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HYPERCLONE LATTICE AND EMBEDDINGS

Jovanka Pantović1, Biljana Rodić2, Gradimir Vojvodić3

Abstract. In this paper, hyperclone lattice is studied via three kinds of
embeddings. One is from the clone lattice on A to the hyperclone lattice
on A, the second is from the hyperclone lattice on A to the clone lattice
on P (A) \ {∅} and the third one is from the hyperclone lattice on A′ to
the hyperclone lattice on A, for A′ ⊂ A and the finite set A. The second
map has usually been used for the description of hyperclone lattice, but
one can see from this paper that hyperclone lattice on A is in some way
thin in the clone lattice on P (A) \ {∅}. However, we show that the first
and the third embeddings are full order embeddings and they are used to
lift several properties.
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1. Introduction

The basic definitions and claims used in Introduction are from [5], [8], [13]
and [14]. Many questions which arise from the process of operations extending
are studied there. We will follow that work and give an extension of it. Clones
of hyperoperations are also studied in [7], [12], [15], etc.

Let A be a nonempty finite set and P (A) the power set of A. For a positive
integer n, an n-ary hyperoperation on A is a function f : An → P (A) \ {∅}. We
will denote the set of all operations on A by OA, and the set of all hyperopera-
tions by HA.

An operation f# on P (A) \ {∅} is extended from the hyperoperation f
on A if for all (X1, X2, . . . , Xn) ∈ (P (A) \ {∅})n holds f#(X1, . . . , Xn) =
∪{f(x1, . . . , xn)| xi ∈ Xi, 1 ≤ i ≤ n}. For an arbitrary set F of hyperopera-
tions, let F# = {f#|f ∈ F}.

For a positive integer n, an i-th projection on A of arity n, 1 ≤ i ≤ n,
is an n−ary operation πn

i : An → A, (x1, . . . , xn) 7→ xi. For positive in-
tegers n and m, we define the composition Sn

m : O
(n)
A × (O(m)

A )n → O
(m)
A ,

(f, g1, . . . , gn) 7→ f(g1, . . . , gn), where f(g1, . . . , gn) : Am → A, (x1, . . . , xm) 7→
f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).
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Let f ∈ O
(n)
A and g ∈ O

(m)
A , then ςf ∈ O

(n)
A , τf ∈ O

(n)
A , ∆f ∈ O

(n−1)
A ,

f ◦ g ∈ O
(m+n−1)
A and ∇f ∈ O

(n+1)
A are defined by

(ςf)(x1, x2, . . . , xn) = f(x2, . . . , xn, x1), n ≥ 2
(τf)(x1, x2, x3, . . . , xn) = f(x2, x1, x3, . . . , xn), n ≥ 2
(∆f)(x1, . . . , xn−1) = f(x1, x1, . . . , xn−1), n ≥ 2,
(ςf) = (τf) = (∆f) = f, n = 1,
(f◦g)(x1, . . . , xm, xm+1, . . . , xm+n−1) = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1)
(∇f)(x1, x2, . . . , xn+1) = f(x2, . . . , xn+1),

where x1, . . . , xm+n−1 ∈ A. The full algebra of operations is OA = (OA, ◦, ς, τ,
∆, π2

1). Each subuniverse of OA is a clone.
A set of operations is a clone iff it contains all projections and is closed with

respect to composition.
Let ρ ⊆ Ah be a h-ary relation and f an n-ary operation on A. We say that

f preserves ρ if for all h-tuples (a11, . . . , a1h), . . . , (an1, . . . , anh) from ρ we have
(f(a11, . . . , an1), . . . , f(a1h, . . . , anh)) ∈ ρ. PolAρ is the set of all operations on
A which preserve ρ.

For a positive integer n, an i-th hyperprojection on A of arity n, 1 ≤ i ≤ n,
is an n−ary hyperoperation en

i : An → A, (x1, . . . , xn) 7→ {xi}. For posi-
tive integers n and m, we define the composition Sn

m : H
(n)
A × (H(m)

A )n →
H

(m)
A , (f, g1, . . . , gn) 7→ f(g1, . . . , gn), where f(g1, . . . , gn) : Am → P (A) \ {∅},

(x1, . . . , xm) 7→ ∪{f(y1, . . . , yn) : yi ∈ gi(x1, . . . , xm), 1,≤ i ≤ n}. Let
f ∈ Hp

