($\mathrm{m}+1$)-DIMENSIONAL SPACELIKE PARALLEL p_{i}-EQUIDISTANT RULED SURFACES IN THE MINKOWSKI SPACE R_{1}^{n}

Abstract

Melek Masal ${ }^{1}$ Abstract. In this paper, spacelike parallel p_{i}-equidistant ruled surfaces in 3-dimensional Minkowski space $R_{1}^{3},[1]$ are generalized to n-dimensional Minkowski space R_{1}^{n}. Then some characteristic results related with algebraic invariants of shape operator of the ($\mathrm{m}+1$)-dimensional spacelike parallel p_{i}-equidistant ruled surfaces are given in the Minkowski space R_{1}^{n}.

AMS Mathematics Subject Classification (2000): 53C50,53B30, 51B20
Key words and phrases: Lorentz space, Minkowski space, ruled surface, parallel p_{i}-equidistant, spacelike, timelike, curvatures

1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc... are differentiable of class C^{∞}. First of all, we give some properties of a general submanifold M in R_{1}^{n}, [2]. Suppose that \bar{D} is the Levi-Civita connection of R_{1}^{n}, while D is the Levi-Civita connection of M . If X and Y are vector fields of M and if V is the second fundamental tensor of M , then we find by decomposing $\bar{D}_{X} Y$ into a tangent and normal component
(1.1) $\bar{D}_{X} Y=D_{X} Y+V(X, Y)$.

The equation (I.1) is called Gauss Equation.
If ξ is a normal vector field on M, we find the Weingarten Equation by decomposing $\bar{D}_{X} \xi$ in a tangent and a normal component as
(1.2) $\bar{D}_{X} \xi=-A_{\xi}(X)+D_{X}^{\perp} \xi$.
A_{ξ} determines at each point a self-adjoint linear map and D^{\perp} is a metric connection in the normal bundle $\chi^{\perp}(M)$. We use the same notation A_{ξ} for the linear map and the matrix of the linear map.

If the metric tensor of R_{1}^{n} is denoted by $<,>$, we have (1.3) $<V(X, Y), \xi>=<Y, A_{\xi}(X)>$.

Let M be an m-dimensional semi-Riemannian manifold in R_{1}^{n} and A_{ξ} be a linear map. If $\zeta \in \chi^{\perp}(M)$ is a normal unit vector at the point $P \in M$, then (1.4) $G(P ; \xi)=\operatorname{det} A_{\xi}$ is called the Lipschitz-Killing curvature of M at P in the direction ξ.

If $\xi_{1}, \xi_{2}, \ldots, \xi_{n-m}$ constitute an orthonormal base field of the normal bundle $\chi^{\perp}(M)$, then the mean curvature H is given by
(1.5) $H=\sum_{j=1}^{n-m} \frac{\operatorname{tr}_{A_{\xi_{j}}}}{\operatorname{dim} M} \xi_{j}$.

[^0]For every $X_{i} \in \chi(M), 1 \leq i \leq 4$ the $4^{\text {th }}$ order covariant tensor field defined by R as
(1.6) $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=<X_{1}, R\left(X_{3}, X_{4}\right) X_{2}>$
is called the Riemannian curvature tensor field and its value at a point $P \in M$ is called Riemannian curvature of M at P .

Let Π be a tangent plane of M at P . For all $X_{p}, Y_{p} \in \Pi$, the real valued function K defined by
(1.7) $K\left(X_{P}, Y_{P}\right)=\frac{\left\langle R\left(X_{P}, Y_{P}\right) X_{P}, Y_{P}\right\rangle}{\left\langle X_{P}, X_{P}\right\rangle\left\langle Y_{P}, Y_{P}\right\rangle-\left\langle X_{P}, Y_{P}\right\rangle^{2}}$
is called the sectional curvature function. $K\left(X_{P}, Y_{P}\right)$ is called the sectional curvature of M at P.

Let R be the Riemannian curvature tensor of M. The Ricci curvature tensor field S of M is by
(1.8) $S(X, Y)=\sum_{i=1}^{m} \varepsilon_{i}<R\left(e_{i}, X\right) Y, e_{i}>$,
where $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is a system of orthonormal base of $T_{M}(P)$ and the value of $S(X, Y)$ at $P \in M$ is called the Ricci curvature, where

$$
\varepsilon_{i}=<e_{i}, e_{i}>=\left\{\begin{array}{c}
-1, \text { if } e_{i} \text { timelike } \\
1, \text { if } e_{i} \text { spacelike }
\end{array}\right.
$$

The scalar curvature $r_{s k}$ of M is given by (1.9) $r_{s k}=\sum_{i \neq j} K\left(e_{i}, e_{j}\right)=2 \sum_{i<j} K\left(e_{i}, e_{j}\right)$.

Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-m}\right\}$ be an orthonormal base field of $\chi^{\perp}(M)$. Then the scalar normal curvature K_{N} of M is given by
(1.10) $K_{N}=\sum_{i, j=1}^{n-m} \bar{M}\left(A_{\xi_{i}} A_{\xi_{j}}-A_{\xi_{j}} A_{\xi_{i}}\right)$,
where \bar{M} is defined as $\bar{M}(A)=\sum_{i, j}\left(a_{i j}\right)^{2}, A=\left[a_{i j}\right]$.

2. The Curvatures Of ($m+1$)-Dimensional Spacelike Parallel p_{i}-Equidistant Ruled Surfaces in the Minkowski Space R_{1}^{n}

I

Let α and α^{*} be two unit-speed spacelike curves in R_{1}^{n} and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ and $\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}\right\}, k \leq n$, be their Frenet frames at the points $\alpha(\mathrm{t})$ and $\alpha^{*}\left(\mathrm{t}^{*}\right)$, respectively. Let \mathbf{M} and \mathbf{M}^{*} be ($\mathrm{m}+1$)-dimensional generalized spacelike ruled surfaces in R_{1}^{n} and $E_{m}(t)$ and $E_{m}\left(t^{*}\right), 1 \leq m \leq k-2$, be spacelike generating spaces of \mathbf{M} and \mathbf{M}^{*}, respectively. Then \mathbf{M} and \mathbf{M}^{*} can be given by the following parametric form:
(2.1) $M: X\left(t, u_{1}, \ldots, u_{m}\right)=\alpha(t)+\sum_{i=1}^{m} u_{i} V_{i}(t)$,
$\operatorname{rank}\left\{X_{t}, X_{u_{1}}, \ldots, X_{u_{m}}\right\}=m+1$,
(2.2) $M^{*}: X^{*}\left(t^{*}, u_{1}^{*}, \ldots, u_{m}^{*}\right)=\alpha^{*}\left(t^{*}\right)+\sum_{i=1}^{m} u_{i}^{*} V_{i}^{*}\left(t^{*}\right)$,
$\operatorname{rank}\left\{X_{t^{*}}^{*}, X_{u_{1}^{*}}^{*}, \ldots, X_{u_{m}^{*}}^{*}\right\}=m+1$,
where $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ and $\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{m}^{*}\right\}$ are the orthonormal basis of $E_{m}(t)$ and $E_{m}\left(t^{*}\right)$, respectively.

Definition 2.1. Let \boldsymbol{M} and \boldsymbol{M}^{*} be ($m+1$)-dimensional two spacelike ruled surfaces and p_{i} be the distances between the (k-1)-dimensional osculator planes obtained by the vanishing the $i^{\text {th }}$ term from
$S p\left\{V_{1}, V_{2}, \ldots, V_{i}, \ldots, V_{k}\right\}$ and $S p\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{i}^{*}, \ldots, V_{k}^{*}\right\}$.
If

1) V_{1} and V_{1}^{*} are parallel,
2) the distances $p_{i}, 1 \leq i \leq k$, between the (k-1)-dimensional osculator planes at the corresponding points of αr and α^{*} are constant, then the pair of ruled surfaces \boldsymbol{M} and \boldsymbol{M}^{*} are called the (m+1)-dimensional spacelike parallel p_{i} equidistant ruled surfaces.

From now on \mathbf{M} and \mathbf{M}^{*} will be assumed ($\mathrm{m}+1$)-dimensional spacelike parallel p_{i}-equidistant ruled surfaces.

The following theorem can be given by means of definition 2.1 without proof:
Theorem 2.1. i) The Frenet frames $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ and $\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}\right\}$ are equivalent at the corresponding points on α and α^{*}.
ii) For the curvatures k_{i} and k_{i}^{*} of α and α^{*}, respectively, we have

$$
k_{i}^{*}=\frac{d t}{d t^{*}} k_{i}, \quad 1 \leq i<k
$$

Theorem 2.2. The relation between the base curves of \boldsymbol{M} and \boldsymbol{M}^{*}, is $\alpha^{*}=\alpha+p_{1} V_{1}+p_{2} V_{2}+\cdots+p_{m} V_{m}+\varepsilon_{m+1} p_{m+1} V_{m+1}+\varepsilon_{m+2} p_{m+2} V_{m+2}+\ldots+\varepsilon_{k} p_{k} V_{k}$.

