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CURVATURE THEORY OF GENERALIZED
CONNECTION IN J?M

Irena Comi¢!, Mihai Anastasiei?

Abstract. The introduction of JiM manifold and its geometrical pre-
sentation is given in [2]. Here, the generalized connection is defined, the
torsion and curvature tensors are determined, and the Ricci equations are
established.
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1. Manifold JZM

Let M be a smooth manifold of dimension n and J, ,(R*, M) the set of
germs of smooth mappings f : R¥ — M with f(o) = p € M. We say that
fr9 € Jop(R¥, M) are equivalent up to order ¢ if there exists a chart (U, )
around p such that

(1.1) di(po f)=d}(pog), 1<h<gq,

where d means Frechet differentiation. It can be seen that if (1.1) holds for a
chart (U, ), it holds for any other chart (V) around p.

We denote by j¢ , f the equivalence class of f (the coset of f) and set Ji , =

{je,f. f € Jop(R*, M)}. Then we put JIM = |J JZ, and define 7 : JIM —
peEM
M by w(Jg,) = p.

One can see that JZ M has a structure of smooth manifold.

We notice that for & = 1, this manifold is just the manifold Osc?M studied
by R. Miron [5], which reduces to the tangent manifold for ¢ = 1. For k = n and
g = 1, we get the manifold of frames over M and for k € {2,3,...,n — 1} and
g = 1 it can be identified to TM ® --- @ TM (k times), which is the manifold
supporting the k-Lagrange geometry, see R. [7].

For these reasons we confine ourselves to the cases k = 2,3,...,n—1 and for
the sake of simplicity we take ¢ = 2. The case ¢ greater than 2 can be similarly
treated.

We also notice that JZM is the manifold of 2-jets of the sections of the fibre
bundle R* x M — RF but the theory of jets from the book by D.J. Saunders
[8] cannot be applied since the typical fibre M of this bundle is too general.
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Instead of that theory we follow the ideas and techniques from the k-Lagrange
geometry and from the geometry of Osc?M spaces as well, see [1], [3], [6].

Let us come back to (1.1) for ¢ = 2. Letting pog : R*¥ — R" as f? =
it .. tF), gt = g'(t%, ..., t*) this condition becomes

. . afz agi 82fi 8291‘
1.1 (o) = ¢'(0) = ort, y_9¢"  of . _ 99
(11) 1) = 60) = ¢(p), 2(0) = 0 0), g (o) = 00 (0),
for a, 3 =1,2,...,k. Let us set 0; : %, Oy := 8%'
Now, for another local chart (V,) around p such that 1 o =1 : ' =
e (x', ... a"), rank (%) = n, taking Yo f and o g as fI = fO(¢*,...,tF)
and ¢t = gi/(?fl,...,tk)7 respectively, we get f¢ = xi/(fj(tl,...,tk)), g’ =

’

2V (g7 (t, ..., t*)) as well as

5 i i afi
12 0 (0) = 225 (p(p)) 95 (o)
. 92 ri’ 2 i J 9fk il 924
8t<’](‘;tf’ = 8?@13511“ ((p) %(O)Wfﬁ(o) + %Bt"gtﬁ'

By (1.2) it follows the independence of (1.1) on the chosen local chart.
For f : R — M with f(0) = p(p)(e,....,a") we set 4 = B (o), 28 =

(,)?375;3(0) and define a mapping ¢ : 71 (U) — ¢(U) x R* x R“5 by
o([flp) = (&, y*, 2207). o

The mapping ¢ is invertible, its inverse associating to (z*, y®*, zaﬂz) the coset
of the mapping ¢! o T, where T is the Taylor polynomial of second order with

respect to t.

