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(⊕,¯)-LAPLACE TRANSFORM AS A BASIS FOR
AGGREGATION TYPE OPERATORS

Ivana Štajner-Papuga1

Abstract. Pseudo-Laplace transform is an important notion from
pseudo-analysis’ framework that is often used in dealing with differen-
tial or integral equation. The (⊕,¯)-Laplace transform considered here
is a generalization of the pseudo-Laplace transform based on a special
class of generalized pseudo-operations that need not be commutative nor
associative. This pseudo-Laplace type transform has been used for the
construction of pseudo-aggregation operators.
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1. Introduction

The approach presented in this paper has been pursuaded in the pseudo-
analysis’ framework, where by pseudo-analysis is understood a mathematical
theory that is a generalization of the classical analysis. Pseudo-analysis has
appeared to be a useful tool for solving problems in different aspects of math-
ematics, as well as in various practical problems ([7, 10, 13, 14]). Using this
apparatus over the years, some important notions that are analogous to their
classical counterparts, i.e., notions such as ⊕-measure, pseudo-integral, pseudo-
convolution, pseudo-Laplace transform, etc., have been introduced ([7, 10, 13,
17, 18, 19]). Generalized pseudo-convolution, based on ⊕-measure and pseudo-
integral, has taken an important role in theory of fuzzy numbers (operations
with fuzzy numbers), as well as in optimization, information theory, system
theory, etc. ([19]). Also, pseudo-convolution and pseudo-Laplace transform
have been successfully used for the determination of utility functions’ extreme
values ([5, 18]). Of special interest is the application of pseudo-analysis on non-
linear partial differential equations. By using the pseudo-linear superposition
principle ([4, 8, 10, 13, 14, 15, 16, 17]) some new solutions for considered nonlin-
ear equation have been obtained. Additionally, the pseudo-analysis’ approach
has been successful in finding a weak solution of Hamilton-Jacobi equation with
non-smooth Hamiltonian ([10, 16, 18]). A step further in this direction has been
presented in [22, 23] where generalized pseudo-operations were introduced. A
special class of these operations that need not be commutative nor associative
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has been used to extend the pseudo-linear superposition principle on generalized
Burger’s type nonlinear partial differential equations [23].

Another important problem addressed by pseudo-analysis is the construction
of aggregation operators by means of different types of pseudo-integrals. It is a
well known fact that a large class of idempotent aggregation operators can be
constructed and represented by different types of integrals. Some of the integrals
that have been used for this constructions are Lebesgue integral, Choquet and
Sugeno integral, monotone set functions-based integrals, Choquet-like integrals,
(S, U)-integral, etc. ( see [1, 2, 3, 6, 11]). This paper presents a generalization
of the pseudo-Laplace transform based on a special class of generalized pseudo-
operations, i.e., on a pair of generated pseudo-operations with two parameters,
and corresponding aggregation type operator. Also, the ⊕-integral as a core of
pseudo-aggregation operator is considered.

Preliminary notions as generalized pseudo-operations, ⊕-integral and corre-
sponding pseudo-convolutions are given in Section 2. The third section contains
definition of the (⊕,¯)-Laplace transform, where⊕ and¯ are generated pseudo-
operations with two parameters. Generalization of the exchange formula that
transforms convolution into the product is given in Section 3. Aggregation type
operator constructed by means of (⊕,¯)-Laplace transform is presented in the
fourth section.

2. Preliminary notions

In this paper, as already mentioned, a special class of generalized pseudo-
operations (see [22, 23]) will be considered. This class is given by the following
definition.

Definition 1. Let ε and γ be arbitrary but fixed positive real numbers and let g
be a positive strictly monotone continuous function defined on R or [0,∞). Gen-
erated pseudo-addition and pseudo-multiplication with two parameters, denoted
with ⊕ and ¯ respectively, are

(1) x⊕ y = g−1(εg(x) + g(y)) and x¯ y = g−1(g(x)γg(y)).

Specially, for ε = γ = 1, operations from g-semiring are obtained ([9, 12, 13]).
Since the operations ⊕ and ¯ need not be commutative nor associative, it

is necessary to define a pseudo-sum of n elements αi ∈ [a, b], i ∈ {1, 2, . . . n} :

n⊕

i=1

αi = (. . . ((α1 ⊕ α2)⊕ α3)⊕ . . .)⊕ αn.

Neutral elements from the left for ⊕ and ¯ are 0 = g−1(0) and 1 = g−1(1),
respectively, i.e., 0⊕ x = x and 1¯ x = x.