Proof. Since the vector $\alpha \alpha^{*}$ can be written as:
$\alpha \alpha^{*}=a_{1} V_{1}+a_{2} V_{2}+\cdots+a_{m} V_{m}+a_{m+1} V_{m+1}+\ldots+a_{k} V_{k}, \quad a_{i} \in I R, \quad 1 \leq i \leq k$,
we find

$$
\left\{\begin{array}{l}
\left\langle\alpha \alpha^{*}, V_{i}\right\rangle=a_{i}, 1 \leq i \leq m \\
\left\langle\alpha \alpha^{*}, V_{i}\right\rangle=a_{i} \varepsilon_{i}, \varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle, m+1 \leq i \leq k
\end{array} .\right.
$$

Also, the distance between the osculator planes is

$$
p_{i}=\left\{\begin{array}{l}
\left|a_{i}\right|, \quad 1 \leq i \leq m \\
\left|a_{i} \varepsilon_{i}\right|, m+1 \leq i \leq k
\end{array}\right.
$$

and thus
$\alpha^{*}=\alpha+p_{1} V_{1}+p_{2} V_{2}+\cdots+p_{m} V_{m}+\varepsilon_{m+1} p_{m+1} V_{m+1}+\varepsilon_{m+2} p_{m+2} V_{m+2}+\ldots+\varepsilon_{k} p_{k} V_{k}$

Theorem 2.3. All the asymptotic and tangential bundles of \boldsymbol{M} and \boldsymbol{M}^{*} are equal.

Proof. Let $\mathrm{A}(\mathrm{t})$ and $A\left(t^{*}\right)$ be asymptotic bundles of \mathbf{M} and \mathbf{M}^{*}, respectively, then we have

$$
A(t)=S p\left\{V_{1}, V_{2}, \ldots, V_{m}, V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{m}^{\prime}\right\}
$$

and

$$
A\left(t^{*}\right)=S p\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{m}^{*}, V_{1}^{* \prime}, V_{2}^{* \prime}, \ldots, V_{m}^{* \prime}\right\}
$$

Similarly, if $\mathrm{T}(\mathrm{t})$ and $T\left(t^{*}\right)$ are the tangential bundles of \mathbf{M} and \mathbf{M}^{*}, respectively, then from the definition of the tangential bundles we also have

$$
T(t)=S p\left\{V_{1}, V_{2}, \ldots, V_{m}, V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{m}^{\prime}, \alpha^{\prime}\right\}
$$

and

$$
T\left(t^{*}\right)=S p\left\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{m}^{*}, V_{1}^{* \prime}, V_{2}^{* \prime}, \ldots, V_{m}^{* \prime}, \alpha^{* \prime}\right\}
$$

From the definition 2.1 and Theorem 2.1

$$
A(t)=A\left(t^{*}\right)=T(t)=T\left(t^{*}\right)
$$

is obtained.

II

In this part, we will study the matrices $A_{\xi_{j}}$ and $A_{\xi_{j}^{*}}, 1 \leq j \leq n-m-1$, of \mathbf{M} and \mathbf{M}^{*}, respectively. Using equation (2.1) and (2.2), we can write

$$
X_{t}=V_{1}+\sum_{i=1}^{m} u_{i} V_{i}^{\prime}, \quad X_{u_{1}}=V_{1}, \ldots, \quad X_{u_{m}}=V_{m}
$$

and

$$
X_{t^{*}}^{*}=V_{1}^{*}+\sum_{i=1}^{m} u_{i}^{*} V_{i}^{* \prime}, \quad X_{u_{1}^{*}}^{*}=V_{1}^{*}, \ldots, \quad X_{u_{m}^{*}}^{*}=V_{m}^{*}
$$