2. Decomposition of T'(F). Integrability conditions

Let E = J2M be an n + kn + 27 'k(k + 1)n dimensional C* manifold.
Some point u € JZM in the local charts (U, ) and (U’,¢’) has coordinates
(2, ™, 2P0y and (2%, y™', 228" respectively. In U NU’, the allowable coordi-
nate transformations are given by the equation

2.1 U=t (2t 2?2, k(=) = n,
(2.1) b =a (z,x :L‘)ran(axl) n
i’ oz i ,ad (o0, ad < 6 k Qi) __ k
Y - 61‘1y =Y (xvy )7()5* yran (y )_ )
, 927 . ozt . T .
afi’ __ aj, Bh afi _ _afBi i, at aft
- Ozioxh * ori - 7 (@t y™, 27

i, hk,J1=12....n «,fB,70kKke=12 ... k.

Proposition 2.1. Transformations of type (2.1) form a pseudo group.

Proof. The neutral element of the group is given by the transformation z* = ¢,

yoi' =yt peB — jaBi From rank(%“;i ) = n it follows that (2.1) has inverse
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transformation of the same type. If the point u in some local chart (U”, ") has
coordinates (mi//,yai//, zaﬁi”), then in U’ N U"” the transformation law is given
by equation obtained from (2.1) in such a way, that the latin indices obtain
one more prime. After some calculation it follows that the coordinates of the
point u in U N U" satisfy the equation of type (2.1) if everywhere the index 4’
is substituted by 7”.

Let us introduce the notations:

0 0 0

Ozabi ’

The natural basis B of T(J2M) = T(E) is B = {0, 0ui, Oapi}- B
If a change of coordinates (2.1) is performed, the elements of B are trans-
formed as follows:

0; = (8@’)81-/ + (ﬁiﬁjmi/)yaﬂﬁml + [(3i8jah$il)yﬁjy7h + (82'8]-1:",)25”]85%/
(2.3) Oui = (852" )Dir + 2(0; 05" )y Dy
Dupi = (05" ) Dupir-
The adapted basis of T'(E) is B = {J;, dai, dag:i }, where
(2.4) (a) 8 =0 = N[0y = N Dagy, (a < B),

(b)  Oai = Oai — N 955, (B <),
(C) 6aﬂi = 8(161‘-

The summation is going over both types of indices.
From (2.4) it follows that d.p; is transformed as d tensor field, i.e. Oup; =
(8i$i/)6agi/.

Proposition 2.2. The elements of B are transformed as d-tensor field, i.e.
(25) (51 == (ai:z:i/)di/ 6041' == (8¢zi,)5ai/,
if the nonlinear connection coefficients obey the following transformation law:
26) (o) N (0') = N (007) — (0aiz™),

(b) Np7 (@)= N (0pa) — (0,

(c) NyP(0a") = N2 (0;27) + N7 (9,52°%") — 9,2

Proof. The proof follows from (2.2)—(2.5).
If we denote by Tw, Ty, and Ty, the subspaces of T(FE) (at the point u)
spanned by {d;}, {dai}, {0asi}, then we have

T(E) =Ty & Ty, ®Tv,,

where dimTy = n, dimTy, = nk, dimTy, = 27 k(k + 1)n.
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The dual basis of_B is B* = {dx',dy®", dz*%"}. By a change of coordinates
(2.1) the element of B* are transformed as follows:

./

(2.7) da’ (0;2" )dx
Ay’ = (8,0;2" ) Izt + (9’ )dy
dzP" [(8:0;0n2" Yy yh + (90,27 ) B da’ +
(8;0n2" ) (¥ dy® + y"dyP7) + (82" )dz,

The adapted basis of T*(E) is B* = {dz*, 0y*?, 62*%"}, where
(2.8) oy = dy® + M da’
629P1 = dz°P7 4 M%Bjdyw + M dat,

The functions M are, for the time being, undetermined.

Proposition 2.3. The necessary and sufficient conditions that the bases B
and B* to be dual to each other (when B and B* are dual) are the following
equations:

(2.9) () MY =N (b) MO = N2, (< B)
(c) M = NP4 N?”Nﬁ,?% (a<B).

Proof. The proof follows from (2.4)—(2.9).
Remark. The bases B and B* are more general than those used in [2], but
they are not in accordance with the operator J,, where

(210) Ja(si = 6ai7 Jﬁaai = 65&1'3 J’)’(Saﬁi = 0.