Remark 2. Operations of this type have been used in dealing with nonlinear
PDE ([22, 23]). For example, if we consider the Burger’s type of nonlinear
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partial differential equation ut−αuxx = αΦ(u)u2
x, where Φ is a given continuous

function and α ∈ R, there exist generated pseudo-operations ⊕ and ¯ with two
parameters given by a generating function

g(x) = ±
∫ x

0

exp(
∫ t

0

Φ(s) ds) dt,

such that the pseudo-linear combination of solutions of considered equation is,
again, the solution (see [23]).

Let (a, b] be a subinterval of the real line and let, for some n ∈ N, Pn =
{(xi, xi+1]}n−1

i=0 be its n-partition, where a = x0 < x1 < . . . < xn = b. Now, for
ν being Lebesque measure, the ⊕-measure µPn

: Pn → [0,∞) is given by

µPn
((xi, xi+1]) = g−1

(
xi+1 − xi

εn−i−1

)
.

Some properties of this family of measures has been proved in [20]. Among
them is the following:

µPn−r+j




r⋃

i=j

Ai


 =

r⊕

i=j

µPn(Ai),

where 1 ≤ j ≤ r ≤ n, Pn = {Ai}n
i=1 = {(xi−1, xi]}n

i=1 is an n-partition of
interval (a, b] and Pn−r+j = {Bs}n−r+j

s=1 is a new (n − r + j)-partition, such
that Bs = As while s = 1, 2, · · · , j − 1, Bj = ∪r

i=jAi and Bs = As+r−j for
s = j + 1, · · · , n− r + j.

Let ϕ : [a, b] → [0,∞) be a step function that assumes finitely many
values {u1, u2, . . . , un} in the following manner: ϕ assumes value ui while
x ∈ (xi−1, xi], i ∈ {1, 2, . . . , n} and a = x0 < x1 < . . . < xn = b. Now,
a = x0 < x1 < . . . < xn = b is one n-partition of interval (a, b]. The ⊕-integral
of the function ϕ with respect to the ⊕-measure µPn is given by

(2)
∫ (⊕,¯)

[a,b]

ϕdµPn =
n⊕

i=1

ui ¯ µPn ((xi−1, xi]) .

Remark 3. Since the form of partition Pn from (2) follows directly from the
form of step function ϕ, the integral in (2) will be denoted with

∫ (⊕,¯)

[a,b]
ϕ, and,

by means of the generating function g, it can be written as

∫ (⊕,¯)

[a,b]

ϕ = g−1

(
n∑

i=1

(g(ui))
γ (xi − xi−1)

)
.

With P ′n is denoted an (n + 1)-partition of the interval (a, b] obtained from
n-partition Pn in the following manner: we keep all the points from the previous
partition and add one more point and renumerate the points of the new partition
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in the increasing order. After s-repetition of this procedure an (n+ s)-partition
P

(s)
n is obtained (see [20]). Now, if f : [a, b] → [0,∞) is a continuous function,

the ⊕-integral of the function f is

(3)
∫ (⊕,¯)

[a,b]

fdµPn = lim
µ

P
(s)
n

→0

(s→+∞)

(
n+s−1⊕

i=0

(
f(xi+1)¯ µ

P
(s)
n

((xi, xi+1])
))

,

if the limit exists.

Remark 4. The limit in (3) is considered with respect to the metric based on
generated pseudo-operations with two parameters.

Since it has been proved in [20] that the ⊕-integral does not depend on the
partition of the interval [a, b] and that it can be represented in the following
manner ∫ (⊕,¯)

[a,b]

fdµPn
= g−1

(∫ b

a

gγ ◦ f(x)dx

)
,

further on the ⊕-integral will be denoted by
∫ (⊕,¯)

[a,b]
f.

Corresponding pseudo-convolution of the continuous functions f, h : [0,∞) →
[0,∞) is

(4) f ? h(x) =
∫ (⊕,¯)

[0,x]

([f ]g(x− t)¯ h(t)) ,

where [·]g is a transform of the following form [f ]g(x) = g−1
(
g1/γ (f(x))

)
.

3. The (⊕,¯)-Laplace transform

Let ⊕ and ¯ be generated pseudo-operations with two parameters given by
the generating function g.

Definition 5. The (⊕,¯)-Laplace transform of a continuous function f :
[0,∞) → [0,∞) is

(5) L⊕¯(f)(z) = lim
b→∞

∫ (⊕,¯)

[0,b]

([
g−1

]
g
(e−xz)¯ f(x)

)
,

if the limit exists.

