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(m+1)-DIMENSIONAL SPACELIKE PARALLEL
pi~EQUIDISTANT RULED SURFACES IN THE
MINKOWSKI SPACE R}

Melek Masal’

Abstract. In this paper, spacelike parallel p;-equidistant ruled surfaces
in 3-dimensional Minkowski space R%,[l] are generalized to n-dimensional
Minkowski space RT. Then some characteristic results related with al-
gebraic invariants of shape operator of the (m+1)-dimensional spacelike
parallel p;-equidistant ruled surfaces are given in the Minkowski space RY.
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1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc...
are differentiable of class C'>°. First of all, we give some properties of a general
submanifold M in R?, [2] . Suppose that D is the Levi-Civita connection of RY,
while D is the Levi-Civita connection of M. If X and Y are vector fields of M
and if V is the second fundamental tensor of M, then we find by decomposing
DY into a tangent and normal component
(1.1) DxY = DxY +V(X,Y).

The equation (I.1) is called Gauss Equation.

If ¢ is a normal vector field on M, we find the Weingarten Equation by
decomposing Dx € in a tangent and a normal component as
(1.2) Dxé = —Ac(X) + Dit.

Ag determines at each point a self-adjoint linear map and D+ is a metric
connection in the normal bundle x*(M). We use the same notation A¢ for the
linear map and the matrix of the linear map.

If the metric tensor of R} is denoted by <, >, we have
(1.3) < V(X,Y),£>=<Y,A¢(X) >.

Let M be an m-dimensional semi-Riemannian manifold in R} and A¢ be a
linear map. If ¢ € (M) is a normal unit vector at the point P € M, then
(1.4) G(P; &) = det A
is called the Lipschitz-Killing curvature of M at P in the direction &.

If &1,&, ..., £ —m constitute an orthonormal base field of the normal bundle
x (M), then the mean curvature H is given by

N trag;

1Ondokuz Mayis University, Science and Arts Faculty, Department of Mathematics, 55139
Kurupelit, Samsun-TURKEY, e-mail: mmasal@omu.edu.tr



56 M. Masal

For every X; € x(M), 1 <i <4 the 4t" order covariant tensor field defined
by R as
(16) R(Xl, Xg, Xg, X4) =< Xl, f{()(:;7 X4)X2 >
is called the Riemannian curvature tensor field and its value at a point P € M
is called Riemannian curvature of M at P.

Let [] be a tangent plane of M at P. For all X,,,Y,, € [[, the real valued
function K defined by
(L7) K(Xp, Yp) = o o sy
is called the sectional curvature function. K(Xp,Yp) is called the sectional
curvature of M at P.

Let R be the Riemannian curvature tensor of M. The Ricci curvature tensor
field S of M is by

(1.8) S(X,Y) = 3" & < R(es, X)Y, e; >,
=1

where {ej,eg, ..., e, } is a system of orthonormal base of T;(P) and the value
of S(X,Y) at P € M is called the Ricci curvature, where

f =< e er S— —1, ife; timelike
LT T L, ife; spacelike

The scalar curvature rs of M is given by
(1.9) rop = > Kleiej) =2 K(ej,ej).
i#j 1<j
Let {&1,&,...,&n_m} be an orthonormal base field of x*(M). Then the

scalar normal curvature Ky of M is given by
m

(1.10) Ky = AZIM(A&A@ - AéjA&)’
i,j=
where M is defined as M(A) = > (a;;)?, A = [aj].

0,J

2. The Curvatures Of (m-+1)-Dimensional Spacelike Par-
allel p;-Equidistant Ruled Surfaces in the Minkowski
Space R}

I

Let o and a* be two unit-speed spacelike curves in R} and let {V3, Vs, ..., Vi }
and {Vi*, V5, ..., Vi*}, k < n, be their Frenet frames at the points a(t) and
a*(t*), respectively. Let M and M* be (m+1)-dimensional generalized spacelike
ruled surfaces in R} and E,,(t) and E,(t*), 1 < m < k — 2, be spacelike
generating spaces of M and M*, respectively. Then M and M* can be given
by the following parametric form:

m
(2.1) M : X(t,ug, ... um) = a(t) + > u Vi(t),
i=1
rank {X¢, Xy, ooy Xu,, } =m+1,
(2.2) M™* : X* (t*,uf,...,uk,) = a*(t*) + > wlVi(t"),

' m
i=1
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rank {X;;,X;I, . Xu} —m+1,
where {V1, Vo, ..., Vi, }and {Vi*, V55, ...,V } are the orthonormal basis of E,, (t)
and E,,(t*), respectively.

