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CURVATURE THEORY OF GENERALIZED
CONNECTION IN J2

kM

Irena Čomić1, Mihai Anastasiei2

Abstract. The introduction of J2
kM manifold and its geometrical pre-

sentation is given in [2]. Here, the generalized connection is defined, the
torsion and curvature tensors are determined, and the Ricci equations are
established.
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1. Manifold J2
kM

Let M be a smooth manifold of dimension n and Jo,p(Rk,M) the set of
germs of smooth mappings f : Rk → M with f(o) = p ∈ M . We say that
f, g ∈ Jo,p(Rk,M) are equivalent up to order q if there exists a chart (U,ϕ)
around p such that

(1.1) dh
o (ϕ ◦ f) = dh

o (ϕ ◦ g), 1 ≤ h ≤ q,

where d means Frechet differentiation. It can be seen that if (1.1) holds for a
chart (U,ϕ), it holds for any other chart (V, ψ) around p.

We denote by jq
o,pf the equivalence class of f (the coset of f) and set Jq

o,p =
{jq

o,pf, f ∈ Jo,p(Rk,M)}. Then we put Jq
kM =

⋃
p∈M

Jq
o,p and define π : Jq

kM →
M by π(Jq

o,p) = p.
One can see that Jq

mM has a structure of smooth manifold.
We notice that for k = 1, this manifold is just the manifold OscqM studied

by R. Miron [5], which reduces to the tangent manifold for q = 1. For k = n and
q = 1, we get the manifold of frames over M and for k ∈ {2, 3, . . . , n − 1} and
q = 1 it can be identified to TM ⊗ · · · ⊗ TM (k times), which is the manifold
supporting the k-Lagrange geometry, see R. [7].

For these reasons we confine ourselves to the cases k = 2, 3, . . . , n−1 and for
the sake of simplicity we take q = 2. The case q greater than 2 can be similarly
treated.

We also notice that J2
kM is the manifold of 2-jets of the sections of the fibre

bundle Rk ×M → Rk but the theory of jets from the book by D.J. Saunders
[8] cannot be applied since the typical fibre M of this bundle is too general.
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Instead of that theory we follow the ideas and techniques from the k-Lagrange
geometry and from the geometry of OscqM spaces as well, see [1], [3], [6].

Let us come back to (1.1) for q = 2. Letting ϕ ◦ g : Rk → Rn as f i =
f i(t1, . . . , tk), gi = gi(t1, . . . , tk) this condition becomes

(1.1)’ f i(o) = gi(o) = ϕ(p),
∂f i

∂tα
(o) =

∂gi

∂tα
(o),

∂2f i

∂tα∂tβ
(o) =

∂2gi

∂tα∂tβ
(o),

for α, β = 1, 2, . . . , k. Let us set ∂i : ∂
∂xi , ∂α := ∂

∂tα .
Now, for another local chart (V, ψ) around p such that ψ ◦ ϕ−1 : xi′ =

xi′(x1, . . . , xn), rank
(

∂x′
∂xk

)
= n, taking ψ ◦ f and ψ ◦ g as f i′ = f i′(t1, . . . , tk)

and gi′ = gi′(t1, . . . , tk), respectively, we get f i′ = xi′(f j(t1, . . . , tk)), gi′ =
xi′(gj(t1, . . . , tk)) as well as

(1.2)
∂fi′

∂tα (o) = ∂xi′

∂xj (ϕ(p))∂fj

∂tα (o)
∂2fi′

∂tα∂tβ = ∂2xi′

∂xj∂xk (ϕ(p))∂fj

∂tα (o)∂fk

∂tβ (o) + ∂xi′

∂xj
∂2fj

∂tα∂tβ .

By (1.2) it follows the independence of (1.1) on the chosen local chart.
For f : Rk → M with f(o) = ϕ(p)(x1, . . . , xn) we set yαi = ∂fi

∂tα (o), zαβi =
∂2fi

∂tα∂tβ (o) and define a mapping φ : π−1(U) → ϕ(U) × Rkn × R
k(k+1)

2 n by
φ([f ]p) = (xi, yαi, zαβi).