Thus, we obtain the orthonormal bases $\left\{V_{1}, \ldots, V_{m+1}\right\}$ and $\left\{V_{1}^{*}, \ldots, V_{m+1}^{*}\right\}$ of \mathbf{M} and \mathbf{M}^{*}, respectively. If we take the orthonormal bases of the normal bundles \mathbf{M}^{\perp} and $\mathbf{M}^{* \perp}$ as

$$
\left\{\xi_{1}, \ldots, \xi_{k-m-1}, \ldots, \xi_{n-m-1}\right\} \text { and }\left\{\xi_{1}^{*}, \ldots, \xi_{k-m-1}^{*}, \ldots, \xi_{n-m-1}^{*}\right\}
$$

respectively, then we get the orthonormal bases

$$
\left\{V_{1}, \ldots, V_{m+1}, \xi_{1}, \ldots, \xi_{k-m-1}, \ldots, \xi_{n-m-1}\right\}
$$

and

$$
\left\{V_{1}^{*}, \ldots, V_{m+1}^{*}, \xi_{1}^{*}, \ldots, \xi_{k-m-1}^{*}, \ldots, \xi_{n-m-1}^{*}\right\}
$$

of R_{1}^{n} at $P \in \mathbf{M}$ and at $P^{*} \in \mathbf{M}^{*}$, respectively, where $\xi_{i}=V_{m+1+i}$ and $\xi_{i}^{*}=$ $V_{m+1+i}^{*}, 1 \leq i \leq k-m-1$. Let the connections of R_{1}^{n}, \mathbf{M} and \mathbf{M}^{*} be \bar{D}, D and D^{*}, respectively. Then we have the following Weingarten equations:

$$
\begin{cases}\bar{D}_{V_{1}} \xi_{j}=\sum_{i=1}^{m+1} a_{1 i}^{j} V_{i}+\sum_{q=1}^{n-m-1} b_{1 q}^{j} \xi_{q}, & 1 \leq j \leq n-m-1 \tag{2.3}\\ \vdots & \\ \bar{D}_{V_{m+1}} \xi_{j}=\sum_{i=1}^{m+1} a_{(m+1) i}^{j} V_{i}+\sum_{q=1}^{n-m-1} b_{(m+1) q}^{j} \xi_{q}, & 1 \leq j \leq n-m-1\end{cases}
$$

So, the matrix $A_{\xi_{j}}, 1 \leq j \leq n-m-1$, can be written as:
(2.4) $A_{\xi_{j}}=-\left[\begin{array}{llll}a_{11}^{j} & a_{12}^{j} & \cdots & a_{1(m+1)}^{j} \\ \vdots & \vdots & & \vdots \\ a_{(m+1) 1}^{j} & a_{(m+1) 2}^{j} & \cdots & a_{(m+1)(m+1)}^{j}\end{array}\right]$.

Since α is a spacelike curve and $E_{m}(t)$ is a spacelike subspace, we obtain

$$
5)\left\{\begin{array}{ccc}
a_{11}^{j}=<\bar{D}_{V_{1}} \xi_{j}, V_{1}> & \cdots & a_{(m+1) 1}^{j}=<\bar{D}_{V_{m+1}} \xi_{j}, V_{1}> \tag{2.5}\\
\vdots & \cdots & \vdots \\
a_{1 m}^{j}=<\bar{D}_{V_{1}} \xi_{j}, V_{m}> & \cdots & a_{(m+1) m}^{j}=<\bar{D}_{V_{m+1}} \xi_{j}, V_{m}> \\
a_{1(m+1)}^{j}=\varepsilon_{m+1}<\bar{D}_{V_{1}} \xi_{j}, V_{m+1}>\cdots a_{(m+1)(m+1)}^{j}=\varepsilon_{m+1}<\bar{D}_{V_{m+1}} \xi_{j}, V_{m+1}>
\end{array}\right.
$$

where $\varepsilon_{m+1}=\left\langle V_{m+1}, V_{m+1}\right\rangle$.
Similarly, for any normal vector field ξ^{*} on \mathbf{M}^{*}, we can write

$$
\bar{D}_{X^{*}} \xi^{*}=-A_{\xi^{*}}\left(X^{*}\right)+D_{X^{*}}^{*} \xi^{*}
$$

