ON AN EINSTEIN PROJECTIVE SASAKIAN MANIFOLD

Quddus Khan ${ }^{1}$

Abstract

In this paper, we have proved that a projectively flat Sasakian manifold is an Einstein manifold. Also, if an Einstein-Sasakian manifold is projectively flat, then it is locally isometric with a unit sphere $S^{n}(1)$. It has also been proved that if in an Einsten-Sasakian manifold the relation $K(X, Y) . P=0$ holds, then it is locally isometric with a unit sphere $S^{n}(1)$.

AMS Mathematics Subject Classification (2000): 53B05, 53B15
Key words and phrases: Sasakian manifold, projective curvature tensor, Einstein manifold

1. Introduction

Let $\left(M^{n}, g\right)$ be a contact Riemannian manifold with a contact form η, the associated vector field ξ, a (1-1) tensor field ϕ and the associated Riemannian metric g. If ξ is a killing vector field, then M^{n} is called a K-contact Riemannian manifold ([1], [2]). A K-contact Riemannian manifold is called a Sasakian manifold [2] if

$$
\begin{equation*}
\left(D_{X} \phi\right)(Y)=g(X, Y) \xi-\eta(Y) X \tag{1}
\end{equation*}
$$

holds, where D denotes the operator of covariant differentiation with respect to g. We deal with a type of Sasakian manifold in which

$$
\begin{equation*}
K(X, Y) \cdot P=0 \tag{2}
\end{equation*}
$$

where P is the projective curvature tensor (see [5]) defined by

$$
\begin{equation*}
P(X, Y) Z=K(X, Y) Z-\frac{1}{n-1}[\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y], \tag{3}
\end{equation*}
$$

K is the Riemannian curvature tensor, Ric is the Ricci tensor of type $(0,2)$ and $K(X, Y)$ is considered as derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y. In this connection we mention the works of K. Sekigawa [3] and Z.L. Szabo [4] who studied Riemannian manifolds satisfying the conditions similar to it. It is easy to see that $K(X, Y) \cdot K=0$ implies $K(X, Y) \cdot P=0$. So it is meaningful to undertake the study of manifolds satisfying the condition (2).

[^0]Let R and r denote the Ricci tensor of type $(1,1)$ and the scalar curvature of M^{n} respectively. It is known that in a Sasakian manifold M^{n}, besides the relation (1), the following relations also hold (see [1], [2]):

$$
\begin{gather*}
\phi(\xi)=0 \tag{4}\\
\eta(\xi)=1
\end{gather*}
$$

$$
\begin{equation*}
g(\xi, X)=\eta(X) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ric}(X, \xi)=(n-1) \eta(X) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
g(K(\xi, X) Y, \xi)=g(X, Y)-\eta(X) \eta(Y) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
K(\xi, X) \xi=-X+\eta(X) \xi \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
K(\xi, X) Y=g(X, Y)-\eta(Y) X \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta(\phi X)=0 \tag{12}
\end{equation*}
$$

for any vector fields X, Y.
The above results will be used in the next section.

2. Sasakian manifold satisfying $P(X, Y) Z=0$

Let us suppose that in a Sasakian manifold

$$
\begin{equation*}
P(X, Y) Z=0 \tag{13}
\end{equation*}
$$

Then it follows from (3) that

$$
\begin{equation*}
K(X, Y) Z=\frac{1}{n-1}[\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y] \tag{14}
\end{equation*}
$$

or,
(15) $\quad g(K(X, Y) Z, U)=\frac{1}{n-1}[\operatorname{Ric}(Y, Z) g(X, U)-\operatorname{Ric}(X, Z) g(Y, U)]$.

Taking $X=U=\xi$ in (15) and then using (5), (6), (7) and (8), we get

$$
\begin{equation*}
g(Y, Z)-\eta(Y) \eta(Z)=\frac{1}{n-1}[\operatorname{Ric}(Y, Z)-(n-1) \eta(Y) \eta(Z)] \tag{16}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{Ric}(Y, Z)=k g(Y, Z) \tag{17}
\end{equation*}
$$

where $k=(n-1)$. Thus we have the following result:

Theorem 1. A projectively flat Sasakian manifold is an Einstein manifold.
Next, we prove the following:

Theorem 2. The scalar curvature r of a projectively flat Sasakian manifold M^{n} is constant.

Proof. From (17), we have

$$
\begin{equation*}
R(Y)=(n-1) Y \tag{18}
\end{equation*}
$$

where $\operatorname{Ric}(Y, Z)=g(R(Y), Z)$. Contracting (18) with respect to ' Y ', we have $r=n(n-1)$, which proves the result.

