COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS WITH SOME WEAK CONDITIONS OF COMMUTATIVITY

Duran Turkoglu ${ }^{1}$, Ishak Altun ${ }^{1}$, Brian Fisher ${ }^{2}$

Abstract

Some results on the common fixed point of two set-valued and two single valued mappings defined on a complete metric space with some weak commutativity conditions have been proved.

AMS Mathematics Subject Classification (2000): 54H25, 47H10
Key words and phrases: Common fixed point, set-valued mapping, weakly commuting mapping, slightly commuting mapping, quasi commuting mapping.

1. Introduction

Imdad, Khan and Sessa [3], generalizing the notion of commutativity for set-valued mappings, established the idea of weak commutativity, quasi commutativity, slight commutativity. Under these concepts, Imdad and Ahmad proved Theorems 3.1-3.4 [6], for set-valued mappings. Our work generalizes earlier results due to Pathak, Mishra and Kalinde [5] with the proof techniques of Imdad and Ahmad [6] .

2. Preliminaries

Let (X, d) be a metric space, then following [1] we record
(i) $B(X)=\{A: A$ is a nonempty bounded subset of $X\}$
(ii) For $A, B \in B(X)$ we define $\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}$

If $A=\{a\}$, then we write $\delta(A, B)=\delta(a, B)$ and if $B=\{b\}$, then $\delta(a, B)=$ $d(a, b)$.

One can easily prove that for A, B, C in $B(X)$

$$
\begin{aligned}
\delta(A, B) & =\delta(B, A) \geq 0 \\
\delta(A, B) & \leq \delta(A, C)+\delta(C, B) \\
\delta(A, A) & =\sup \{d(a, b): a, b \in A\}=\operatorname{diam} A \text { and } \\
\delta(A, B) & =0 \text { implies that } A=B=\{a\} .
\end{aligned}
$$

If $\left\{A_{n}\right\}$ is a sequence in $B(X)$, we say that $\left\{A_{n}\right\}$ converges to $A \subseteq X$, and write $A_{n} \rightarrow A$, iff

[^0](i) $a \in A$ implies that $a_{n} \rightarrow a$ for some sequence $\left\{a_{n}\right\}$ with $a_{n} \in A_{n}$ for $n \in N$, and
(ii) for any $\varepsilon>0 \exists m \in N$ such that $A_{n} \subseteq A_{\varepsilon}=\{x \in X: d(x, a)<\varepsilon$ for some $a \in A\}$ for $n>m$.

We need the following lemmas.
Lemma 1. [2] Suppose $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are sequences in $B(X)$ and (X, d) is a complete metric space. If $A_{n} \rightarrow A \in B(X)$ and $B_{n} \rightarrow B \in B(X)$, then $\delta\left(A_{n}, B_{n}\right) \rightarrow \delta(A, B)$.

Lemma 2. [3] If $\left\{A_{n}\right\}$ is a sequence of nonempty bounded subsets in the complete metric space (X, d) and if $\delta\left(A_{n}, y\right) \rightarrow 0$ for some $y \in X$, then $A_{n} \rightarrow\{y\}$.

Definition 1. [7] The mappings $F, S: X \rightarrow X$ are weakly commuting if for all $x \in X$, we have $d(F S x, S F x) \leq d(F x, S x)$.

Definition 2. Let $F: X \rightarrow B(X)$ be a set-valued mapping and $S: X \rightarrow X a$ single-valued mapping. Then, following $[1,3]$, we say that the pair (F, S) is
(i) weakly commuting on X if $\delta(F S x, S F x) \leq \max \{\delta(S x, F x)$, diamSFx $\}$ for any x in X
(ii) quasi-commuting on X if $S F x \subseteq F S x$ for any x in X
(iii) slightly commuting on X if $\delta(F S x, S F x) \leq \max \{\delta(S x, F x)$, diamF $x\}$ for any x in X.

Clearly, two commuting mappings satisfy $(i)-(i i i)$ but the converse may not be true. In [3] it is demonstrated by suitable examples that the foregoing three concepts are mutually independent and none of them implies the other two.

3. Fixed Point Theorems

Throughout this section, let \mathbb{R}^{+}denote the set of non-negative reals, and let Φ be the family of all mappings $\phi:\left(\mathbb{R}^{+}\right)^{5} \rightarrow \mathbb{R}^{+}$such that ϕ is upper semi continuous, non-decreasing in each coordinate variable and, for any $t>0$,

$$
\gamma(t)=\phi\left(t, t, a_{1} t, a_{2} t, a_{3} t\right)<t
$$

where $\gamma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $a_{1}+a_{2}+a_{3}=8$.
We need the following lemma.
Lemma 3. [4] For any $t>0, \gamma(t)<t$ if and only if $\lim _{n \rightarrow \infty} \gamma^{n}(t)=0$, where γ^{n} denotes the composition of γ n-times with itself.