Then we obtain:
$(2.6) \begin{cases}\bar{D}_{V_{1}^{*}} \xi_{j}^{*}=\sum_{i=1}^{m+1} c_{1 i}^{j} V_{i}^{*}+\sum_{q=1}^{n-m-1} d_{1 q}^{j} \xi_{q}^{*}, & 1 \leq j \leq n-m-1 \\ \vdots & \\ \bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}=\sum_{i=1}^{m+1} c_{(m+1) i}^{j} V_{i}^{*}+\sum_{q=1}^{n-m-1} d_{(m+1) q}^{j} \xi_{q}^{*}, & 1 \leq j \leq n-m-1 .\end{cases}$
Thus, we obtain the matrix $A_{\xi_{j}^{*}}, 1 \leq j \leq n-m-1$, as follows:
7) $A_{\xi_{j}^{*}}=-\left[\begin{array}{cccc}c_{11}^{j} & c_{12}^{j} & \cdots & c_{1(m+1)}^{j} \\ \vdots & \vdots & & \vdots \\ c_{(m+1) 1}^{j} & c_{(m+1) 2}^{j} & \cdots & c_{(m+1)(m+1)}^{j}\end{array}\right], 1 \leq j \leq n-m-1$.

Since α^{*} is a spacelike curve and $E_{m}\left(t^{*}\right)$ is a spacelike subspace, we get
$(2.8)\left\{\begin{array}{lll}c_{11}^{j}=<\bar{D}_{V_{1}^{*}} \xi_{j}^{*}, V_{1}^{*}> & \cdots & c_{(m+1) 1}^{j}=<\bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}, V_{1}^{*}> \\ \vdots & & \vdots \\ c_{1 m}^{j}=<\bar{D}_{V_{1}^{*}} \xi_{j}^{*}, V_{m}^{*}> & \cdots & c_{(m+1) m}^{j}=<\bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}, V_{m}^{*}> \\ c_{1(m+1)}^{j}=\varepsilon_{m+1}<\bar{D}_{V_{1}^{*}} \xi_{j}^{*}, V_{m+1}^{*}>\cdots & \cdots c_{(m+1)(m+1)}^{j}=\varepsilon_{m+1}<\bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}, V_{m+1}^{*}>\end{array}\right.$
where $\varepsilon_{m+1}=\left\langle V_{m+1}^{*}, V_{m+1}^{*}\right\rangle$. Hence, the following theorems can be given:
Theorem 2.4. If \boldsymbol{M} is ($m+1$)-dimensional spacelike ruled surface in R_{1}^{n}, then

$$
\begin{aligned}
& \quad A_{\xi_{1}}=A_{V_{m+2}}=\left[\begin{array}{cccc}
0 & \cdots & 0 & \varepsilon_{m+1} k_{m+1} \\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{array}\right]_{(m+1) \times(m+1)} \text { and } A_{\xi_{j}}=0 \\
& 2 \leq j \leq n-m-1
\end{aligned}
$$

Theorem 2.5. If \boldsymbol{M}^{*} is ($m+1$)-dimensional spacelike ruled surface in R_{1}^{n}, then

$$
A_{\xi_{1}^{*}}=A_{V_{m+2}^{*}}=\left[\begin{array}{cccc}
0 & \cdots & 0 & \varepsilon_{m+1} k_{m+1}^{*} \\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{array}\right]_{(m+1) \times(m+1)} \quad \text { and } A_{\xi_{j}^{*}}=0
$$

$$
2 \leq j \leq n-m-1
$$

Theorem 2.6. Let \boldsymbol{M} and \boldsymbol{M}^{*} be ($m+1$)-dimensional spacelike parallel p_{i} equidistant ruled surfaces in R_{1}^{n}. For the matrices of \boldsymbol{M} and \boldsymbol{M}^{*}, we have

$$
A_{\xi_{1}^{*}}=\frac{d t}{d t^{*}} A_{\xi_{1}} \quad, \quad A_{\xi_{j}^{*}}=A_{\xi_{j}}=0 \quad, \quad 2 \leq j \leq n-m-1
$$

Theorem 2.7. The Lipschitz-Killing curvatures of \boldsymbol{M} and \mathbf{M}^{*} in all normal directions are zero.

Proof. From the definition of Lipschitz-Killing curvature in the direction of ξ_{j}, we can write
$G\left(P, \xi_{j}\right)=\operatorname{det} A_{\xi_{j}}=0$ for all $P \in \mathbf{M}, 1 \leq j \leq n-m-1$.
Similarly, the Lipschitz-Killing curvature in the direction of ξ_{j}^{*} of \mathbf{M}^{*}, we get

$$
G\left(P^{*}, \xi_{j}^{*}\right)=\operatorname{det} A_{\xi_{j}^{*}}=0,1 \leq j \leq n-m-1, \quad \text { for all } P^{*} \in \boldsymbol{S}^{*}
$$

Theorem 2.8. $\quad \boldsymbol{M}$ and \boldsymbol{M}^{*} are minimal and the scalar normal curvatures of \boldsymbol{M} and \boldsymbol{M}^{*} are zero.