Definition 2.1. Let M and M* be (m+1)-dimensional two spacelike ruled
surfaces and p; be the distances between the (k-1)-dimensional osculator planes
obtained by the vanishing the i*" term from

Sp{Vi1,Va,..., Vi, ... Vi and Sp{V*, Vo', .., V5, ., VT

If

1) Vi and V' are parallel,

2) the distances p;,1 < i < k, between the (k-1)-dimensional osculator planes
at the corresponding points of ar and o* are constant, then the pair of ruled
surfaces M and M?* are called the (m+1)-dimensional spacelike parallel p;-
equidistant ruled surfaces.

From now on M and M* will be assumed (m+1)-dimensional spacelike par-
allel p;-equidistant ruled surfaces.
The following theorem can be given by means of definition 2.1 without proof:

Theorem 2.1. %) The Frenet frames {Vi,Va,..., Vi} and {Vi*, V5, ..., V*}
are equivalent at the corresponding points on o and a*.
1) For the curvatures k; and kf of a and a*, respectively, we have

ot dt

=S 1<i<k
T =0

Theorem 2.2. The relation between the base curves of M and M¥*, is

o = at+piVi+pe Vot +pmVintemt1Pmt1 Vint1+emtoPmt2 Vot +eepr V.
Proof. Since the vector aa® can be written as:

ac® = aVi+aVo+- 4 am Vi +ami1 Vimsr+..+apVi, a; € IR, 1<1i <k,
we find

(aa*, Vi) =a;, 1 <i<m
(aa®, Vi) = aiei, &= (V;i, Vi) , m+1<i<k

Also, the distance between the osculator planes is

e, 1<i<m
pi = laie;] , m+1<i<k

and thus

Oé* = 04+p1V1+p2V2+' : '+pm‘/7n+€m+1pm+1 Vm+1+6m+2p7n+2‘/7n+2+~-~+€kpkvk

O



58 M. Masal
Theorem 2.3. All the asymptotic and tangential bundles of M and M?* are

equal.

Proof. Let A(t) and A(t*) be asymptotic bundles of M and M*, respectively,
then we have
At) = Sp{Vl,VQ,...,Vm,Vll,VQ/,...,V;;l}

and
At = Sp{Vy, Ve, Ve v Vv

Similarly, if T(t) and T'(t*) are the tangential bundles of M and M*, re-
spectively, then from the definition of the tangential bundles we also have

T(t)=Sp{Vi,Va,..., Voo, V{, V5, ..., V.l .}

and
Tt = Sp{Vy, Vo', ..., Ve Vi vy vt )

From the definition 2.1 and Theorem 2.1

is obtained. 0O

11

In this part, we will study the matrices A¢; and Ag;, 1<j<n—-m-—1,of
M and M*, respectively. Using equation (2.1) and (2.2), we can write

Xo=Vi+> wV/, Xu,=Vi,..., Xu,=Vn
i=1
and .
Xf=Vi+ > wVi', Xp.o=Vr..., Xi =V
=1

Thus, we obtain the orthonormal bases {V1, ..., V;,11} and {Vl*7 RN Vn*z+1}
of M and M*, respectively. If we take the orthonormal bases of the normal
bundles M* and M** as

{517 R 7€k—m—17 v agn—m—l} and {gf, B aé;-m—h s agfl—m—l} )
respectively, then we get the orthonormal bases

W, V1,80, Ckmm—1y -+ s En—m—1}

and
{‘/1*7"'7VT:/+17£T’"'75;;—771—17"'75’;;—771—1}
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of R? at P eM and at P* €M*, respectively, where & = V114, and & =
V14 1 <@ <k—m—1. Let the connections of R}, M and M* be D, D
and D*, respectively. Then we have the following Weingarten equations:

_ m+1 n—m—1
Dy,§; = z; ay; Vi + Z b1g€as 1<j<n-m-—1
(2.3)
m—+1 j n—m-—1 .
_ 1<j<n—-m-1.
DVm+1§j = Z aj (m+1)i Vi + E b(m+1)q§qa =J=n=m
So, the matrix Ag,, 1 § j<n—m-— 1 can be written as:
aly aly e ajl(m+1)
(24) Ag]. = — :
J J J
Fm+1)1 Ym+1)2" " Y m+1)(m+1)

Since « is a spacelike curve and E,,(t) is a spacelike subspace, we obtain

ajll =< Dvlfj,vl > azm—o—l)l =< DVm_HEj"/l >

(2.5) _
a‘lm =< DV1§Jﬂ Vin > (m+1)m =< DVm+1€jaYm >
a{(erl) =€ < DV1€]7 m41 > (m+1)(m+1) =€ < DVm+1§j’ Vm-i-l >
where €11 = Vins1, Vint1)-
Similarly, for any normal vector field £* on M*, we can write

Dx+&* = —Ae-(X*) + D 7¢".