Let F, G be two set-valued mappings of a metric space (X, d) into $B(X)$, and A, B, two self-mappings of X such that

$$
\begin{equation*}
F(X) \subseteq A(X), \quad G(X) \subseteq B(X) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\delta^{2 p}(F x, G y) \leq & \phi\left(d^{2 p}(B x, A y),\right. \\
& \delta^{q}(B x, F x) \delta^{q^{\star}}(A y, G y), \\
& \delta^{r}(B x, G y) \delta^{r^{\star}}(A y, F x), \\
& \delta^{s}(B x, F x) \delta^{s^{\star}}(A y, F x), \\
& \left.\delta^{l}(B x, G y) \delta^{l^{\star}}(A y, G y)\right) \tag{2}
\end{align*}
$$

for all $x, y \in X$, where $\phi \in \Phi, 0<p, q, q^{\star}, r, r^{\star}, s, s^{\star}, l, l^{\star} \leq 1$ such that $2 p=$ $q+q^{\star}=r+r^{\star}=s+s^{\star}=l+l^{\star}$.

Then by choosing an arbitrary $x_{0} \in X$ and using (1), we can define a sequence $\left\{y_{n}\right\}$ in X by

$$
\begin{align*}
& y_{2 n+1}=A x_{2 n+1} \in F x_{2 n}=X_{2 n+1} \text { and } \tag{3}\\
& y_{2 n+2}=B x_{2 n+2} \in G x_{2 n+1}=X_{2 n+2}, n=0,1,2, \ldots
\end{align*}
$$

Let $F, G: X \rightarrow B(X)$ and $A, B: X \rightarrow X$ satisfy conditions (1) and (2), and the sequence $\left\{y_{n}\right\}$ is defined by (3), then following the proof techniques of Imdad et al. [6], we can prove the following

Lemma 4. If $d_{n}=\delta\left(X_{n}, X_{n+1}\right)$, then $\lim _{n \rightarrow \infty} d_{n}=0$.
Proof. Let us assume that $d_{2 n+1}>d_{2 n}$, then

$$
\begin{aligned}
d_{2 n+1} & \leq\left\{\phi\left(d_{2 n+1}^{2 p}, d_{2 n+1}^{2 p}, 4 d_{2 n+1}^{2 p}, 2 d_{2 n+1}^{2 p}, 2 d_{2 n+1}^{2 p}\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(d_{2 n+1}^{2 p}\right)\right\}^{\frac{1}{2 p}} \\
& <d_{2 n+1}
\end{aligned}
$$

which is a contradiction. Hence $d_{2 n+1} \leq d_{2 n}$. Similarly, one can show that $d_{2 n+2} \leq d_{2 n+1}$. Then $\left\{d_{n}\right\}$ is a decreasing sequence.

Now since

$$
\begin{aligned}
d_{2}^{2 p} & \leq \phi\left(d_{1}^{2 p}, d_{1}^{2 p}, 4 d_{1}^{2 p}, 2 d_{1}^{2 p}, 2 d_{1}^{2 p}\right) \\
& \leq \gamma\left(d_{1}^{2 p}\right)
\end{aligned}
$$

it follows by induction that

$$
d_{n+1}^{2 p} \leq \gamma^{n}\left(d_{1}^{2 p}\right)
$$

and if $d_{1}>0$, then Lemma 3 implies that $\lim _{n \rightarrow \infty} d_{n}=0$. If $d_{1}=0$, then $d_{n}=0, n=\{1,2, \ldots\}$.

Lemma 5. $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Proof. We show that $\left\{y_{n}\right\}$ is a Cauchy sequence. For this it is sufficient to show that $\left\{y_{2 n}\right\}$ is a Cauchy sequence. Suppose $\left\{y_{2 n}\right\}$ is not Cauchy sequence. Then
there is an $\varepsilon>0$ such that for an even integer $2 k$ there exists even integers $2 m(k)>2 n(k)>2 k$ such that

$$
\begin{equation*}
d\left(y_{2 n(k)}, y_{2 m(k)}\right)>\varepsilon \tag{4}
\end{equation*}
$$

For every even integer $2 k$, let $2 m(k)$ be the least positive integer exceeding $2 n(k)$ satisfying (4) and such that

$$
\begin{equation*}
d\left(y_{2 n(k)}, y_{2 m(k)-2}\right)<\varepsilon . \tag{5}
\end{equation*}
$$

Now

$$
\begin{aligned}
\varepsilon & \leq d\left(y_{2 n(k)}, y_{2 m(k)}\right) \\
& \leq d\left(y_{2 n(k)}, y_{2 m(k)-2}\right)+d_{2 m(k)-2}+d_{2 m(k)-1} .
\end{aligned}
$$