The mapping φ is invertible, its inverse associating to (xi, yαi, zαβi) the coset
of the mapping ϕ−1 ◦ T , where T is the Taylor polynomial of second order with
respect to t.

2. Decomposition of T (E). Integrability conditions

Let E = J2
kM be an n + kn + 2−1k(k + 1)n dimensional C∞ manifold.

Some point u ∈ J2
kM in the local charts (U,ϕ) and (U ′, ϕ′) has coordinates

(xi, yαi, zαβi) and (xi′ , yαi′ , zαβi′) respectively. In U ∩U ′, the allowable coordi-
nate transformations are given by the equation

xi′ = xi′(x1, x2, . . . , xn), rank(
∂xi′

∂xi
) = n,(2.1)

yαi′ =
∂xi′

∂xi
yαi = yαi′(xi, yαi), α ≤ β, rank(yαi) = k,

zαβi′ =
∂2xi′

∂xj∂xh
yαjyβh +

∂xi′

∂xi
zαβi = zαβi′(xi, yαi, zαβi)

i, j, h, k, l = 1, 2, . . . , n, α, β, γ, δ, κ, ε = 1, 2, . . . , k.

Proposition 2.1. Transformations of type (2.1) form a pseudo group.

Proof. The neutral element of the group is given by the transformation xi′ = xi,
yαi′ = yαi, zαβi′ = zαβi. From rank(∂xi′

∂xi ) = n it follows that (2.1) has inverse
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transformation of the same type. If the point u in some local chart (U ′′, ϕ′′) has
coordinates (xi′′ , yαi′′ , zαβi′′), then in U ′ ∩ U ′′ the transformation law is given
by equation obtained from (2.1) in such a way, that the latin indices obtain
one more prime. After some calculation it follows that the coordinates of the
point u in U ∩ U ′′ satisfy the equation of type (2.1) if everywhere the index i′

is substituted by i′′.
Let us introduce the notations:

(2.2) ∂i =
∂

∂xi
, ∂αi =

∂

∂yαi
, ∂αβi =

∂

∂zαβi
, (α ≤ β).

The natural basis B̄ of T (J2
kM) = T (E) is B̄ = {∂i, ∂αi, ∂αβi}.

If a change of coordinates (2.1) is performed, the elements of B̄ are trans-
formed as follows:

∂i = (∂ix
i′)∂i′ + (∂i∂jx

i′)yαj∂αi′ + [(∂i∂j∂hxi′)yβjyγh + (∂i∂jx
i′)zβγj ]∂βγi′

∂αi = (∂ix
i′)∂αi′ + 2(∂i∂jx

i′)yγj∂αγi′(2.3)

∂αβi = (∂ix
i′)∂αβi′ .

The adapted basis of T (E) is B = {δi, δαi, δαβi}, where

(a) δi = ∂i −Nαj
i ∂αj −Nαβj

i ∂αβj , (α ≤ β),(2.4)

(b) δαi = ∂αi −Nβγj
αi ∂βγj , (β ≤ γ),

(c) δαβi = ∂αβi.

The summation is going over both types of indices.
From (2.4) it follows that ∂αβi is transformed as d tensor field, i.e. ∂αβi =

(∂ix
i′)∂αβi′ .

Proposition 2.2. The elements of B are transformed as d-tensor field, i.e.

(2.5) δi = (∂ix
i′)δi′ δαi = (∂ix

i′)δαi′ ,

if the nonlinear connection coefficients obey the following transformation law:

(a) Nβγj′

αi′ (∂ix
i′) = Nβγj

αi (∂jx
j′)− (∂αiz

βγj′),(2.6)

(b) Nαj′

i′ (∂ix
i′) = Nαj

i (∂jx
j′)− (∂iy

αj′),

(c) Nαβj′

i′ (∂ix
i′) = Nαβj

i (∂jx
j′) + Nγj

i (∂γjz
αβj′)− ∂iz

αβj′ .