(n)
A and g ∈ Hp

(m)
A , then ςf ∈ Hp

(n)
A , τf ∈ Hp

(n)
A , ∆f ∈ Hp

(n−1)
A ,

f ◦ g ∈ Hp
(m+n−1)
A and ∇f ∈ Hp

(n+1)
A are defined by

(ςf)(x1, x2, . . . , xn) = f(x2, . . . , xn, x1), n ≥ 2
(τf)(x1, x2, x3, . . . , xn) = f(x2, x1, x3, . . . , xn), n ≥ 2
(∆f)(x1, . . . , xn−1) = f(x1, x1, . . . , xn−1), n ≥ 2,
(ςf) = (τf) = (∆f) = f, n = 1,
(f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1) = ∪{f(y, xm+1, . . . , xm+n−1) :

y ∈ g(x1, . . . , xm)}
(∇f)(x1, x2, . . . , xn+1) = f(x2, . . . , xn+1),

where x1, . . . , xm+n−1 ∈ A. The full algebra of hyperoperations is HpA = (HpA,
◦, ς, τ, ∆, e2

1). Each subuniverse of HpA is a partial hyperclone.
A set of partial hyperoperations is a partial hyperclone iff it contains all

hyperprojections and is closed with respect to composition.
If C is a hyperclone, the set of all n-ary hyperoperations from C will be

denoted by C(n). Let us denote the set of all clones on A by LA and the set of
all hyperclones by LHA . Each of these sets forms a complete algebraic lattice.
The atoms (dual atoms) are called minimal (maximal) elements. The least
element in both lattices, trivial clone, will be denoted by JA. For a set F of
hyperoperations, the least hyperclone containing F will be denoted by 〈F 〉, and
the least clone containing the set F of operations on A will be denoted by 〈F 〉A.

A hyperclone is minimal if it is not trivial and its only subclone is triv-
ial. A hyperoperation of minimal arity in a minimal hyperclone, that is not a
projection, is called minimal hyperoperation.
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A ternary majority hyperoperation on A, ma ∈ H
(3)
A , is a ternary hyperop-

eration on A defined by ma(x, x, y) = ma(x, y, x) = ma(y, x, x) = {x} for all
x, y ∈ A.

A ternary minority hyperoperation on A, mi ∈ H
(3)
A , is a ternary hyperop-

eration on A defined by mi(x, x, y) = mi(x, y, x) = mi(y, x, x) = {y} for all
x, y ∈ A.

For n > 2 and 1 ≤ i ≤ n, every n-ary hyperoperation s with s(x1, . . . , xn) =
{xi}, |{x1, . . . , xn}| < n is called semi-hyperprojection.

It is easy to show that the theorem analogous to Rosenberg’s classification
theorem ([15]) holds for minimal hyperoperations.

Theorem 1. Every minimal hyperoperation is one of the following types:

(1) a unary hyperoperation,

(2) a binary idempotent hyperoperation,

(3) a ternary majority hyperoperation,

(4) a ternary minority hyperoperation,

(5) an n-ary semi-hyperprojection, n > 2.

2. From the clone lattice to the hyperclone lattice

Let us define a map λ : LA → LHA by λ(C) =
⋃

n≥1

{f ∈ H
(n)
A : ∃f ′ ∈

C∀(x1, . . . , xn) ∈ Anf(x1, . . . , xn) = {f ′(x1, . . . , xn)}}. It is easy to show that
λ(C) is a hyperclone.

Lemma 1. The map λ is full-order embedding.

Proof. Obviously, λ is 1-1 map, and holds C1 ≤ C2 ⇔ λ(C1) ≤ λ(C2).
Let H be an arbitrary hyperclone with the property λ(JA) ⊆ H ⊆ λ(OA).

From the definition of λ immediately follows that there is clone C such that
λ(C) = H. 2

Without loss of generality, we will sometimes identify the hyperclone λ(C)
and the clone C, in order to simplify the presentation.

Lemma 2. Let A be a finite set with |A| ≥ 2. Every hyperclone generated by
constant hyperoperation on A is minimal.

Proof. The proof is trivial. 2

Corollary 1. Let A be a finite set with |A| ≥ 2. There are least 2|A| − 1
minimal clones in the lattice LHA

.
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Theorem 2. On any finite set A, with |A| ≥ 2, there are three minimal hy-
perclones such that their join contains all hyperoperations.