If we take the basis B = {0i, 0wi, 0api}, where ¢; and g, are determined by
(2.4a) and (2.4c) and
6(12' = am - Nf]aaﬂj

then (2.10) are satisfied. The coresponding dual basis B* is determined by (2.8),
but now (2.9) has different form (see (2.16) in [2]).

Proposition 2.4. The horizontal distribution Ty is integrable iff the following
relations are satisfied

k - Bk k k
(2.11) K =K/ =N - 5,NF =0,
(2.12) K =K°F + KPP N =0,

- YOk Sk 5k
(2.13) (K°F = 6;N]°% — 5;N7°").
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Proof. A straightforward calculation gives
(2.14) [61,65] = K" Sk + K™ S
and from (2.11)—-(2.13) it follows the statement.

Proposition 2.5. The vertical distribution Ty, is integrable iff

K™ = 0N —60iNgd™ =0.

The proof follows from
(2.15) [Oai 0p5] = K2 05k
Ty, is integrable distribution because

(2.16) [Bocsis 0455] = 0.

3. The generalized connection on T(F)

Definition 3.1. The generalized connection D : T(E)xT(E) — T(E), (X,Y)
— DxY, X,Y € T(E) is the linear connection defined by:
(3.1) D(;iéj = Fk 6k + le{k Ok + F-Hpk 5,{pk

D5i5 = F,“ Zék + F‘,”'i y Ok + F i 5ka

D(;ié,ﬂ;j =Fl.s; Zék + F 5] 2(5% + F " ~6j 1(5ka

Ds, .65 = Fj ai§k + F ok i Ok + F ek wiOrpk

D5(17l6 ’y] (udk + F’yj k(mdlﬂk + Fy]KpZz(s"@Pk

D5m:6’v5j = ’yé] a15k+F ~6j az(sfﬂk+F ~8j azaﬁpk

D(;am(s - F Oéﬁlék + F‘Kaﬁi(sﬁk + F aﬁiaﬁpk
kk
Déaﬁl(S ’yj aﬁzdk + F ~vj aﬁzéﬁk +F 7 ~j aﬁzéﬁpk
D(Saﬁié’wi - 6] (Jtﬂlék + F 5] orﬁv(s'ik +F 6] a,Bz(s“Pk (H < ,0)-

Different types of linear connection in higher order geometries are given in
[4]-[7].

Definition 3.2. If on the right-hand side of (3.1) all terms vanish except for
the underlined then the generalized connection reduces to the distinguished d-
connection.

If on the right-hand side of (3.1) all terms vanish except for F; k. wa'“km,

Fw;pkam, the generalized connection reduces to the strongly distinguished (s.d.)

connection.
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For the sake of brevity it is convenient to use new kind of indices, the latin
capitals, which take values from 1 to n + nk +27'k(k + 1)n. Using them, (3.1)
can be written in the form

(3.2) Ds, 65 = Fjf 6k =
FJkI(Sk + FJN% Ok + Fjﬁp? 5/€pk}~

Let X and Y be vector fields determined on T(E) by:

(3.3) X = X167 = XU6; + X605 + XP 5054,

(3.4) Y =Y75; =Y95; + Y5, + Y75,
then (3.2) has the form
(3.5) DXY = Dx15, Y78, = X' (6:Y7 + Fp,Y™)6; = XTY,76r.

Using the explicit forms of (3.3) and (3.4) for (3.5) we get the following propo-
sition.

Proposition 3.1. The generalized connection D can be expressed by covariant
derivatives in the form:

+ XY+ XOPYT N6+

|avi laBi

(3.6) DxY = (XY,
(Xiyvﬂ + Xaiyﬂi + Xaﬂiyw\iﬁi)fsw' +
in V0] in V8] iv V85
(XY 4 XY 4 XY
In (3.1), all the connection coefficients F' are arbitrary smooth function of
x, y and z, but they should satisfy prescribed transformation law with respect
to (2.1). Our intention is to find these laws of transformations. All covariant

derivatives
B7) Yh=aY +F YT =6+ RIY"+ F Y F L v

which appear in (3.6) are d-tensor fields.
In (3.7) I € {i,ai,aBi}, J € {j,7j,7j}.
For the d-connection (3.7) takes the form:

Y =6y + F YY"
VY =0 4 Ey gy
Y = 6yef 4 B, 2y
I € {i, kk,yrk}.