Then by (4) and (5) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{2 n(k)}, y_{2 m(k)}\right)=\varepsilon . \tag{6}
\end{equation*}
$$

Also, by the triangle inequality, we have

$$
\left|d\left(y_{2 n(k)}, y_{2 m(k)-1}\right)-d\left(y_{2 n(k)}, y_{2 m(k)}\right)\right|<d_{2 m(k)-1}
$$

By using (6) we get $d\left(y_{2 n(k)}, y_{2 m(k)-1}\right) \rightarrow \varepsilon$ as $k \rightarrow \infty$. Now by (2) we get

$$
\begin{aligned}
d\left(y_{2 n(k)}, y_{2 m(k)}\right) \leq & d_{2 n(k)}+\delta\left(F x_{2 n(k)}, G x_{2 m(k)-1}\right) \\
\leq & d_{2 n(k)}+\left\{\phi \left(d^{2 p}\left(y_{2 n(k)}, y_{2 m(k)-1}\right), d_{2 n(k)}^{q} d_{2 m(k)-2}^{q^{\star}},\right.\right. \\
& {\left[d^{r}\left(y_{2 n(k)}, y_{2 m(k)-1}\right)+d_{2 m(k)-2}^{r}\right] \times } \\
& {\left[d^{r^{\star}}\left(y_{2 m(k)-1}, y_{2 n(k)}\right)+d_{2 n(k)}^{r^{\star}}\right], } \\
& d_{2 n(k)}^{s}\left[d^{s^{\star}}\left(y_{2 m(k)-1}, y_{2 n(k)}\right)+d_{2 n(k)}^{s^{\star}}\right], \\
& {\left.\left[d^{l}\left(y_{2 m(k)-1}, y_{2 n(k)}\right)+d_{2 m(k)-2}^{l}\right] d_{2 m(k)-2}^{l^{\star}}\right\}^{\frac{1}{2 p}} }
\end{aligned}
$$

which on letting $k \rightarrow \infty$ reduces to

$$
\begin{aligned}
\varepsilon & \leq\left\{\phi\left(\varepsilon^{2 p}, 0, \varepsilon^{2 p}, 0,0\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(\varepsilon^{2 p}\right\}^{\frac{1}{2 p}}\right. \\
& <\varepsilon
\end{aligned}
$$

giving a contradiction. Thus $\left\{y_{2 n}\right\}$ is a Cauchy sequence.

Theorem 1. Let F, G be two set-valued mappings of a complete metric space (X, d) into $B(X)$, and A, B two self-mappings of X satisfying conditions (1), (2), (F, B) and (G, A) are slightly commuting and any one of these four mappings is continuous, then F, G, A and B have a unique common fixed point in X.

Proof. By Lemma 5, the sequence $\left\{y_{n}\right\}$ defined by (3) is a Cauchy sequence in X. Therefore $y_{n} \rightarrow z$ for some $z \in X$. Hence the subsequences $\left\{y_{2 n}\right\}=\left\{B x_{2 n}\right\}$ and $\left\{y_{2 n+1}\right\}=\left\{A x_{2 n+1}\right\}$ of $\left\{y_{n}\right\}$ also converge to z, whereas the sequences of sets $\left\{F x_{2 n}\right\}$ and $\left\{G x_{2 n+1}\right\}$ converge to the set $\{z\}$.

Since (F, B) commute slightly, we have

$$
\delta\left(B F x_{2 n}, F B x_{2 n}\right) \leq \max \left\{\delta\left(B x_{2 n}, F x_{2 n}\right), \operatorname{diam} F x_{2 n}\right\}
$$

which on letting $n \rightarrow \infty$ gives (by Lemma 1)

$$
\lim _{n \rightarrow \infty} \delta\left(B F x_{2 n}, F B x_{2 n}\right)=0
$$

Now suppose that B is continuous, then we have $B B x_{2 n}=B y_{2 n} \rightarrow B z$. Thus

$$
\begin{aligned}
d\left(B y_{2 n+1}, y_{2 n+2}\right) \leq & \delta\left(B F x_{2 n}, G x_{2 n+1}\right) \\
\leq & \delta\left(B F x_{2 n}, F B x_{2 n}\right)+\delta\left(F B x_{2 n}, G x_{2 n+1}\right) \\
\leq & \delta\left(B F x_{2 n}, F B x_{2 n}\right)+\left\{\phi \left(d^{2 p}\left(B B x_{2 n}, A x_{2 n+1}\right),\right.\right. \\
& {\left[\delta^{q}\left(B B x_{2 n}, B F x_{2 n}\right)+\delta^{q}\left(B F x_{2 n}, F B x_{2 n}\right)\right] \times } \\
& \delta^{q^{\star}}\left(A x_{2 n+1}, G x_{2 n+1}\right), \\
& \delta^{r}\left(B B x_{2 n}, G x_{2 n+1}\right) \times \\
& {\left[\delta^{r^{\star}}\left(A x_{2 n+1}, B F x_{2 n}\right)+\delta^{r^{\star}}\left(B F x_{2 n}, F B x_{2 n}\right)\right], } \\
& {\left[\delta^{s}\left(B B x_{2 n}, B F x_{2 n}\right)+\delta^{s}\left(B F x_{2 n}, F B x_{2 n}\right)\right] } \\
& {\left[\delta^{s^{\star}}\left(A x_{2 n+1}, B F x_{2 n}\right)+\delta^{s^{\star}}\left(B F x_{2 n}, F B x_{2 n}\right)\right], } \\
& \left.\left.\delta^{l}\left(B B x_{2 n}, G x_{2 n+1}\right) \delta^{\delta^{\star}}\left(A x_{2 n+1}, G x_{2 n+1}\right)\right)\right\}^{\frac{1}{2 p}} .
\end{aligned}
$$