Using the connection between the ⊕-integral and Riemann integral, the fol-
lowing form of (⊕,¯)-Laplace transform is obtained:

L⊕¯(f)(z) = g−1

(∫ ∞

0

e−xzγ (g (f(x)))γ
dx

)
.

It can be proved that the pseudo-exchange formula for the (⊕,¯)-Laplace
transform, i.e., the formula that transforms ⊕-convolution into pseudo-product,
holds.
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Theorem 6. Let ⊕ and ¯ be generated pseudo-operations with two parame-
ters given by the generating function g, L⊕¯ corresponding transform given by
(5), ? pseudo-convolution given by (4) and f1, f2 : [0,∞) → [0,∞) continuous
functions. Then, the following holds

L⊕¯ [f1 ? f2]g (z) =
[L⊕¯f1

]
g
(z)¯ L⊕¯f2(z).

Proof. Follows from (5) and properties of the classical Laplace transform:

L⊕¯ [f1 ? f2]g (z) = g−1

(∫ ∞

0

e−xzγgγ
(
[f1 ? f2]g (x)

)
dx

)

= g−1

(∫ ∞

0

e−xzγ (h1 ?cl h2(x)) dx

)

= g−1 (L (h1 ?cl h2) (zγ))

= g−1 (L (h1) (zγ) · L (h2) (zγ))

= g−1

(∫ ∞

0

e−xzγ (h1(x)) dx ·
∫ ∞

0

e−xzγ (h2(x)) dx

)

=
[L⊕¯f1

]
g
(z)¯ L⊕¯f2(z),

where hi = gγ ◦ fi are continuous functions, ?cl is the classical convolution and
L is the classical Laplace transform. 2

Example 7. Let ⊕ and ¯ be generated pseudo-operations with two para-
meters given by the generating function g(x) = xp, x ∈ [0,∞), for some
p > 0. Under this assumption, the corresponding L⊕¯-transform of the func-
tion f : [0,∞) → [0,∞) is

L⊕¯(f)(z) =
(∫ ∞

0

e−xzγ (f(x))pγ
dx

)1/p

.

It can be easily shown that the exchange formula from the previous theorem
holds.

Remark 8. Specially, for ε = γ = 1, the pseudo-Laplace transform from [18]
can be obtained. In this case, the pseudo-exchange formula in cooperation with
the inverse pseudo-Laplace transform has been used for the determination of
utility functions’ extreme values ([5, 18]).

Remark 9. Generalization of Laplace type transform of a measurable func-
tion f : [0,∞) → [0, 1], known as the (S, T )-Laplace transform, where ([0, 1], S, T )
is the conditionally distributive semiring, can be found in [5].
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Remark 10. Another direction for generalization of the pseudo-Laplace type
transform has been presented in [21]. This generalization is done on the domain
of functions that pseudo-Laplace type transform has been applied to. In this
case, ([a, b],⊕,¯) is a semiring from the first or second class (see [7, 10, 13,
16, 17, 18, 19]), ∗ is a binary operation on [0,+∞) which is non-decreasing in
both coordinates, continuous on [0,+∞)2, commutative, associative, has 0 as
identity, fulfills cancellation law and is given by the multiplicative generator
l : [0,∞] → [0, 1] as x ∗ y = l−1 (l(x)l(y)) , and ♦ is another binary operation
[0,∞) distributive with respect to ∗. For ⊕ = max and ¯ being an Archimedean
t-norm T given by the continuous and increasing generating function θ : [0, 1] →
[0, 1] (see [5]), generalized (max, T ) -Laplace transform from [21] is mapping
Lmax

T,∗ defined for all F : [0,∞) → [0, 1] as

Lmax
T,∗ F (z) = θ(−1)

(
sup
x≥0

l(x♦z)θ (F (x))
)

, z ≥ 0.

If ⊕ and ¯ are strict pseudo-operations given by the generating function g (semi-
ring of the second class, see [16, 17]), the generalized (⊕,¯) -Laplace transform
from [21] is mapping L⊕¯,∗ defined for F : [0,∞) → [a, b] as

L⊕¯,∗F (z) = g−1

(∫

[0,∞)

l(x♦z)g (F (x)) dx

)
.