The necessary and sufficient conditions that all covariant derivatives Yfl
appeared in (3.6) be d-tensor fields are given in the following proposition.
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Proposition 3.2. All the connection coefficients Fy ; that appear in (5.7)
transform as d-tensor fields except for the case when I =1i. Then we have

(3.8) (Fi! ) (@i ) (Ona"") = Fif 1(0527) — (9ndya”).
Proof. If we suppose that Y‘Jl (I =i1in (3.7)) is d-tensor field, then
Yii(95a7) = Y {3 (@),
ie.
(3.9) 6.Y7 + F Y1) (0,27) = (6.7 + Fl YT (0:a7).
As (see (2.4a) and (2.5))
§:;Y7(0;27) = 6;(Y70;27") = Y7 8,(0;27) =
0270 Y — V7 (9;0527")
the substitution of the above equation in (3.9) gives
F Y79,27 — YT (0,027 = Fyl Y (02" ) (0,27

from which follows (3.8). The connection coefficients from (3.8) appeared in the
first three lines of (3.1).

If we put I = ai in (3.7), and suppose that Y‘JM is d-tensor field, then we
get -/ ! -/
Yioi(0527) = Y0 (0iz”)
(3.10) (BaiY + Fif Y T)(0;27) = Gar Y + Fy! (0 YE)(0527).

As (see (2.4b) and (2.5))
(00iY7)(0j27") = 60i (Y7 0j27") = V7 6,04(027") =
02" ) (G0 Y”),  ((6ai0527) = 0)

the substitution of the above equation in (3.10) results in

(3.11) Fyf i(0,07) = Fyl' o (0n2™) (82",

From the above equation follows that all connection coefficients that ap-
peared in the middle three lines of (3.1) are transformed as d-tensor fields.
In a similar way one can prove

(3.12) Fif 0pi027) = Fyl g (O2") (9327),

i.e. all connection coefficients that appeared in the last three lines of (3.1) are
tensor fields.
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The torsion tensor of the generalized connection D is determined by
T(X,Y)=DxY —-DyX — [X,Y].
A straightforward calculation gives
T(X,Y) = {(EfS = /S )ox — [61,0,377 x".

If we introduce the notation

(3.13) [61,6.) = K% 0,
we get
(3.14) T(X,Y)=(Ff - FY - KS)Y/ X5 =T Y X5k,

Now the components of K/ should be determined. [8;,6;], [0ai,ds;] and
[0agi, 0~s;] are determined by (2.14), (2.15) and (2.16). Further, we obtain

(3.15) [03,045) = K5 S + K" S,
Kin'ljj = 5w'Nz'Kk
KM = K+ KO MG
K08 =6, N[* — ;N1
(03,055 = iﬁséj&ﬁk —"_Kimfykékaﬂpk
Ki'd;aj = &yéijk
Kimjykéj = véjNiﬁpk
[5041'7 5’y6j] = Ka?plfygjanpk
Ka’;plfy&j = a'yéjNgfk

Theorem 3.1. The components of the torsion tensor
T(X,Y)=TKY X5k
of the generalized connection D are determined by
Tfy =Ffy - FY

except for the case when K/ #0 (see (3.13), (3.14)), and then they have the
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form (see (2.14), (2.15) and (3.15)):

(3.16) (a) Tj"‘f _ Fj“f *Fi'{f fo;?
(b) T = E - K
(c) T'y;pl;i = F,Yf”ii - Fafpij - Ko;plfyj
(d) T.7% =F[% - F - K
(¢) T, =F [0 —F"5 — K™
(1) Tt = Bosts = Fsy = K
R R
(h) Ty i = Fogy i = Fai ) = Kai s