Suppose $B z \neq z$. Then letting $n \rightarrow \infty$ and using Lemma 1 and Lemma 2 we obtain

$$
\begin{aligned}
d(B z, z) & \leq\left\{\phi\left(d^{2 p}(B z, z), 0, d^{2 p}(B z, z), 0,0\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(d^{2 p}(B z, z)\right)\right\}^{\frac{1}{2 p}} \\
& <d(B z, z)
\end{aligned}
$$

a contradiction. We must therefore have $B z=z$. Similarly, applying the condition (2) to

$$
\delta\left(F S z, y_{2 n+2}\right) \leq \delta\left(F S z, G T x_{2 n+1}\right)
$$

and letting $n \rightarrow \infty$, we can prove that $F z=\{z\}$, which means that z is in the range of F. Since $F(X) \subseteq A(X)$, there exist a point z^{\prime} in X such that $A z^{\prime}=z$. Suppose that $G z^{\prime} \neq z$. Then

$$
\begin{aligned}
\delta\left(z, G z^{\prime}\right) & =\delta\left(F z, G z^{\prime}\right) \\
& \leq\left\{\phi\left(0,0,0,0, \delta^{2 p}\left(z, G z^{\prime}\right)\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(\delta^{2 p}\left(z, G z^{\prime}\right)\right)\right\}^{\frac{1}{2 p}} \\
& <\delta\left(z, G z^{\prime}\right)
\end{aligned}
$$

a contradiction. We must therefore have $G z^{\prime}=\{z\}$. Since (G, A) is slightly commuting, we have

$$
\begin{aligned}
\delta(G z, A z) & =\delta\left(G A z^{\prime}, A G z^{\prime}\right) \\
& \leq 0
\end{aligned}
$$

proving that $G z=A z$. If $G z \neq z$, then

$$
\begin{aligned}
\delta(z, G z) & =\delta(F z, G z) \\
& \leq\left\{\phi\left(\delta^{2 p}(z, G z), 0, \delta^{2 p}(z, G z), 0,0\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(\delta^{2 p}(z, G z)\right)\right\}^{\frac{1}{2 p}} \\
& <\delta(z, G z),
\end{aligned}
$$

a contradiction and so $G z=\{z\}=A z$.
Thus we have shown that $B z=A z=F z=G z=\{z\}$. Hence z is a common fixed point of F, G, A and B.

Now suppose that F is continuous, then we have $\left\{F y_{2 n}\right\}=\left\{F B x_{2 n}\right\} \rightarrow$ $\{F z\}$. Since $B y_{2 n+1} \in B F x_{2 n}$, the inequality (2) yields

$$
\begin{aligned}
\delta\left(F y_{2 n+1}, G x_{2 n+1}\right) \leq & \left\{\phi \left(\left[\delta^{p}\left(B F x_{2 n}, F B x_{2 n}\right)+\delta^{p}\left(F B x_{2 n}, A x_{2 n+1}\right)\right]^{2},\right.\right. \\
& {\left[\delta^{q}\left(B F x_{2 n}, F B x_{2 n}\right)+\delta^{q}\left(F B x_{2 n}, F y_{2 n+1}\right)\right] \times } \\
& \delta^{q^{\star}}\left(A x_{2 n+1}, G x_{2 n+1}\right), \\
& {\left[\delta^{r}\left(B F x_{2 n}, F B x_{2 n}\right)+\delta^{r}\left(F B x_{2 n}, G x_{2 n+1}\right)\right] \times } \\
& \delta^{r^{\star}}\left(A x_{2 n+1}, F y_{2 n+1}\right), \\
& {\left[\delta^{s}\left(B F x_{2 n}, F B x_{2 n}\right)+\delta^{s}\left(F B x_{2 n}, z\right)+\delta^{s}\left(z, F y_{2 n+1}\right)\right] \times } \\
& \delta^{s^{\star}}\left(A x_{2 n+1}, F y_{2 n+1}\right), \\
& {\left[\delta^{l}\left(B F x_{2 n}, F B x_{2 n}\right)+\delta^{l}\left(F B x_{2 n}, G x_{2 n+1}\right)\right] \times } \\
& \left.\left.\delta^{l^{\star}}\left(A x_{2 n+1}, G x_{2 n+1}\right)\right)\right\}^{\frac{1}{2 p}} .
\end{aligned}
$$