4. Pseudo-aggregation operators based on the
(⊕,¯)-Laplace transforms

By an aggregation operator ([2]) is usually understood a function
A : ∪n∈N[0, 1]n → [0, 1], such that

(i) A(u1, . . . , un) ≤ A(v1, . . . , v2) when ui ≤ vi for all i ∈ {1, . . . , n},
(ii) A(u) = u for all u ∈ [0, 1],

(iii) A(1, . . . , 1) = 1 and A(0, . . . , 0) = 0.

A large class of aggregation operators have been constructed by different types of
integrals ([1, 2, 6]). Now, a method similar to the construction of (S, U)-integral-
based aggregation operators ([6]) can be applied to construct the following ⊕-
integral-based aggregation type operator.

Pseudo-aggregation operator Ã : ∪n∈N[0,∞)n → [0,∞) based on the ⊕-
integral is

(6) Ã(u1, . . . , un) =
∫ (⊕,¯)

[0,1]

ϕ,

where ϕ : (0, 1] → [0,∞) is a function given by ϕ(x) = ui, xi−1 < x ≤ xi,
i ∈ {1, . . . , n}, for some n-partition 0 = x0 < x1 . . . < xn = 1 (see [2, 6]). For
operators given by (6) following hold:
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(i) Ã(u1, . . . , un) ≤ Ã(v1, . . . , v2) when ui ≤ vi for all i ∈ {1, . . . , n},

(ii) Ã(u) = u¯ 1 for all input values u,

(iii) Ã(1, . . . ,1) = 1 and Ã(0, . . . ,0) = 0,

where 0 and 1 are neutral elements for the pseudo-addition ⊕ and pseudo-
multiplication ¯, respectively.

Remark 11. Input values ui and vi from property (i) are associated with the
same subinterval (xi−1, xi], i ∈ {1, . . . , n}. For each input value, the corre-
sponding associated interval can be considered as an area of influence of the
input value in question.

Proposition 12. Let Ã be a pseudo-aggregation operator given by (6). For the
input values u1, . . . , un and v1, . . . , vn and parameters α, b ∈ [0,∞) the following
holds

(i) Ã ([u1 ⊕ b]g, . . . , [un ⊕ b]g) = Ã ([u1]g, . . . , [un]g)⊕ b,

(ii) Ã ([α]g ¯ u1, . . . , [α]g ¯ un) = α¯ Ã (u1, . . . , un) ,

(iii) Ã ([u1 ⊕ v1]g, . . . , [un ⊕ vn]g) = Ã ([u1]g, . . . , [un]g)⊕ Ã ([v1]g, . . . , [vn]g) .

Proof. (i) Let us suppose that the subinterval (xi−1, xi] is associated to the both
input values [u1 ⊕ b]g and [u1]g. Now, this distorted shift invariant property
follows from (6) and (2):

Ã ([u1 ⊕ b]g, . . . , [un ⊕ b]g) = g−1

(
n∑

i=1

gγ ([ui ⊕ b]g) (xi − xi−1)

)

= g−1

(
ε

n∑

i=1

g(ui)(xi − xi−1) + g(b)

)

= g−1
(
εg

(
Ã ([u1]g, . . . , [un]g)

)
+ g(b)

)

= Ã ([u1]g, . . . , [un]g)⊕ b.

Properties (ii) and (iii) are consequences of Theorem 3 from [20]. Input values
u1 and [α]g¯u1, i.e., input values [u1]g, [v1]g and [u1⊕v1]g, are associated with
the same area of influence. 2

Also, it can be easily shown that for the operator Ã idempotent property is
distorted in the following manner:

Ã ([u]g, . . . , [u]g) = u.
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Example 13. Let us consider the generating function g : [0,∞) → [0,∞)
such that g(x) = xp for some p > 0. Corresponding pseudo-operations are
x⊕ y = (εxp + yp)1/p and x¯ y = xγy. If the length of each interval (xi−1, xi]
associated to the input value ui is denoted with li, i ∈ {1, . . . , n}, the operator
Ã of n inputs u1, u2, . . . , un has the following form

Ã(u1, . . . , un) =

(
n∑

i=1

liu
γp
i

)1/p

,

where 0 = x0 < x1 < . . . < xn = 1, and
∑n

i=1 li = 1. If all intervals (xi−1, xi]
are of the equal length, the operator Ã is

Ã(u1, . . . , un) =

(
1
n

n∑

i=1

uγp
i

)1/p

.

The question is whether operators of aggregation type can be induced by
means of the (⊕,¯)-Laplace transforms.