As T/5 are components of the d-tensor field, using (3.16), (3.8), (3.11) and
(3.12) we can obtain the transformation laws of K /.

oy kk rkpk rkpk rpk
Proposition 3.3. K;"7, K", K.,;";, K", are d-tensor fields,

rk kpk rk kpk
Ki vj Ki v¥7 Kz Y635 Kz v¥éj

are not d-tensor fields and they transform in the following way:

(3.17) K% = K (0i7)(9527) (O a®) + (80527 ) (9 a®)

L]
(similar for the next three K ).

Proof. From (3.8) it follows, that F;"}' — F,"F is a d-tensor, and from (3.16a)
follows that Kff is the difference of two d-tensors, so itself is a d-tensor.

As in (3.16d), Tw’-‘”"ki and Fi“ljj are d-tensors (see (3.11)), so Fw’?ki - KZ-“’;J-
is a d-tensor. Using this fact and (3.8) we obtain (3.17).

For the d-connection and s.d. connection in (3.15) all terms K O remain,
because they are not functions of different connection coefficients, they only
depend on N and M, which are involved in adapted bases. In some components
of T/ some I' &, vanish (see definition 3.2).

4. The curvature theory of generalized connection

The curvature tensor

(4.1) R(X,Y)Z = DxDyZ — DyDxZ — Dixy|Z

can be calculated in the usual way. For X = X464, Y =Y 863, Z=Z%5¢ we
get

(4.2) DyZ = Dyss,7%c =YP(652°)5c + YEZYFPyop,
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(4.3) DxDyZ = Dxas,[YE(052%)6c + YBZOFPyop] =
XA04YP)(052%)6c + XAYBo4(652%) 00 +
XAYB(5pZ2FL6p + XA (64YP)ZCF Pyop +
XAYB(54ZFLPgop + XAYBZC(54F P 5)0p +
XAYPZOF g 40p.

Further, using the notation [64,d5] = K Pdp, we get

(4.4) Dixy1Z = D[XA(;A,YB(;B]ZCJC =
XA0AYP)(652) 00 + Z°T 2 5op] —
YBGpXM[(642%)6c + Z2°T L 46p] +
XAYB{[04,05]2 00 + XAYPZOK ELFPyop.

Finally we obtain

Theorem 4.1. The curvature tensor of the generalized connection D on T'(E)
s given by

(4.5) R(X,Y)Z = RPp X*YB2%p,

where

(4.6) REpa=K& pa+ FpKg 4,

(4.7) K&pa=04Fd s + FipFga — 06F s — F&aFg p.

The values of K £ which are different from zero are determined by (3.16).
Since the latin capitals as indices are connected with Ty (4,7, k, h, . ..), Ty, (a4,
B, vk, ...) or Ty, (aBi,v3j, kpk, ...) there are 3* types of curvature tensors.

From (4.2) it follows

Dy Z =Y"Z{p60,

(4.8) Dx(DyZ) = X*(YPZ{p) 400 =
XAV B 2% +YP 2 4)00.

hand,side from (4.2) we get

(4.9) Dixy1Z = Z§p[X,Y|"6c = A+ B,
where
(4.10) A = Z5(X2654Y P —YA54XP)60 =

(XAYEZ205 - YPX {525, -
(FBDA - FADB)XAYBZ?D](SC’
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(4.11) B=K{sX"YPZ{56c.

Substituting (4.10) and (4.11) into (4.9), then (4.9) and (4.4) into (4.1), we
obtain

(4.12) R(X,Y)Z = (Z{pja — 25415 + T4 Zp) XY Péc.
From (4.12) and (4.5) it follows

Theorem 4.2. The Ricci equations for the generalized connection D have the
form:
C C D ~C C D
Zigia—Zias T TpaZp=RppaZ”,

where
Ae {7;7O[i,aﬂi}, B e {]7 ’7]7’75.7}7

C € {k,ek,epk}, D € {h,vh,vuh}.
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