Proof. If H and $K_{N}\left(\mathrm{H}^{*}\right.$ and $\left.K_{N^{*}}\right)$ are the mean curvature vector and the scalar normal curvature of $\mathbf{M}\left(\mathbf{M}^{*}\right)$, then from Theorem 2.4 and Theorem 2.5, we have
$H=H^{*}=0$ and $K_{N}=K_{N^{*}}=0$.
Thus, \mathbf{M} and \mathbf{M}^{*} are the minimal ruled surfaces.

III

If X and Y are vector fields and V is the second fundamental form of \mathbf{M}, then from (1.2) and (1.3) we can write

$$
\begin{gathered}
<\bar{D}_{X} Y, \xi>=<V(X, Y), \xi>=<A_{\xi}(X), Y>, \quad \xi \in \mathbf{M}^{\perp} \text { and } \\
V(X, Y)=-\sum_{j=1}^{n-m-1}<Y, \bar{D}_{X} \xi_{j}>\xi_{j}
\end{gathered}
$$

So, for the Frenet vectors V_{i} and $V_{j}, 1 \leq i, j \leq m+1$, we obtain

$$
V\left(V_{i}, V_{j}\right)=-\sum_{s=1}^{n-m-1}<V_{j}, \bar{D}_{V_{i}} \xi_{s}>\xi_{s}, \quad 1 \leq i, j \leq m+1
$$

Thus, from (2.3) we get

$$
V\left(V_{i}, V_{j}\right)=-\sum_{s=1}^{n-m-1} \varepsilon_{j} a_{i j}^{s} \xi_{s}
$$

Using Theorem 2.4, we have
(2.9)

$$
\left\{\begin{array}{l}
V\left(V_{1}, V_{m+1}\right)=-\sum_{s=1}^{n-m-1} \varepsilon_{m+1} a_{1(m+1)}^{s} \xi_{s}=\varepsilon_{m+1}^{2} k_{m+1} V_{m+2} \\
V\left(V_{i}, V_{j}\right)=-\sum_{s=1}^{n-m-1} \varepsilon_{j} a_{i j}^{s} \xi_{s}=0 \quad, \quad 1 \leq i, j \leq m+1
\end{array}\right.
$$

Similarly, if X^{*} and Y^{*} are vector fields and V^{*} is the second fundamental form of \mathbf{M}^{*}, then from equations (1.2) and (1.3) we have

$$
<\bar{D}_{X^{*}} Y^{*}, \xi^{*}>=<V^{*}\left(X^{*}, Y^{*}\right), \xi^{*}>=<A_{\xi^{*}}\left(X^{*}\right), Y^{*}>\quad, \quad \xi^{*} \in M^{* \perp}
$$

and

$$
V^{*}\left(X^{*}, Y^{*}\right)=-\sum_{j=1}^{n-m-1}<Y^{*}, \bar{D}_{X^{*}} \xi_{j}^{*}>\xi_{j}^{*}
$$

For the Frenet vectors V_{i}^{*} and $V_{j}^{*}, 1 \leq i, j \leq m+1$, we have

$$
V^{*}\left(V_{i}^{*}, V_{j}^{*}\right)=-\sum_{s=1}^{n-m-1}<V_{j}^{*}, \bar{D}_{V_{i}^{*}} \xi_{s}^{*}>\xi_{s}^{*} \quad, \quad 1 \leq i, j \leq m+1
$$

and from equation (2.6) we get

$$
V^{*}\left(V_{i}^{*}, V_{j}^{*}\right)=-\sum_{s=1}^{n-m-1} \varepsilon_{j} c_{i j}^{s} \xi_{s}^{*} \quad, \quad 1 \leq i, j \leq m+1
$$