Proof. The proof follows from (2.2)–(2.5).
If we denote by TH , TV1 and TV2 the subspaces of T (E) (at the point u)

spanned by {δi}, {δαi}, {δαβi}, then we have

T (E) = TH ⊕ TV1 ⊕ TV2 ,

where dimTH = n, dimTV1 = nk, dimTV2 = 2−1k(k + 1)n.
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The dual basis of B̄ is B̄∗ = {dxi, dyαi, dzαβi}. By a change of coordinates
(2.1) the element of B̄∗ are transformed as follows:

dxi′ = (∂ix
i′)dxi,(2.7)

dyαi′ = (∂i∂jx
i′)yαjdxi + (∂ix

i′)dyαi,

dzαβi′ = [(∂i∂j∂hxi′)yαjyβh + (∂i∂jx
i′)zαβj ]dxi +

(∂j∂hxi′)(yβhdyαj + yαhdyβj) + (∂ix
i′)dzαβi.

The adapted basis of T ∗(E) is B∗ = {dxi, δyαi, δzαβi}, where

δyαj = dyαj + Mαj
i dxi(2.8)

δzαβj = dzαβj + Mαβj
γi dyγi + Mαβj

i dxi.

The functions M are, for the time being, undetermined.

Proposition 2.3. The necessary and sufficient conditions that the bases B
and B∗ to be dual to each other (when B̄ and B̄∗ are dual) are the following
equations:

(a) Mαj
i = Nαj

i (b) Mαβj
γi = Nαβj

γi , (α ≤ β)(2.9)

(c) Mαβj
i = Nαβj

i + Nγh
i Nαβj

γh , (α ≤ β).

Proof. The proof follows from (2.4)–(2.9).
Remark. The bases B and B∗ are more general than those used in [2], but

they are not in accordance with the operator Jα, where

(2.10) Jαδi = δαi, Jβδαi = δβαi, Jγδαβi = 0.

If we take the basis B̃ = {δi, δαi, δαβi}, where δi and δαβi are determined by
(2.4a) and (2.4c) and

δαi = ∂αi −Nβj
i ∂αβj

then (2.10) are satisfied. The coresponding dual basis B̃∗ is determined by (2.8),
but now (2.9) has different form (see (2.16) in [2]).

Proposition 2.4. The horizontal distribution TH is integrable iff the following
relations are satisfied

(2.11) K βk
i j = K̄ βk

i j = δjN
βk
i − δiN

βk
j = 0,

(2.12) K γδk
i j = K̄ γδk

i j + K βh
i j Nγδk

βh = 0,

(2.13) (K̄ γδk
i j = δjN

γδk
i − δiN

γδk
j ).
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Proof. A straightforward calculation gives

(2.14) [δi, δj ] = K κk
i j δκk + K κρk

i j δκρk,

and from (2.11)–(2.13) it follows the statement.

Proposition 2.5. The vertical distribution TV1 is integrable iff

K δκk
αi βj = δβjN

δκk
αi − δαiN

δκk
βj = 0.

The proof follows from

(2.15) [δαi, δβj ] = K δκk
αi βjδδκk.

TV2 is integrable distribution because

(2.16) [δαβi, δγδj ] = 0.

3. The generalized connection on T (E)

Definition 3.1. The generalized connection D : T (E)×T (E) → T (E), (X, Y )
→ DXY , X, Y ∈ T (E) is the linear connection defined by:

Dδiδj = F k
j i δk + F κk

j i δκk + F κρk
j i δκρk(3.1)

Dδiδγj = F k
γj iδk + F κk

γj i δκk + F κρk
γj i δκρk

Dδiδγδj = F k
γδj iδk + F κk

γδj iδκk + F κρk
γδj iδκρk

Dδαiδj = F k
j αiδk + F κk

j αi δκk + F κρk
j αiδκρk

Dδαiδγj = F k
γj αiδk + F κk

γj αiδκk + F κρk
γj αiδκρk

Dδαiδγδj = F k
γδj αiδk + F κk

γδj αiδκk + F κρk
γδj αiδκρk

Dδαβi
δj = F k

j αβiδk + F κk
j αβiδκk + F κρk

j αβiδκρk

Dδαβi
δγj = F k

γj αβiδk + F κk
γj αβiδκk + F κρk

γj αβiδκρk

Dδαβi
δγδj = F k

γδj αβiδk + F κk
γδj αβiδκk + F κρk

γδj αβiδκρk (κ ≤ ρ).