Proof. It is proved in [4] that there are two minimal clones such that their
join contains all operations on any finite set A. Romov proved in [12] that OA is
maximal hyperclone. Hence, it is enough to choose the third minimal hyperclone
from the set of minimal hyperclones that are not minimal in the clone lattice
on A. From previous lemma follows that such a set is not empty. 2

Theorem 3. The interval [λ(〈O(1)
A 〉), λ(OA)] is a chain.

Proof. It is the chain obtained by Burle in 1967 [11]. He has shown that the
interval [〈O(1)

A 〉, OA] is (|A|+ 1)-element chain

〈O(1)
A 〉 = U1 ⊂ L ⊂ U2 ⊂ . . . ⊂ Uk = OA.

Ui is the set of all operations depending on at most one variable and operations
taking at most j values and L is the set of operations depending of one variable
and operations f(x1, . . . , xn) = λ(ψ1(xi1) + . . . ψt(xit)), where λ : {0, 1} → A
and ψj : A → {0, 1}, j ∈ {i1, . . . , it}, 1 ≤ i1 < . . . < it ≤ n, are arbitrary maps
and + is addition modulo 2. 2

Corollary 2. There are finite maximal chains in the hyperclone lattice.

Proof. It is known that there are finite maximal chains in the interval [JA, 〈O(1)
A 〉].

With the maximal chain from previous theorem and the clone HA (since OA

is maximal in the hyperclone lattice), we get the finite maximal chain in the
hyperclone lattice. 2

3. From the hyperclone lattice on A to the clone lattice on
P (A) \ {∅}

The mapping λ from LHA into the LP (A)\{∅} defined by λ(F ) = 〈F#〉P (A)\{∅}
is an order embedding, though not a full one, i.e. there are F, G ∈ LHA

such
that [λ(F ), λ(G)] \ imλ 6= ∅ (See [5],[13] and [14]).

3.1. Number of clones in [λ(F ), λ(G)] \ imλ

Let A be {0, 1, 2, . . .}, |A| ≥ 3, m ≥ 2 and gm ∈ H
(m)
A the hyperoperation

defined by

gm(x1, . . . , xm) =
{ {2}, (x1, x2, . . . , xm) ∈ Jm

{0}, otherwise ,

where Jm is the set of all m-tuples with one coordinate equal 2 and all others
equal 1.
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Let us define the hyperoperation fm+1 ∈ H
(m+1)
A by

fm+1(x1, x2, . . . , xm+1) =
{

A , x1 6= x2

gm(x2, . . . , xm+1) , x1 = x2.

Thus, extended operation from fm+1 is the operation f#
m+1 ∈ P (A)\{∅}(m+1)

defined by

f#
m+1(X1, X2, . . . , Xm+1) = ∪{fm+1(x1, x2, . . . , xm+1)|xi ∈ Xi}

=
{

g#
m(X2, . . . , Xm+1) , X1 = X2, |X1| = 1

A , otherwise

Lemma 3. For every clone F of hyperoperations on A and for every ∅ 6= Q ⊆
{fi | i ≥ 3} holds
lambda(F ) 6= 〈Q#〉P (A)\{∅}.

Proof. Let Q be an arbitrary nonvoid subset of {fi | i ≥ 3}. Then, there is
m ≥ 2 such that fm+1 ∈ Q.

Suppose to the contrary, that there is a clone of hyperoperations F such that
its λ image λ(F ) is the clone generated by Q#, i.e. λ(F ) = 〈Q#〉P (A)\{∅}. Then,
there is a hyperoperation h ∈ F with property f#

m+1 = δαh#. From f#
m+1 ∈ H#

A ,

it follows fm+1 ∈ F (see [5]). Since F is a clone, the hyperoperation gm ∈ H
(m)
A ,

defined by gm(x1, . . . , xm) = fm+1(x1, x1, . . . , xm), also belongs to F (gm =
fm+1(e1

m, e1
m, e2

m, . . . , em
m)). However, we shall prove that g#

m 6∈ 〈Q#〉P (A)\{∅}.
For every i ≥ 2 f#

i (A, A, . . . , A) = A, and g#
m 6∈ PolP (A)\{∅}(A), because

g#
m(A, A, . . . , A) = {0, 2} 6= A. 〈Q#〉P (A)\{∅} ⊂ PolP (A)\{∅}(A),

So, g#
m ∈ F# ⊆ λ(F ) and gm 6∈ 〈Q#〉P (A)\{∅}.