Using Theorem 2.5, we obtain
(2.10) $\left\{\begin{array}{l}V^{*}\left(V_{1}^{*}, V_{m+1}^{*}\right)=\varepsilon_{m+1}^{2} k_{m+1}^{*} V_{m+2}^{*} \\ V^{*}\left(V_{i}^{*}, V_{j}^{*}\right)=01 \leq i, j \leq m+1\end{array}\right.$,
and from Theorem 2.1 we get

$$
\left\{\begin{array}{l}
V^{*}\left(V_{1}^{*}, V_{m+1}^{*}\right)=\frac{d t}{d t^{*}} V\left(V_{1}, V_{m+1}\right) \tag{2.11}\\
V^{*}\left(V_{i}^{*}, V_{j}^{*}\right)=V\left(V_{i}, V_{j}\right)=0 \quad 1 \leq i, j \leq m+1
\end{array}\right.
$$

Thus, the following theorems can be given:

Theorem 2.9. $\quad V_{1}$ and V_{m+1} are conjugate vectors iff V_{1}^{*} and V_{m+1}^{*} are conjugate vectors.

Theorem 2.10. i) For the Riemannian curvature of \boldsymbol{M} in two dimensional direction spanned by V_{i} and V_{j}, we have

$$
K\left(V_{1}, V_{m+1}\right)=\varepsilon_{m+1} \varepsilon_{m+2}\left(k_{m+1}\right)^{2} \text { and } K\left(V_{i}, V_{j}\right)=0, \quad 1 \leq i, j \leq m+1, i \neq j .
$$

ii) For the Riemannian curvature of \boldsymbol{M}^{*} in two dimensional direction spanned by V_{i}^{*} and V_{j}^{*}, we have
$K\left(V_{1}^{*}, V_{m+1}^{*}\right)=\varepsilon_{m+1} \varepsilon_{m+2}\left(k_{m+1}\right)^{2}$ and $K\left(V_{i}^{*}, V_{j}^{*}\right)=0, \quad 1 \leq i, j \leq m+1, i \neq j$.
Theorem 2.11. For the Riemannian curvatures of \boldsymbol{M} and \boldsymbol{M}^{*}

$$
\left\{\begin{array}{l}
K\left(V_{1}^{*}, V_{m+1}^{*}\right)=\left(\frac{d t}{d t^{*}}\right)^{2} K\left(V_{1}, V_{m+1}\right), \\
K\left(V_{i}^{*}, V_{j}^{*}\right)=K\left(V_{i}, V_{j}\right)=0, \quad 1 \leq i, j \leq m+1, i \neq j
\end{array}\right.
$$

are valid.
Theorem 2.12. If $S\left(V_{i}, V_{i}\right)$, and $r_{s k}\left(S\left(V_{i}^{*}, V_{i}^{*}\right)\right.$ and $\left.r_{s k}^{*}\right), 1 \leq i \leq m+1$, are the Ricci and scalar curvatures of $\mathbf{M}\left(\mathbf{M}^{*}\right)$, then we have

$$
\begin{gathered}
S\left(V_{i}^{*}, V_{i}^{*}\right)=S\left(V_{i}, V_{i}\right)=0,1 \leq i \leq m \\
S\left(V_{m+1}^{*}, V_{m+1}^{*}\right)=\left(\frac{d t}{d t^{*}}\right)^{2} S\left(V_{m+1}, V_{m+1}\right) \\
r_{s k}=2 \varepsilon_{m+2} S\left(V_{m+1}, V_{m+1}\right) \\
r_{s k}^{*}=2 \varepsilon_{m+2} S\left(V_{m+1}^{*}, V_{m+1}^{*}\right) \\
r_{s k}^{*}=\left(\frac{d t}{d t^{*}}\right)^{2} r_{s k}
\end{gathered}
$$

Proof. For the Ricci curvature in the direction $V_{i}, 1 \leq i \leq m+1$, of \mathbf{M}, we can write

$$
\begin{aligned}
S\left(V_{i}, V_{i}\right) & =\sum_{j=1}^{m+1} \varepsilon_{j}\left\langle R\left(V_{j}, V_{i}\right) V_{i}, V_{j}\right\rangle, \varepsilon_{j}=\left\langle V_{j}, V_{j}\right\rangle \\
& =\sum_{j=1}^{m+1} \varepsilon_{j}\left\{<V\left(V_{j}, V_{i}\right), V\left(V_{j}, V_{i}\right)>-<V\left(V_{j}, V_{j}\right), V\left(V_{i}, V_{i}\right)>\right\}
\end{aligned}
$$