Different types of linear connection in higher order geometries are given in
[4]–[7].

Definition 3.2. If on the right-hand side of (3.1) all terms vanish except for
the underlined then the generalized connection reduces to the distinguished d-
connection.

If on the right-hand side of (3.1) all terms vanish except for F k
j i , F κk

γj αi,
F κρk

γδj αβi, the generalized connection reduces to the strongly distinguished (s.d.)
connection.
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For the sake of brevity it is convenient to use new kind of indices, the latin
capitals, which take values from 1 to n + nk + 2−1k(k + 1)n. Using them, (3.1)
can be written in the form

DδI
δJ = F K

J I δK =(3.2)

F k
J Iδk + F κk

J I δκk + F κρk
J I δκρk.

Let X and Y be vector fields determined on T (E) by:

(3.3) X = XIδI = Xiδi + Xαiδαi + Xαβiδαβi,

(3.4) Y = Y JδJ = Y jδj + Y γjδγj + Y γδjδγδj

then (3.2) has the form

(3.5) DXY = DXIδI
Y JδJ = XI(δIY

J + F J
HIY

H)δJ = XIY J
|I δI .

Using the explicit forms of (3.3) and (3.4) for (3.5) we get the following propo-
sition.

Proposition 3.1. The generalized connection D can be expressed by covariant
derivatives in the form:

DXY = (XiY j
|i + XαiY j

|αi + XαβiY j
|αβi)δj +(3.6)

(XiY γj
|i + XαiY γj

|αi + XαβiY γj
|αβi)δγj +

(XiY γδj
|i + XαiY γδj

|αi + XαβiY γδj
|αβi)δγδj .

In (3.1), all the connection coefficients F are arbitrary smooth function of
x, y and z, but they should satisfy prescribed transformation law with respect
to (2.1). Our intention is to find these laws of transformations. All covariant
derivatives

(3.7) Y J
|I = δIY

J + F J
H IY

H = δIY
J + F J

h IY
h + F J

νh IY
νh + F J

µνh IY
µνh

which appear in (3.6) are d-tensor fields.
In (3.7) I ∈ {i, αi, αβi}, J ∈ {j, γj, γδj}.
For the d-connection (3.7) takes the form:

Y j
|I = δIY

j + F j
h IY

h

Y γj
|I = δIY

γj + F γj
δd IY

δd

Y αβj
|I = δIY

αβj + F αβj
µνh I Y µνh

I ∈ {i, κk, γκk}.
The necessary and sufficient conditions that all covariant derivatives Y J

|I
appeared in (3.6) be d-tensor fields are given in the following proposition.
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Proposition 3.2. All the connection coefficients F J
H I that appear in (3.7)

transform as d-tensor fields except for the case when I = i. Then we have

(3.8) (F J ′
H′ i′)(∂ix

i′)(∂hxh′) = F J
H i(∂jx

j′)− (∂h∂ix
j′).

Proof. If we suppose that Y J
|i (I = i in (3.7)) is d-tensor field, then

Y J
|i(∂jx

j′) = Y J′
|i′(∂ix

i′),

i.e.

(3.9) (δiY
J + F J

H iY
H)(∂jx

j′) = (δi′Y
J ′ + F J ′

H′ i′Y
H′

)(∂ix
i′).

As (see (2.4a) and (2.5))

δiY
J(∂jx

j′) = δi(Y J∂jx
j′)− Y Jδi(∂jx

j′) =

(∂ix
i′)δi′Y

J ′ − Y J(∂i∂jx
j′)

the substitution of the above equation in (3.9) gives

F J
H iY

H∂jx
j′ − Y H(∂h∂ix

j′) = F J ′
H′ i′Y

H(∂hxh′)(∂ix
i′)

from which follows (3.8). The connection coefficients from (3.8) appeared in the
first three lines of (3.1).