(Notice that Q is not a clone of hyperoperations on A.) 2

The proof of the following lemma is a modification of Rónyi’s proof of Yanov’s
and Mučnik’s statement that there is a countable infinite set of operations on a
finite set A with |A| ≥ 3.

Lemma 4. For every i ≥ 3 holds f#
i 6∈ 〈 ⋃

j≥3,j 6=i

{f#
j }〉P (A)\{∅}.

Proof. Let us define for every m ≥ 2 relation ρm ∈ Pm
A by ρm = Am ∪ Bm,

where Am is the set of all m-tuples with exactly one coordinate equal {2} and all
others equal {1} and Bm = {{0}, {2}, {0, 2}, A}m \ ({2}, {2}, . . . , {2}). We are
going to show that f#

m+1 6∈ PolP (A)\{∅}ρm and f#
i+1 ∈ PolP (A)\{∅}ρm, i 6= m.

For m-tuples ({2}, {1}, . . . , {1}), ({2}, {1}, . . . , {1}), ({1}, {2}, . . . , {1}),
. . . , ({1}, {1}, . . . , {2}) ∈ Am (the first one and the second one are equal), holds
(f#

m+1({2}, {2}, {1}, . . . , {1}), f#
m+1({1}, {1}, {2}, . . . , {1}), . . . , f#

m+1({1}, {1},
{1}, . . . , {2})) = ({2}, {2}, . . . , {2}) 6∈ ρm. So,f#

m+1 6∈ PolP (A)\{∅}ρm.

Suppose that there is i, i 6= m such that f#
i+1 6∈ PolP (A)\{∅}ρm. Then, there

are tuples X1 := (X11, . . . , Xm1), . . . ,Xi+1 := (X1(i+1), . . . , Xm(i+1)) ∈ ρm,
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such that (Y1, Y2, . . . , Ym) := (f#
i+1(X11, . . . , X1(i+1)), . . . , f#

i+1(Xm1, . . . ,

Xm(i+1)) 6∈ ρm. Since imf#
i+1 = {{0}, {2}, {0, 2}, A}, it follows that (Y1, . . . ,

Ym) = ({2}, {2}, . . . , {2}) and it is possible only for X1,X2, . . . ,Xi+1 ∈ Am,
X1 = X2 and i = m. This is a contradiction. 2

Theorem 4. There are continuum many pairwise distinct clones of operations
on P (A)\{∅} in the interval [λ(JA), λ(HA)] that are not in the set of all images
imλ of the operation λ.

Proof. Let R =
⋃

i≥3

{fi}.

(a) Since λ is an order embedding, λ is injective and for F, G ∈ LHA
F ≤ G

is equivalent to λ(F ) ≤ λ(G). So, for 〈Q〉 ≤ HA it follows 〈Q#〉P (A)\{∅} ≤
λ(〈Q〉) ≤ λ(HA), Q ⊆ R. On the other hand, λ(JA) ≤ 〈Q#〉P (A)\{∅},
because λ(JA) = JA, this being the result of the following: (en

i )#(X1, . . . ,

Xn) =
⋃

xi∈Xi

en
i (x1, . . . , xn) =

⋃
xi∈Xi

{xi} = Xi = p
n,P (A)\{∅}
i (X1, . . . , Xn).

(See [13],[14].)

(b) It follows from Lemma 3 that for every Q ⊆ R holds 〈Q#〉P (A)\{∅} 6∈ imλ.

(c) From Lemma 4 follows that for all Q1, Q2 ⊆ R

if Q#
1 6= Q#

2 then 〈Q#
1 〉P (A)\{∅} 6= 〈Q#

2 〉P (A)\{∅}. 2

3.2. Minimal hyperclones

In this subsection we will present results from [10], in order to make obser-
vation about hyperclones and embeddings more complete.

Lemma 5. Let f, g ∈ H
(1)
A . Then,

(a) (f ◦ g)# = f# ◦ g#.

(b) (∆f)# = ∆f#.

Proof.

(a) Let X be an arbitrary subset of A. Then (f ◦ g)#(X) = ∪{(f ◦ g)(x) : x ∈
X} = ∪{∪{f(y) : y ∈ g(x)} : x ∈ X} = ∪{f(y) : y ∈ ∪{g(x) ∈ X}} =
∪{f(y) : y ∈ g#(X)} = f#(g#(X)).