Let u1, u2, . . . , un be n input values from [0,∞). For each n input value and
each n-partition where 0 = x0 < x1 < . . . < xn = 1 of the interval (0, 1] is
possible to form a step function ϕ : (0,∞) → [0,∞) as

(7) ϕ(x) =
{

ui, for x ∈ (xi−1, xi],
g−1(0), for x > 1,

where g is a generating function for the pseudo-operations ⊕ and ¯ given by
(1).

Definition 14. The pseudo-aggregation operator ÃL : ∪n∈N[0,∞)n → [0,∞)
based on the (⊕,¯)-Laplace transform is

(8) ÃL(u1, . . . , un) = L⊕¯(ϕ)(z),

where ϕ is a step function for input values u1, u2, . . . , un given by (7) and z is
some real positive parameter.

Since (⊕,¯)-Laplace transform is based on non-associative and non-commu-
tative pseudo-operations, the impact of some input value on the result can be
determined by its index and by length of the associated subinterval of the unite
interval.

It can be easily shown that the pseudo-aggregation operator ÃL with para-
meter z has the following form

(9) ÃL(u1, . . . , un) =
n⊕

i=1

ui ¯ ω(xi−1,xi],z,
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where (xi−1, xi] is a subinterval of the unite interval associated to the input
value ui and

ω(xi−1,xi],z = g−1

(
e−zγxi−1 − e−zγxi

εn−iγz

)
.

Basic properties of the pseudo-aggregation operator ÃL with parameter z are
given by next proposition.

Proposition 15. Let ÃL be a pseudo-aggregation operator given by (8). Then

(i) ÃL(u1, . . . , un) ≤ ÃL(v1, . . . , v2) when ui ≤ vi and ui and vi are associated
to the same subinterval (xi−1, xi], i ∈ {1, . . . , n},

(ii) ÃL(u) = u¯ ω(0,1],z for all input values u,

(iii) ÃL(1, . . . ,1) = 1¯ ω(0,1],z and ÃL(0, . . . ,0) = 0¯ ω(0,1],z,

where ω(0,1],z = g−1 ((1− e−zγ)/γz) .

Proof. Follows directly from the definition of pseudo-aggregation operators,
properties of the generating function g and (9). 2

Example 16. Let ⊕ and ¯ be generated pseudo-operations with two para-
meters given by the generating function g(x) = xp, x ∈ [0,∞) for some p > 0.

Now, the corresponding pseudo-aggregation operator ÃL with parameter z for
input values u1, . . . , un is

ÃL (u1, . . . , un) =

(
1
zγ

n∑

i=1

upγ
i

(
e−zγxi−1 − e−zγxi

)
) 1

p

.

Some other properties of the pseudo-aggregation operators ÃL are given by
next theorem.

Theorem 17. Let ÃL be a pseudo-aggregation operator given by (8). For
input the values u, u1, . . . , un and v1, . . . , vn and real parameters α, b ∈ [0,∞),
the following holds

(i) ÃL(u, . . . , u) = u¯ ω(0,1],z,

(ii) ÃL ([u1 ⊕ b]g, . . . , [un ⊕ b]g) = ÃL ([u1]g, . . . , [un]g)⊕
(
[b]g ¯ ω(0,1],z

)
,

(iii) ÃL ([α]g ¯ u1, . . . , [α]g ¯ un) = α¯ ÃL (u1, . . . , un) ,

(iv) ÃL ([u1 ⊕ v1]g, . . . , [un ⊕ vn]g)

= ÃL ([u1]g, . . . , [un]g) ⊕ ÃL ([v1]g, . . . , [vn]g) .



112 I. Štajner-Papuga

Proof. Distorted idempotent property given by (i) follows from (9):

ÃL(u, . . . , u) =
n⊕

i=1

u¯ ω(xi−1,xi],z

= g−1

(
n∑

i=1

εn−igγ(u)g(ω(xi−1,xi],z)

)

= g−1
(
gγ(u)g(ω(0,1],z)

)

= u¯ ω(0,1],z.

Properties (ii), (iii) and (iv) can be easily proven in a similar manner. 2

5. Conclusion

The main aim of this paper has been to present further possible steps in the
generalization, based on the pseudo-analysis’ apparatus, of well known notions
as Laplace transform and aggregation operators that could broaden the area of
applications. Some further research of this problem should concern properties
of the (⊕,¯)-Laplace transform and pseudo-aggregation operators, and possible
applications.
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[19] Pap, E., Štajner, I., Generalized pseudo-convolution in the theory of probabilistic
metric spaces, information, fuzzy numbers, optimization, system theory. Fuzzy
Sets and Systems 102 (1999), 393-415.
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