If we put I = αi in (3.7), and suppose that Y J
|αi is d-tensor field, then we

get
Y J
|αi(∂jx

j′) = Y J ′
|αi′(∂ix

i′)

(3.10) (δαiY
J + F J

H αiY
H)(∂jx

j′) = (δαi′Y
J′ + F J′

H′ αi′Y
H′

)(∂ix
i′).

As (see (2.4b) and (2.5))

(δαiY
J)(∂jx

j′) = δαi(Y J∂jx
j′)− Y Jδαi(∂jx

j′) =

(∂ix
i′)(δαi′Y

J′), ((δαi∂jx
j′) = 0)

the substitution of the above equation in (3.10) results in

(3.11) F J
H αi(∂jx

j′) = F J′
H′ αi′(∂hxh′)(∂ix

i′).

From the above equation follows that all connection coefficients that ap-
peared in the middle three lines of (3.1) are transformed as d-tensor fields.

In a similar way one can prove

(3.12) F J
H αβi(∂jx

j′) = F J′
H′ αβi′(∂hxh′)(∂ix

i′),

i.e. all connection coefficients that appeared in the last three lines of (3.1) are
tensor fields.
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The torsion tensor of the generalized connection D is determined by

T (X,Y ) = DXY −DY X − [X, Y ].

A straightforward calculation gives

T (X, Y ) = {(F K
J I − F K

I J )δK − [δI , δJ ]}Y JXI .

If we introduce the notation

(3.13) [δI , δJ ] = K K
I J δK ,

we get

(3.14) T (X,Y ) = (F K
J I − F K

I J −K K
I J )Y JXIδK = T K

J I Y JXIδK .

Now the components of K K
J I should be determined. [δi, δj ], [δαi, δβj ] and

[δαβi, δγδj ] are determined by (2.14), (2.15) and (2.16). Further, we obtain

[δi, δγj ] = K κk
i γj δκk + K κρk

i γj δκρk,(3.15)

K κk
i γj = δγjN

κk
i

K κρk
i γj = K̄ κρk

i γj + K̄ δk
i γjM

κρk
δh

K̄ κρk
i γj = δγjN

κρk
i − δiN

κρk
γj

[δi, δγδj ] = K κk
i γδj∂κk + K κρk

i γδk∂κρk

K κk
i γδj = ∂γδjN

κk
i

K κρk
i γδj = ∂γδjN

κρk
i

[δαi, δγδj ] = K κρk
αi γδj∂κρk

K κρk
αi γδj = ∂γδjN

κδk
αi

Theorem 3.1. The components of the torsion tensor

T (X, Y ) = T K
J I Y JXIδK

of the generalized connection D are determined by

T K
J I = F K

J I − F K
I J

except for the case when K K
I J 6= 0 (see (3.13), (3.14)), and then they have the
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form (see (2.14), (2.15) and (3.15)):

(a) T κk
j i = F κk

j i − F κk
i j −K κk

i j(3.16)

(b) T κρk
j i = F κρk

j i − F κρk
i j −K κρk

i j

(c) T κρk
γj αi = F κρk

γj αi − F κρk
αi γj −K κρk

αi γj

(d) T κk
γj i = F κk

γj i − F κk
i γj −K κk

i γj

(e) T κρk
γj i = F κρk

γj i − F κρk
i γj −K κρk

i γj

(f) T κk
γδj i = F κk

γδj i − F κk
i γδj −K κk

i γδj

(g) T κρk
γδj i = F κρk

γδj i − F κρk
i γδk −K κρk

i γδj

(h) T κρk
γδj αi = F κρk

γδj αi − F κρk
αi γδj −K κρk

αi γδj

As T K
J I are components of the d-tensor field, using (3.16), (3.8), (3.11) and

(3.12) we can obtain the transformation laws of K K
J I .