Using equation (2.9), we have
(2.12) $\left\{\begin{array}{l}S\left(V_{m+1}, V_{m+1}\right)=\varepsilon_{m+2}\left(k_{m+1}\right)^{2}, \varepsilon_{m+2}=\left\langle V_{m+2}, V_{m+2}\right\rangle \\ S\left(V_{i}, V_{i}\right)=0,1 \leq i \leq m .\end{array}\right.$

For the scalar curvature of \mathbf{M}, we get

$$
r_{s k}=\sum_{i \neq j} K\left(V_{i}, V_{j}\right)=2 \sum_{i\langle j} K\left(V_{i}, V_{j}\right)
$$

From Theorem 2.10, we obtain
(2.13) $r_{s k}=2 K\left(V_{1}, V_{m+1}\right)=2 \varepsilon_{m+1} \varepsilon_{m+2}\left(k_{m+1}\right)^{2}$.

If we use equation (2.12) we have
(2.14) $r_{s k}=2 \varepsilon_{m+2} S\left(V_{m+1}, V_{m+1}\right), \varepsilon_{m+2}=\left\langle V_{m+2}, V_{m+2}\right\rangle$.

Similarly, for the Ricci curvature in the direction $V_{i}^{*}, 1 \leq i \leq m+1$, of \mathbf{M}^{*} we get

$$
\left\{\begin{array}{l}
S\left(V_{m+1}^{*}, V_{m+1}^{*}\right)=\varepsilon_{m+1}\left(k_{m+1}^{*}\right)^{2}, \quad \varepsilon_{m+1}=\left\langle V_{m+1}^{*}, V_{m+1}^{*}\right\rangle \tag{2.15}\\
S\left(V_{i}^{*}, V_{i}^{*}\right)=0,1 \leq i \leq m
\end{array}\right.
$$

Also, for the scalar curvature of \mathbf{M}^{*}, we find
(2.16) $r_{s k}^{*}=2 K\left(V_{1}^{*}, V_{m+1}^{*}\right)=2 \varepsilon_{m+2} S\left(V_{m+1}^{*}, V_{m+1}^{*}\right), \varepsilon_{m+2}=\left\langle V_{m+2}^{*}, V_{m+2}^{*}\right\rangle$.

$$
\begin{aligned}
& \text { From Theorem } 2.1 \text { we have } \\
& S\left(V_{m+1}^{*}, V_{m+1}^{*}\right)=\left(\frac{d t}{d t^{*}}\right)^{2} S\left(V_{m+1}, V_{m+1}\right) \text { and } r_{s k}^{*}=\left(\frac{d t}{d t^{*}}\right)^{2} r_{s k}
\end{aligned}
$$

Theorem 2.13. Let $X=\sum_{i=1}^{m+1} a_{i} V_{i}, Y=\sum_{i=1}^{m+1} b_{i} V_{i} \in \boldsymbol{M} . \boldsymbol{M}$ is totally geodesic iff $V\left(V_{1}, V_{m+1}\right)=0$ or $a_{1} b_{m+1}=0$.

Proof. Since

$$
V(X, Y)=\sum_{i, j=1}^{m+1} a_{i} b_{j} V\left(V_{i}, V_{j}\right)
$$

using equation (2.9), we get
(2.17) $V(X, Y)=a_{1} b_{m+1} V\left(V_{1}, V_{m+1}\right)$.

Thus, the definition of totally geodesic completes the proof.
We can give the following corollary:
Corollary 2.1. If $a_{1} b_{m+1} \neq 0$ and \boldsymbol{M} is totally geodesic, then \boldsymbol{M}^{*} is totally geodesic and the Riemannian curvatures of \boldsymbol{M} and \boldsymbol{M}^{*} in the two dimensional direction spanned by V_{i} and $V_{j}, 1 \leq i, j \leq m+1, i \neq j$, are zero.

References

[1] Masal, M., Kuruoğlu, N., Spacelike Parallel p_{i} - Equidistant Ruled Surfaces In The Minkowski 3-Space R_{1}^{3}. Algebras, Groups and Geometries 22 (2005), 13-24.
[2] O'Neill, B., Semi-Riemannian Geometry. New York: Academic Press 1983.

Received by the editors June 6, 2005

[^0]: ${ }^{1}$ Ondokuz Mayıs University, Science and Arts Faculty, Department of Mathematics, 55139 Kurupelit, Samsun-TURKEY, e-mail: mmasal@omu.edu.tr

