

)2

S(Vm+1, Vm+1),

rsk = 2εm+2S(Vm+1, Vm+1) ,

r∗sk = 2εm+2S(V ∗
m+1, V

∗
m+1),

r∗sk =
(

dt

dt∗

)2

rsk .

Proof. For the Ricci curvature in the direction Vi , 1 ≤ i ≤ m + 1 , of M, we
can write

S(Vi, Vi) =
m+1∑

j=1

εj 〈R(Vj , Vi)Vi, Vj〉, εj = 〈Vj , Vj〉

=
m+1∑

j=1

εj {< V (Vj , Vi) , V (Vj , Vi) > − < V (Vj , Vj) , V (Vi, Vi) >}.
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Using equation (2.9), we have

(2.12)
{

S(Vm+1, Vm+1) = εm+2(km+1)2, εm+2 = 〈Vm+2, Vm+2〉
S(Vi, Vi) = 0 , 1 ≤ i ≤ m .

For the scalar curvature of M, we get

rsk =
∑

i6=j

K(Vi, Vj) = 2
∑

i〈j
K(Vi, Vj).

From Theorem 2.10, we obtain
(2.13) rsk = 2K(V1, Vm+1) = 2εm+1εm+2(km+1)2.

If we use equation (2.12) we have
(2.14) rsk = 2εm+2S(Vm+1, Vm+1) , εm+2 = 〈Vm+2, Vm+2〉.

Similarly, for the Ricci curvature in the direction V ∗
i , 1 ≤ i ≤ m + 1 , of

M* we get

(2.15)
{

S(V ∗
m+1, V

∗
m+1) = εm+1(k∗m+1)

2 , εm+1 =
〈
V ∗

m+1, V
∗
m+1

〉
S(V ∗

i , V ∗
i ) = 0 , 1 ≤ i ≤ m .

Also, for the scalar curvature of M* , we find
(2.16) r∗sk = 2K(V ∗

1 , V ∗
m+1) = 2εm+2S(V ∗

m+1, V
∗
m+1) , εm+2 =

〈
V ∗

m+2, V
∗
m+2

〉
.

From Theorem 2.1 we have
S(V ∗

m+1, V
∗
m+1) =

(
dt
dt∗

)2
S(Vm+1, Vm+1)and r∗sk =

(
dt
dt∗

)2
rsk. 2

Theorem 2.13. Let X =
m+1∑
i=1

aiVi , Y =
m+1∑
i=1

biVi ∈M. M is totally geodesic

iff V (V1, Vm+1) = 0 or a1bm+1 = 0.

Proof. Since

V (X,Y ) =
m+1∑

i,j=1

aibjV (Vi , Vj ),

using equation (2.9), we get
(2.17) V (X, Y ) = a1bm+1 V (V1, Vm+1).

Thus, the definition of totally geodesic completes the proof. 2

We can give the following corollary:

Corollary 2.1. If a1bm+1 6= 0 and M is totally geodesic, then M* is totally
geodesic and the Riemannian curvatures of M and M* in the two dimensional
direction spanned by Vi and Vj , 1 ≤ i, j ≤ m + 1, i 6= j, are zero.
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[1] Masal, M., Kuruoğlu, N., Spacelike Parallel pi- Equidistant Ruled Surfaces In The
Minkowski 3-Space R3

1. Algebras, Groups and Geometries 22 (2005), 13-24.

[2] O’Neill, B., Semi-Riemannian Geometry. New York: Academic Press 1983.

Received by the editors June 6, 2005