Suppose $F z \neq z$. Then letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\delta(z, F z) & \leq\left\{\phi\left(\delta^{2 p}(z, F z), 0, \delta^{2 p}(z, F z), 2 \delta^{2 p}(z, F z), 0\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(\delta^{2 p}(z, F z)\right)\right\}^{\frac{1}{2 p}} \\
& <\delta(z, F z)
\end{aligned}
$$

a contradiction and so $F z=\{z\}$. Since $F(X) \subseteq A(X)$, there exists a point z^{\prime} in X such that $A z^{\prime}=z$. Similarly, using (2) on $\delta\left(G z^{\prime}, F x_{2 n}\right)$ and letting $n \rightarrow \infty$ one can prove that $G z^{\prime}=\{z\}$. Now, by the slight commutativity of (G, A) we find

$$
\begin{aligned}
\delta(G z, A z) & =\delta\left(G A z^{\prime}, A G z^{\prime}\right) \\
& \leq 0
\end{aligned}
$$

which gives that $G z=A z$. Further, applying (2) to $\delta\left(F x_{2 n}, G z\right)$ and letting $n \rightarrow \infty$, we can show that $G z=\{z\}=A z$.

Since $G(X) \subseteq B(X)$ there exists a point $z^{\prime \prime}$ in X such that $B z^{\prime \prime}=z$. Suppose that $F z \neq z$. Then

$$
\begin{aligned}
\delta\left(F z^{\prime \prime}, z\right) & =\delta\left(F z^{\prime \prime}, G z\right) \\
& \leq\left\{\phi\left(0,0,0, \delta^{2 p}\left(z, F z^{\prime \prime}\right), 0\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(\delta^{2 p}\left(z, F z^{\prime \prime}\right)\right)\right\}^{\frac{1}{2 p}} \\
& <\delta\left(z, F z^{\prime \prime}\right),
\end{aligned}
$$

a contradiction, implying that $F z^{\prime \prime}=\{z\}$.
By the slight commutativity of (F, B), we have

$$
\begin{aligned}
\delta(F z, B z) & =\delta\left(F B z^{\prime \prime}, B F z^{\prime \prime}\right) \\
& \leq 0
\end{aligned}
$$

which gives that $F z=B z$. Thus we have shown that $F z=G z=B z=A z=$ $\{z\}$.

The other cases, A is continuous and G is continuous, can be disposed of a similar argument as above.

For uniqueness, suppose that w is a second distinct fixed point of (F, B). Then

$$
\begin{aligned}
d(w, z) & =\delta(F w, G z) \\
& \leq\left\{\phi\left(0,0, d^{2 p}(w, z), 0, d^{2 p}(w, z)\right)\right\}^{\frac{1}{2 p}} \\
& \leq\left\{\gamma\left(d^{2 p}(w, z)\right)\right\}^{\frac{1}{2 p}} \\
& <d(w, z)
\end{aligned}
$$

a contradiction and so the fixed point z is unique. Similarly, one can show that z is the unique common fixed point of G and A.

Theorem 2. Let F, G be two set-valued mappings of a complete metric space X into $B(X)$, and A, B two self-mappings of (X, d) satisfying conditions (1), (2), B is continuous or (1), (2), A is continuous. If (F, B) and (G, A) are weakly commuting, then F, G, B and A have a unique common fixed point in X.

Theorem 3. Let F, G be two set-valued mappings of a complete metric space X into $B(X)$, and A, B two self-mappings of (X, d) satisfying conditions (1), (2), F is continuous, (F, B) and (G, A) are quasi-commuting or $(1),(2), G$ is G is continuous, (F, B) and (G, A) are quasi-commuting, then F, G, B and A have a unique common fixed point in X.

Remark 1. The conclusion of Theorems 1-3 remains valid if the condition (2) is replaced by

$$
\begin{align*}
\delta^{2 p}(F x, G y) \leq & \alpha d^{2 p}(B x, A y)+ \\
& \beta \max \left\{\delta^{q}(B x, F x) \delta^{q^{\star}}(A y, G y),\right. \\
& \delta^{r}(B x, G y) \delta^{r^{\star}}(A y, F x) \\
& \delta^{s}(B x, F x) \delta^{s^{\star}}(A y, F x) \\
& \left.\delta^{l}(B x, G y) \delta^{l^{\star}}(A y, G y)\right\}
\end{align*}
$$

for all $x, y \in X$, where $\alpha>0, \beta \geq 0$ with $\alpha+4 \beta<1$ and $0<p, q, q^{\star}, r, r^{\star}, s, s^{\star}$, $l, l^{\star} \leq 1$ with $2 p=q+q^{\star}=r+r^{\star}=s+s^{\star}=l+l^{\star}$.