Then we obtain:

_ m—+1 . n—m—1
Dy;¢€ —ZCLV+ E 1485 1<j<n—m-—1
(2.6)
_ m—+1 n—-m—1 . 1<j<n—m—1
DVT:L+1§‘] = Z C’Zm+l)zv + Z d(m+1)q - '
Thus, we obtain the matrix Ag; 1 § j § n—m — 1, as follows:
cil 6{2 e C{(m+1)
(27)145;:— , , ,1<53<n—-—m-—1.
j
czm+1)1 Com+1)2" " sz+1)(m+1)

Since a* is a spacelike curve and E,,(t*) is a spacelike subspace, we get

cjll =< DVl*f; ’Vl* > CmeLl)l =< D\/;i‘1+1§; ’Vl* >
2.8 _ - ;
@8Y ¢ _ b &Ly, o —< Dye V5>
Lm v (m+1)m Vm+1 g
.J
Cl(m+1) Ernt1 <DV g +1 > (m+1)(m+1) Entr <DVm+1§J ) +1 >

where €41 = <V 11 Vm+1>. Hence, the following theorems can be given:

m

Theorem 2.4. If M is (m+1)-dimensional spacelike ruled surface in R}, then



60 M. Masal

0o --- 0 €m+1km+1
0 0 O

Af1 = AVm+2 = . and A&'] = 0,
0 0 O

(m+1)x (m+1)
2<j<n—m-—1.

Theorem 2.5. If M* is (m+1)-dimensional spacelike ruled surface in RY,
then

0 - 0 emprkiyy
0O --- 0 0

A51 = A‘/;:‘L+2 = . and Ag;« = 0,
0 -0 0 (m+1)x (m+1)

2<j<n—m-—1.

Theorem 2.6. Let M and M* be (m+1)-dimensional spacelike parallel p;-
equidistant ruled surfaces in RY. For the matrices of M and M*, we have

dt

A6 = G

A£1 5 A&;:A@-:O 5 2§j§n—m—1.

Theorem 2.7. The Lipschitz-Killing curvatures of M and M* in all normal
directions are zero.

Proof. From the definition of Lipschitz-Killing curvature in the direction of
& , we can write

G(P,&j) =det Ag; =0foral Pe M, 1<j<n-—m-—1

Similarly, the Lipschitz-Killing curvature in the direction of £f of M*, we
get

G(P*,§) =det Aex =0 , 1<j<n-m-—1, forall P*€S* a

Theorem 2.8. M and M* are minimal and the scalar normal curvatures of
M and M* are zero.

Proof. If Hand Ky (H* and K ) are the mean curvature vector and the scalar
normal curvature of M(M*), then from Theorem 2.4 and Theorem 2.5, we have
H=H*"=0and Ky = Ky~ =0.
Thus, M and M* are the minimal ruled surfaces. |

111

If X and Y are vector fields and V is the second fundamental form of M,
then from (1.2) and (1.3) we can write
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<DxY,E>=<V(X,Y),{>=< Ac(X), Y > , £eM* and

n—m—1

V(X,Y)=- Y <VY,Dx& >

j=1
So, for the Frenet vectors V; and V;, 1 <4,5 < m+ 1, we obtain
n—m-—1

V(Vi,Vi)== > <V;,Dyé&>&, 1<ij<m+1.

s=1

Thus, from (2.3) we get

n—m—1
Vi, Vi) == > eajés.
s=1
Using Theorem 2.4, we have
n—m-—1
V(‘/la Vm+1) = - Z 5m+1ai(m+1)£s = 53n+1km+lvm+2
(2.9) e St
V(Vi,Vj) == ¥ gajié&=0 , 1<di,j<m+1.
s=1

Similarly, if X* and Y* are vector fields and V* is the second fundamental
form of M*, then from equations (1.2) and (1.3) we have