Proposition 3.3. K κk
i j , K κρk

i j , K κρk
αi γj, K κρk

αi γδj are d-tensor fields,

K κk
i γj , K κρk

i γj , K κk
i γδj , K κρk

i γδj

are not d-tensor fields and they transform in the following way:

(3.17) K κk
i γj = K κk′

i′ γj′(∂ix
i′)(∂jx

j′)(∂k′x
k) + (∂i∂jx

k′)(∂k′x
k)

(similar for the next three K).

Proof. From (3.8) it follows, that F κk
j i − F κk

i j is a d-tensor, and from (3.16a)
follows that K κk

i j is the difference of two d-tensors, so itself is a d-tensor.
As in (3.16d), T κk

γj i and F κk
i γj are d-tensors (see (3.11)), so F κk

γj i −K κk
i γj

is a d-tensor. Using this fact and (3.8) we obtain (3.17).
For the d-connection and s.d. connection in (3.15) all terms K C

A B remain,
because they are not functions of different connection coefficients, they only
depend on N and M , which are involved in adapted bases. In some components
of T K

J I some Γ K
J I vanish (see definition 3.2).

4. The curvature theory of generalized connection

The curvature tensor

(4.1) R(X,Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z

can be calculated in the usual way. For X = XAδA, Y = Y BδB , Z = ZCδC we
get

(4.2) DY Z = DY BδB
ZCδC = Y B(δBZC)δC + Y BZCF D

C BδD,
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DXDY Z = DXAδA
[Y B(δBZC)δC + Y BZCF D

C BδD] =(4.3)
XA(δAY B)(δBZC)δC + XAY BδA(δBZC)δC +
XAY B(δBZC)F D

C AδD + XA(δAY B)ZCF D
C BδD +

XAY B(δAZC)F D
C BδD + XAY BZC(δAF D

C B)δD +
XAY BZCF E

C BF D
E AδD.

Further, using the notation [δA, δB ] = K D
A BδD, we get

D[X,Y ]Z = D[XAδA,Y BδB ]Z
CδC =(4.4)

XA(δAY B)[(δBZC)δC + ZCΓ D
C BδD]−

Y B(δBXA)[(δAZC)δC + ZCΓ D
C AδD] +

XAY B{[δA, δB ]ZC}δC + XAY BZCK E
A BF D

C EδD.

Finally we obtain

Theorem 4.1. The curvature tensor of the generalized connection D on T (E)
is given by

(4.5) R(X, Y )Z = R D
C BAXAY BZCδD,

where

(4.6) R D
C BA = K D

C BA + F D
C EK E

B A,

(4.7) K D
C BA = δAF D

C B + F E
C BF D

E A − δBF D
C A − F E

C AF D
E B .

The values of K E
A B which are different from zero are determined by (3.16).

Since the latin capitals as indices are connected with TH(i, j, k, h, . . .), TV1(αi,
βj, γk, . . .) or TV2(αβi, γδj, κρk, . . .) there are 34 types of curvature tensors.

From (4.2) it follows
DY Z = Y BZC

|BδC ,

DX(DY Z) = XA(Y BZC
|B)|AδC =(4.8)

XA(Y B
|AZC

|B + Y BZC
|B|A)δC .

hand,side from (4.2) we get

(4.9) D[X,Y ]Z = ZC
|D[X, Y ]DδC = A + B,

where

A = ZC
|B(XAδAY B − Y AδAXB)δC =(4.10)

[XAY B
AZC

|B − Y BXA
|BZC

|A −
(F D

B A − F D
A B)XAY BZC

|D]δC ,
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(4.11) B = K D
A BXAY BZC

|DδC .

Substituting (4.10) and (4.11) into (4.9), then (4.9) and (4.4) into (4.1), we
obtain

(4.12) R(X, Y )Z = (ZC
|B|A − ZC

|A|B + T D
B AZC

|D)XAY BδC .

From (4.12) and (4.5) it follows

Theorem 4.2. The Ricci equations for the generalized connection D have the
form:

ZC
|B|A − ZC

|A|B + T D
B AZC

|D = R C
D BAZD,

where

A ∈ {i, αi, αβi}, B ∈ {j, γj, γδj},

C ∈ {k, εk, ερk}, D ∈ {h, νh, νµh}.
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