Theorem 4. Let F, G, A and B be self-mappings of a complete metric space (X, d) satisfying (1) and

$$
\begin{align*}
d^{2 p}(F x, G y) \leq & \phi\left(d^{2 p}(B x, A y),\right. \\
& d^{q}(B x, F x) d^{q^{\star}}(A y, G y), \\
& d^{r}(B x, G y) d^{r^{\star}}(A y, F x), \\
& d^{s}(B x, F x) d^{s^{\star}}(A y, F x), \\
& \left.d^{l}(B x, G y) d^{l^{\star}}(A y, G y)\right)
\end{align*}
$$

for all $x, y \in X$, where $\phi \in \Phi, 0<p, q, q^{\star}, r, r^{\star}, s, s^{\star}, l, l^{\star} \leq 1$ such that $2 p=$ $q+q^{\star}=r+r^{\star}=s+s^{\star}=l+l^{\star}$ and any one of these four mappings is continuous. If (F, B) and (G, A) are weakly commuting, then F, G, B and A have a unique common fixed point in X.

Remark 2. By Theorem 4, we get the improved version of Theorem 3.1 of Pathak-Mishra-Kalinde [5].

We now give an example in which is used Theorem 1.
Example 1. Let X be reals with δ induced by the Euclidean metric d and we define

$$
\begin{aligned}
& F x=\left\{\begin{array}{ll}
\{0\} & \text { if } x \leq 0 \\
{\left[0, \frac{x}{1+3 x}\right]} & \text { if } 0<x \leq 1 \\
{\left[0, \frac{1}{4}\right]} & \text { if } x>1
\end{array},\right.
\end{aligned} \quad, \quad A x=\left\{\begin{array}{ll}
0 & \text { if } x \leq 0 \\
x & \text { if } 0<x \leq 1 \\
1 & \text { if } x>1
\end{array}\right\}
$$

for all x in X and let $\gamma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be given by

$$
\gamma(t)<t
$$

and let $\phi:\left(\mathbb{R}^{+}\right)^{5} \rightarrow \mathbb{R}^{+}$be given by

$$
\phi\left(t_{1}, t_{2}, a_{1} t_{3}, a_{2} t_{4}, a_{3} t_{5}\right)= \begin{cases}0 & \text { if } t_{i}=0 \\ \gamma(t) & \text { if } t_{i}=t \text { and } a_{1}+a_{2}+a_{3}=8 \\ \beta \max \left\{t_{i}\right\} & \text { otherwise }\end{cases}
$$

for some $0<\beta<1, i=1,2,3,4,5$. Then for all x in X. Hence $F(X) \subseteq A(X)$ and $G(X) \subseteq B(X)$.

Now we examine the following cases
case 1: if $x \leq 0$ and $y \leq 0$, then

$$
\delta^{2}(F x, G y)=0 \leq 0=\phi(0,0,0,0,0)
$$

case 2: if $x \leq 0$ and $0<y \leq 1$, then

$$
\delta^{2}(F x, G y)=\left(\frac{y}{1+2 y}\right)^{2} \leq \beta y^{2}=\phi\left(y^{2}, 0, \frac{y^{2}}{1+2 y}, 0, \frac{y^{2}}{1+2 y}\right)
$$

case 3 : if $x \leq 0$ and $y>1$, then

$$
\delta^{2}(F x, G y)=\left(\frac{1}{3}\right)^{2} \leq \beta=\phi\left(1,0, \frac{1}{3}, 0, \frac{1}{3}\right)
$$

case 4: if $0<x \leq 1$ and $y \leq 0$, then

$$
\delta^{2}(F x, G y)=\left(\frac{x}{1+3 x}\right)^{2} \leq \beta x^{2}=\phi\left(x^{2}, 0, \frac{x^{2}}{1+3 x}, \frac{x^{2}}{1+3 x}, 0\right)
$$

case 5 : if $0<x \leq 1$ and $y>1$, then

$$
\begin{aligned}
\delta^{2}(F x, G y) & =\left(\frac{1}{3}\right)^{2} \leq \begin{cases}\beta(1-x)^{2} & \text { if } x \leq \frac{1}{3} \\
\beta(1-x)^{2} & \text { if } \frac{1}{3} \leq x<\frac{3-\sqrt{5}}{2} \\
\beta x & \text { if } \frac{3-\sqrt{5}}{2} \leq x\end{cases} \\
& = \begin{cases}\phi\left((1-x)^{2}, x, \frac{1}{3}, x, \frac{1}{3}\right) & \text { if } x \leq \frac{1}{3} \\
\phi\left((1-x)^{2}, x, x, x, x\right) & \text { if } \frac{1}{3}<x\end{cases}
\end{aligned}
$$