Theorem 3. A projectively flat Einstein-Sasakian manifold $M^{n}(n \geq 2)$ is locally isometric with a unit sphere $S^{n}(1)$.

Proof. Let the Riemannian manifold be Einstein, i.e.

$$
\operatorname{Ric}(X, Y)=k g(X, Y)
$$

where k is a constant. Then (14) reduces to

$$
\begin{equation*}
K(X, Y) Z=\frac{k}{n-1}[g(Y, Z) X-g(X, Z) Y] \tag{19}
\end{equation*}
$$

or,

$$
\begin{equation*}
g(K(X, Y) Z, V)=\frac{k}{n-1}[g(Y, Z) g(X, V)-g(X, Z) g(Y, V)] \tag{20}
\end{equation*}
$$

Taking $X=V=\xi$ in (20) and then using (5), (6) and (8), we get

$$
g(Y, Z)-\eta(Y) \eta(Z)=\frac{k}{n-1}[g(Y, Z)-\eta(Z) \eta(Y)]
$$

or,

$$
\left[\frac{k}{n-1}-1\right][g(Y, Z)-\eta(Y) \eta(Z)]=0
$$

This shows that either $k=n-1$ or $g(Y, Z)=\eta(Y) \eta(Z)$. Now, if $g(Y, Z)=$ $\eta(Y) \eta(Z)$, then from (10), we get $g(\phi Y, \phi Z)=0$, which is not possible. Therefore, $k=n-1$ and, putting this value of k in (19), we get the result.

3. An Einstein Sasakian manifold satisfying $K(X, Y) \cdot P=0$

Let the Riemannian manifold M be an Einstein manifold, then (3) gives

$$
\begin{equation*}
P(X, Y) Z=K(X, Y) Z-\frac{k}{n-1}[g(Y, Z) X-g(X, Z) Y] . \tag{21}
\end{equation*}
$$

We have,

$$
\begin{gathered}
\eta(P(X, Y) Z)=g(P(X, Y) Z, \xi) \\
=g\left(K(X, Y) Z-\frac{k}{n-1}[g(Y, Z) X-g(X, Z) Y], \xi\right) \\
=\eta(X) g(Z, Y)-\eta(Y) g(Z, X)-\frac{k}{n-1}[\eta(X) g(Z, Y)-\eta(Y) g(Z, X)]
\end{gathered}
$$

or,

$$
\begin{equation*}
\eta(P(X, Y) Z)=\left[\frac{k}{n-1}-1\right][\eta(Y) g(Z, X)-\eta(X) g(Z, Y)] \tag{22}
\end{equation*}
$$

Taking $X=\xi$ in (22) and then using (5) and (6), we get

$$
\begin{equation*}
\eta(P(\xi, Y) Z)=\left[\frac{k}{n-1}-1\right][\eta(Y) \eta(Z)-g(Z, Y)] \tag{23}
\end{equation*}
$$

Again, taking $Z=\xi$ in (22) and then using (5) and (6), we get

$$
\begin{equation*}
\eta(P(X, Y) \xi)=0 \tag{24}
\end{equation*}
$$

Now,

$$
\begin{aligned}
(K(X, Y) P)(U, V) W= & K(X, Y) P(U, V) W-P(K(X, Y) U, V) W- \\
& -P(U, K(X, Y) V) W-P(U, V) K(X, Y) W
\end{aligned}
$$

In view of (2), we get

$$
\begin{align*}
K(X, Y) P(U, V) W-P(K(X, Y) U, V) W & - \\
-P(U, K(X, Y) V) W-P(U, V) K(X, Y) W & =0 . \tag{25}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
g(K(\xi, Y) P(U, V) W, \xi)-g(P(K(\xi, Y) U, V) W, \xi) & - \\
-g(P(U, K(\xi, Y) V) W, \xi)-g(P(U, V) K(\xi, Y) W, \xi) & =0 .
\end{aligned}
$$