< DX*Y*, f* S—< V*(X*,Y*),f* S—< Ag*(X*>,Y* > 5* c M*J_

and
n—m-—1

j=1
For the Frenet vectors V;* and V", 1 <4,57 <m + 1, we have

n—m-—1
V) = — Z <Vj*,DVi*£:>§: ; 1<i,j<m+1

s=1
and from equation (2.6) we get

n—m—1
VEVE V) = — Z g, 1<ij<m+1.

s=1

Using Theorem 2.5, we obtain
(2.10) VAV, Vi) = 53n+1k:n+1 2
SV V) =01 <i g <m+ 1
and from Theorem 2.1 we get
(2 11) V*(‘/1*7 T:L+1) = dth*V(‘/lan-‘rl) )
’ VAV Vi) =VI(V, V) =0 1<i,j <m+ 1L
Thus, the following theorems can be given:
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Theorem 2.9. Vi and V.41 are conjugate vectors iff Vi* and V), are con-
jugate vectors.

Theorem 2.10. ¢) For the Riemannian curvature of M in two dimensional
direction spanned by V; and V;, we have

K(V1,Vimt1) = emp1€me2(kmi1)? and K(V;, V;) =0, 1<i,j<m+1,i#j.

i) For the Riemannian curvature of M* in two dimensional direction spanned
by V;* and V", we have

KV Vi) = emgiempa(kmir)? and KV, V) =0, 1<4,j <m+1,i#j.

Theorem 2.11. For the Riemannian curvatures of M and M*

2
(‘/17 m+1 (ddtt*) V17Vm+l) y
KWV Vi) =KV, V) =0 , 1<ij<m+1,i#j

are valid.

Theorem 2.12. IfS(V;,V;), and ro (S(V*,V;*) and 1), 1 <i<m+1, are
the Ricci and scalar curvatures of M(M*), then we have

SV V) = S(Vi, Vi) =0, 1<i<m,

. . dt \ 2
SVmg1:Ving1) = (dt*) S(Vint1: Vint1),

Tskk = 25m+25( m+17Vm+1) )

* * *
Tsk = 2Em+2S(Vm+17 Vm+1)7

. dt \?
Tsk = a Tsk

Proof. For the Ricci curvature in the direction V; , 1 <i<m+ 1, of M, we
can write

m+1
SWViVa) = D& (R(V;,ViVi, Vi), &5 = (V3 V7)

=1

-

= Y g {< VIV, V), VIV, Vi) > = < V(V;, V), VI(Vi, Vi) >}
j=1
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Using equation (2.9), we have

(2 12) S(an+1a Vm+1) == €m+2(km+1)27 Em+2 = <Vm+27 Vm+2>
' SV, Vi) =0, 1<i<m.
For the scalar curvature of M, we get

ra = K(Vi,Vy) =2 K(Vi,Vj).
i#j i(j

From Theorem 2.10, we obtain
(213) Tsk = QK(Vl, Vm+1) = 2€m+1€m+2(k‘m+1)2.

If we use equation (2.12) we have
(2.14) 1ok = 26425 (Vint1, Vint1) 5 €my2 = (Vint2, Ving2).

Similarly, for the Ricci curvature in the direction V;* , 1 <i <m+1, of
M* we get
(2.15) SVii1: Ving1) = €m+1(k:n+1)27 Em41 = <‘/7>:L+17V1’7:L+1>

' SVX5VH=0, 1<i<m.

Also, for the scalar curvature of M* | we find
(2.16) ryy, = 2K (V1 Vi) = 26m42S(Viy1, Vinga) » €ma2 = <VT:<L+27VT;;+2>'

From Theorem 2.1 we }12ave )

SVt Vi) = (dth*> S(Vins1, Vims1)and 13, = (%) T'sk- 0

m+1 m+1
Theorem 2.13. Let X = > a;V;, Y = > bV, eM. M is totally geodesic
i=1 i=1

iff V(Vi,Vinge1) =0 or albm+_1 =0.

Proof. Since
m+1

VX,Y) =Y abV(Vi,V;),
i,j=1
using equation (2.9), we get
(2.17) V(X,Y) = a1bim1 V(V1, Vingr)-
Thus, the definition of totally geodesic completes the proof. |

We can give the following corollary:

Corollary 2.1. If ajby,11 # 0 and M is totally geodesic, then M* is totally
geodesic and the Riemannian curvatures of M and M* in the two dimensional
direction spanned by Vi and Vi, 1 <4,5 <m+1, ¢ # j, are zero.
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