case 6 : if $x>1$ and $y \leq 0$, then

$$
\delta^{2}(F x, G y)=\left(\frac{1}{4}\right)^{2} \leq \beta=\phi\left(1,0, \frac{1}{4}, \frac{1}{4}, 0\right)
$$

case 7: if $x>1$ and $0<y \leq 1$, then

$$
\begin{aligned}
\delta^{2}(F x, G y) & = \begin{cases}\left(\frac{1}{4}\right)^{2} & \text { if } y \leq \frac{1}{2} \\
\left(\frac{y}{1+2 y}\right)^{2} & \text { if } \frac{1}{2}<y\end{cases} \\
& \leq \begin{cases}\beta(1-y)^{2} & \text { if } y \leq \frac{1}{4} \\
\beta(1-y)^{2} & \text { if } \frac{1}{4} \leq y<\frac{3-\sqrt{5}}{2} \\
\beta y & \text { if } \frac{3-\sqrt{5}}{2} \leq y\end{cases} \\
& = \begin{cases}\phi\left((1-y)^{2}, y, \frac{1}{4}, \frac{1}{4}, y\right) & \text { if } y \leq \frac{1}{4}, \\
\phi\left((1-y)^{2}, y, y, y, y\right) & \text { if } \frac{1}{4}<y,\end{cases}
\end{aligned}
$$

case $8:$ if $x>1$ and $y>1$, then

$$
\delta^{2}(F x, G y)=\left(\frac{1}{3}\right)^{2} \leq \beta=\phi(0,1,1,1,1)
$$

case 9 : if $0<x \leq 1$ and $0<y \leq 1$, then

$$
\delta^{2}(F x, G y)= \begin{cases}\left(\frac{x}{1+3 x}\right)^{2} & \text { if }\left(\frac{y}{1+2 y}\right)^{2} \leq\left(\frac{x}{1+3 x}\right)^{2} \\ \left(\frac{y}{1+2 y}\right)^{2} & \text { if }\left(\frac{x}{1+3 x}\right)^{2}<\left(\frac{y}{1+2 y}\right)^{2}\end{cases}
$$

subcase 9_{1} : if $\frac{y}{1+2 y}<y<\frac{x}{1+3 x}<x$, then

$$
\phi\left((x-y)^{2}, x y, \frac{x^{2}}{1+3 x}, \frac{x^{2}}{1+3 x}, x y\right)= \begin{cases}\beta(x-y)^{2} & \text { if } \frac{x^{2}}{1+3 x} \leq(x-y)^{2} \\ \beta \frac{x^{2}}{1+3 x} & \text { if }(x-y)^{2}<\frac{x^{2}}{1+3 x}\end{cases}
$$

subcase 9_{2} : if $\frac{y}{1+2 y}<\frac{x}{1+3 x}<y<x$, then

$$
\phi\left((x-y)^{2}, x y, x y, x y, x y\right)= \begin{cases}\beta(x-y)^{2} & \text { if } x y \leq(x-y)^{2} \\ \beta x y & \text { if }(x-y)^{2}<x y\end{cases}
$$

subcase 9_{3} : if $\frac{y}{1+2 y}<\frac{x}{1+3 x}<x<y$, then

$$
\phi\left((x-y)^{2}, x y, x y, x y, x y\right)= \begin{cases}\beta(x-y)^{2} & \text { if } x y \leq(x-y)^{2}, \\ \beta x y & \text { if }(x-y)^{2}<x y\end{cases}
$$

subcase 9_{4} : if $\frac{x}{1+3 x}<\frac{y}{1+2 y}<x<y$, then

$$
\phi\left((x-y)^{2}, x y, x y, x y, x y\right)= \begin{cases}\beta(x-y)^{2} & \text { if } x y \leq(x-y)^{2} \\ \beta x y & \text { if }(x-y)^{2}<x y\end{cases}
$$

subcase 9_{5} : if $\frac{x}{1+3 x}<x<\frac{y}{1+2 y}<y$, then

$$
\phi\left((x-y)^{2}, x y, \frac{y^{2}}{1+2 y}, x y, \frac{y^{2}}{1+2 y}\right)= \begin{cases}\beta(x-y)^{2} & \text { if } \frac{y^{2}}{1+2 y} \leq(x-y)^{2} \\ \beta \frac{y^{2}}{1+2 y} & \text { if }(x-y)^{2}<\frac{y^{2}}{1+2 y}\end{cases}
$$

subcase 9_{6} : if $\frac{x}{1+3 x}<\frac{y}{1+2 y}<y<x$, then

$$
\phi\left((x-y)^{2}, x y, x y, x y, x y\right)= \begin{cases}\beta(x-y)^{2} & \text { if } x y \leq(x-y)^{2} \\ \beta x y & \text { if }(x-y)^{2}<x y\end{cases}
$$