From this it follows that

$$
\begin{gather*}
\prime P(U, V, W, Y)-\eta(Y) \eta(P(U, V) W)+\eta(U) \eta(P(Y, V) W)+ \\
+\eta(V) \eta(P(U, Y) W)+\eta(W) \eta(P(U, V) Y)-g(Y, U) \eta(P(\xi, V) W)- \\
-g(Y, V) \eta(P(U, \xi) W)-g(Y, W) \eta(P(U, V) \xi)=0 \tag{26}
\end{gather*}
$$

where $g(P(U, V) W, Y)=ı P(U, V, W, Y)$.
Putting $Y=U$ in (26), we get

$$
\begin{gathered}
I P(U, V, W, U)-\eta(U) \eta(P(U, V, W)+\eta(U) \eta(P(U, V) W)+ \\
+\eta(V) \eta(P(U, U) W)+\eta(W) \eta(P(U, V) U)-g(U, U) \eta(P(\xi, V) W)- \\
-g(U, V) \eta(P(U, \xi) W)-g(U, W) \eta(P(U, V) \xi)=0 .
\end{gathered}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq n$ of the relation (27) for $U=e_{i}$ gives

$$
\begin{align*}
& \eta(P(\xi, V) W)=\frac{1}{n-1}\left[\operatorname{Ric}(V, W) \frac{r}{n}-g(V, W)+\right. \\
& \left.\quad+\left(\frac{k}{n(n-1)}-1\right)(n-1) \eta(W) \eta(V)\right] \tag{28}
\end{align*}
$$

Using (22) and (28), it follows from (26) that

$$
\begin{align*}
& \prime p(U, V, W, Y)+\frac{k}{n(n-1)} g(Y, U) g(V, W)-\frac{k}{n(n-1)} g(U, W) g(Y, V)+ \\
& \quad+\frac{1}{n-1}[\operatorname{Ric}(U, W) g(Y, V)-\operatorname{Ric}(V, W) g(Y, U)]=0 \tag{29}
\end{align*}
$$

From (23) and (28), we get

$$
\begin{gathered}
\left(\frac{k}{n-1}-1\right)[\eta(V) \eta(W)-g(W, V)]=\frac{1}{n-1}\left[\operatorname{Ric}(V, W)-\frac{r}{n} g(V, W)+\right. \\
\left.+\left(\frac{k}{n(n-1)}-1\right)(n-1) \eta(V) \eta(W)\right] .
\end{gathered}
$$

For $r=n k$, we have

$$
\begin{equation*}
\operatorname{Ric}(W, V)=(n-1) g(W, V) \tag{30}
\end{equation*}
$$

Using (30) and taking $r=n k$, the relation (29) reduces to

$$
\begin{equation*}
I P(U, V, W, Y)=\left(\frac{k}{n-1}-1\right)[g(Y, V) g(U, W)-g(Y, U) g(V, W)] \tag{31}
\end{equation*}
$$

From (21) and (31), we get

$$
\begin{equation*}
\prime K(U, V, W, Y)=[g(Y, U) g(V, W)-g(Y, V) g(U, W)] \tag{32}
\end{equation*}
$$

where $I K(U, V, W, Y)=g(K(U, V) W, Y)$.
Thus we have the following:
Theorem 4. If in an Einstein-Sasakian manifold, the relation $K(X, Y) . P=0$ holds, then it is locally isometric with a unit sphere $S^{n}(1)$.

For a projectively symmetric Riemannian manifold we have $D P=0$. Hence for such a manifold $K(X, Y) . P=0$ holds. Thus we have the following corollary of the above theorem:

Corollary 1. A projectively symmetric Sasakian manifold $M^{n}(n \geq 2)$ is locally isometric with a unit sphere $S^{n}(1)$.

Acknowledgement

This work is supported by the Department of Science and Technology, Government of India under SERC Fast Track Fellowship for Young Scientist Scheme No.SR/FTP/MS-17, 2001.

References

[1] Sasaki, S., Lecture notes on almost contact manifolds, part 1. Tohoku University, 1975.
[2] Blair, David E., Contact manifold in a Riemannian Geometry. Lecture notes in Mathematics, 509, Springer Verlag, 1976.
[3] Sekigawa, K., Almost Hermition manifold satisfying some curvature conditions. Kodai. Math. J. 2 (1979), 384-405.
[4] Szabo, Z. L., Structure theorem on Riemannian space satisfying K (X,Y). K=0, The local version. J. Diff. Geom., 17 (1982) 531-582.
[5] Singh, H., Khan, Q., On generalized recurrent Riemannian manifolds. Publ. Math. Debrceen, Hungary, 56/1-2 (2000), 87-95.

Received by the editors December 29, 2005

[^0]: ${ }^{1}$ Department of Mathematics, Shibli National P.G. College, Azamgarh (U.P.), India, e-mail: dr_quddus_khan@rediffmail.com