(b) It follows immediately from the definition of ∆ that (∆f)# = f# = ∆f#.
2

Corollary 3. The mapping f 7→ f# is isomorphism from (H(1)
A ; ∗, ζ, τ,∆, e1

1)
onto (λ(H(1)

A ), ∗, ζ, τ,∆, π1
1).



Hyperclone lattice and embeddings 93

Corollary 4. Let f ∈ H
(1)
A . Then, 〈{f}〉# = 〈{f#}〉P (A)\∅.

Corollary 5. The restriction to the interval [JA,H
(1)
A ] of the mapping λ :

LHA
→ LP (A)\{∅}, C 7→ 〈C#〉P (A)\{∅} is a full order embedding.

Corollary 6. Let f ∈ H
(1)
A . 〈{f}〉 be minimal hyperclone iff 〈{f#}〉P (A)\∅ is

a minimal clone.

Lemma 6. Let f ∈ H
(1)
A . Then, it holds

(a) f2 = f ⇔ (f#)2 = f#.

(b) fp = e1
1 ⇔ (f#)p = π1

1 , for some prime p.

Proof.

(a) (→) If f2 = f then (f#)2 = (f2)# = f#. (←) If f#(f#(X)) = f#(X)
holds for every X ⊆ A, then it also holds for |X| = 1. It means that for
every x ∈ A, f#(f#({x})) = f#({x}), i.e. f(f(x) = f(x).

(b) (→) If fp = e1
1 then (f#)p = (fp)# = (e1

1)
# = π1

1 . (←) For every X ⊆ A
(f#)p(X) = X implies that for every x ∈ A holds (f#)p({x}) = {x} i.e.
for every x ∈ A holds fp(x) = x. 2

Theorem 5. Let f ∈ H
(1)
A . Then, 〈{f}〉 is minimal iff f2 = f or fp = idA,

for some prime p.

Proof. Let f2 = f or fp = idA, for some prime p. From Lemma 6 (f2 = f iff
(f#)2 = f#) and (fp = idA, for some prime p iff (f#)p = idP (A)\∅, for some
prime p). It is known ([15], [3],[17]) that ((f#)2 = f#) or (f#)p = idP (A)\∅,
for some prime p) iff 〈{f#}〉P (A)\∅ is minimal clone in LP (A)\∅. From Lemma
6, 〈{f#}〉P (A)\∅ is a minimal clone in LP (A)\∅. iff 〈{f}〉 is minimal hyperclone
in LHA . 2

Example 1. There are 6 unary minimal hyperclones on A = {0, 1}.
Example 2. There are 63 unary minimal hyperclones on A = {0, 1, 2}
Lemma 7. Let 〈g〉P (A)\{∅} be a minimal clone on P (A) \ {∅}. If there is a
hyperoperation f, such that g = f#, then 〈f〉 is a minimal hyperclone on A.

Proof. Since 〈{f#}〉P (A)\{∅} is a minimal clone in LP (A)\{∅}, and the mapping
λ is an order embedding we prove the claim. 2

Lemma 8. Let f be a hyperoperation on A = {0, 1}. 〈{f}〉 is a minimal hy-
perclone on A if and only if 〈{f#}〉P (A)\{∅} is a minimal clone on P (A) \ {∅}.
Example 3. There are 13 minimal hyperclones on A = {0, 1} [8].
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4. From the hyperclone lattice on A′ to the hyperclone lat-
tice on A

Let A′ ⊂ A be a nonempty set and let us define a mapping λ : LHA′ → LHA

by λ(C) =
⋃

n≥1

{f ∈ H
(n)
A : f |A′ ∈ C}.

For every hyperclone C on A′, λ(C) is a hyperclone on A.

Theorem 6. The mapping λ is a full order embedding.

Proof. It is easy to check that λ is an order embedding.
If H is a hyperclone on A that satisfies λ(JA′) ≤ H ≤ λ(HA′), there is a

hyperclone H1 = H|A′ on A′ such that λ(H1) = H. 2

5. Conclusions and problems

The structure of the lattice of clones of hyperoperations is unknown. One
attempt is to embed it into some more familiar lattice. The most studied lattice
of clones is the lattice of clones of total operations. So, it is natural to try
with embeddings of the lattice of hyperclones into the lattice of clones. Some
facts about the lattice of hyperclones could be spotted from the known facts
about the lattice of clones. However, we can also see from this paper that the
studied embedding will not give answers to many questions (even if we knew
more about the lattice of clones of operations than we do). So, one can try with
other embeddings from the lattice of hyperclones into the lattice of clones of
operations.
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