and

$$
\begin{aligned}
\delta^{2 p}(F x, G y) \leq & \phi\left(d^{2 p}(B x, A y),\right. \\
& \delta^{q}(B x, F x) \delta^{q^{\star}}(A y, G y), \\
& \delta^{r}(B x, G y) \delta^{r^{\star}}(A y, F x), \\
& \delta^{s}(B x, F x) \delta^{s^{\star}}(A y, F x), \\
& \left.\delta^{l}(B x, G y) \delta^{l^{\star}}(A y, G y)\right)
\end{aligned}
$$

for $0<p=q=q^{*}=r=r^{*}=s=s^{*}=l=l^{*}=1$ and $2=q+q^{*}=r+r^{*}=$ $s+s^{*}=l+l^{*}$. Also (F, B) and (G, A) are slightly commuting. Really,

$$
\begin{aligned}
& F B x= \begin{cases}\{0\} & \text { if } x \leq 0 \\
{\left[0, \frac{x}{1+3 x}\right]} & \text { if } 0<x \leq 1 \\
{\left[0, \frac{1}{4}\right]} & \text { if } x>1\end{cases} \\
& G A x=\left\{\begin{array}{ll}
\{0\} & \text { if } x \leq 0 \\
{\left[0, \frac{x}{1+2 x}\right]} & \text { if } 0<x \leq 1 \\
{\left[0, \frac{1}{3}\right]} & \text { if } x>1
\end{array}, \quad, \quad A F x= \begin{cases}0 & \text { if } x \leq 0 \\
{\left[0, \frac{x}{1+3 x}\right]} & \text { if } 0<x \leq 1 \\
{\left[0, \frac{1}{4}\right]} & \text { if } x>1\end{cases} \right.
\end{aligned}
$$

and
i) if $x \leq 0$, then

$$
\begin{aligned}
\delta(F B x, B F x) & =0 \leq 0=\delta(F x, B x) \leq \max \{\delta(F x, B x), \operatorname{diam} F x\} \\
\delta(G A x, A G x) & =0 \leq 0=\delta(G x, A x) \leq \max \{\delta(G x, A x), \operatorname{diam} G x\}
\end{aligned}
$$

ii) if $0<x \leq 1$, then

$$
\begin{aligned}
\delta(F B x, B F x) & =\frac{x}{1+3 x} \leq x=\delta(F x, B x) \leq \max \{\delta(F x, B x), \operatorname{diam} F x\} \\
\delta(G A x, A G x) & =\frac{x}{1+2 x} \leq x=\delta(G x, A x) \leq \max \{\delta(G x, A x), \operatorname{diam} G x\}
\end{aligned}
$$

iii) if $x>1$, then

$$
\begin{aligned}
\delta(F B x, B F x) & =\frac{1}{4} \leq 1=\delta(F x, B x) \leq \max \{\delta(F x, B x), \operatorname{diam} F x\} \\
\delta(G A x, A G x) & =\frac{1}{3} \leq 1=\delta(G x, A x) \leq \max \{\delta(G x, A x), \operatorname{diam} G x\}
\end{aligned}
$$

Further, B and T are continuous. Then F, G, B and A have a unique common fixed point in X by Theorem 1.

References

[1] Sessa, S., Khan, M. S., Imdad, M., A common fixed point theorem with a weak commutativity condition. Glas. Math. 21 (41) (1986), 225-235.
[2] Fisher, B., Common fixed point of mappings and set-valued mappings. Rostock Math Kolloq. 18 (1981), 69-77.
[3] Imdad, M., Khan, M. S., Sessa, S., On some weak conditions of commutativity in common fixed point theorems. Int. J. Math. Math. Sci. 11 (2) (1988), 289-296.
[4] Singh, S. P., Meade, B. A., A common fixed point theorems. Bull. Austral. Math. Soc. 16 (1977), 49-53.
[5] Pathak, H. K., Mishra, S. N., Kalinde, A. K., Common fixed point theorems with applications to nonlinear integral equations. Demonstratio Math. 3 (1999), 547564.
[6] Imdad, M., Ahmad, A., On common fixed point of mappings and set-valued mappings with some weak conditions of commutativity. Publ. Math. Debrecen. 44 (1994), 105-114.
[7] Sessa, S., On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) 32 (46) (1982), 149-153.

Received by the editors August 3, 2005

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, University of Gazi 06500Teknikokullar, Ankara, TURKEY, emails: dturkoglu@gazi.edu.tr, ialtun@gazi.edu.tr
 ${ }^{2}$ Department of Mathematics, Leicester University Leicester, LE1 7RH, ENGLAND, email: fbr@le.ac.uk

