DECOMPOSITION OF THE DISTRIBUTION ON $B M O$ SPACE

Amina Lahmar Benbernou ${ }^{1}$, Sadek Gala ${ }^{2}$

Abstract. In this paper, we characterize \vec{f} so that if the inequality

$$
\left|\int_{\mathbb{R}^{d}} \vec{f} \cdot(\bar{u} \nabla v-v \nabla \bar{u}) d x\right| \leq C\|u\|_{\dot{H}^{1}}\|v\|_{\dot{H}^{1}}
$$

holds for all $u, v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, then \vec{f} can be represented in the form

$$
\vec{f}=\nabla g+\operatorname{Div} H
$$

where $g \in B M O\left(\mathbb{R}^{d}\right), H$ is a skew-symmetric matrix field such that $H \in B M O\left(\mathbb{R}^{d}\right)^{d^{2}}$.

AMS Mathematics Subject Classification (2000): 42B20, 42B35
Key words and phrases: Sobolev spaces, distribution, BMO spaces

1. Introduction

Recently, S. Gala [5] proved a remarkable theorem to characterize the class of vector fields \vec{f} which satisfies the commutator inequality

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{d}} \vec{f} \cdot(\bar{u} \nabla v-v \nabla \bar{u}) d x\right| \leq C\|u\|_{\dot{H}^{1}}\|v\|_{\dot{H}^{1}} \tag{1.1}
\end{equation*}
$$

for all $u, v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$. Here we use Theorem 1 from [5] to decompose \vec{f} in the form

$$
\vec{f}=\nabla g+\operatorname{Div} H
$$

in the distributional sense, where $g \in B M O\left(\mathbb{R}^{d}\right), H$ is a skew-symmetric matrix field such that $H \in B M O\left(\mathbb{R}^{d}\right)^{d^{2}}$ and Div : $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d \times d} \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ is the row divergence operator defined by

$$
\operatorname{Div}\left(h_{i, j}\right)=\left(\sum_{j=1}^{d} \partial_{j} h_{i, j}\right)_{i=1}^{d}
$$

[^0]We start with some prerequisites for our main result. Let $\mathcal{D}\left(\mathbb{R}^{d}\right)=C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be the class of all infinitely differentiable, compactly supported complex-valued functions, and let $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ denote the corresponding space of (complex-valued) distributions.

For $\varphi \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, consider the multiplication operator on $\mathcal{D}\left(\mathbb{R}^{d}\right)$ defined by

$$
\begin{equation*}
\langle\varphi u, v\rangle=\langle\varphi, \bar{u} v\rangle, \quad u, v \in \mathcal{D}\left(\mathbb{R}^{d}\right) \tag{1.2}
\end{equation*}
$$

where $\langle.,$.$\rangle represents the usual pairing between \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If the sesquilinear form $\langle\varphi .,$.$\rangle is bounded on \dot{H}^{1}\left(\mathbb{R}^{d}\right) \times \dot{H}^{1}\left(\mathbb{R}^{d}\right)$:

$$
\begin{equation*}
|\langle\varphi u, v\rangle| \leq c\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla v\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \quad u, v \in \mathcal{D}\left(\mathbb{R}^{d}\right) \tag{1.3}
\end{equation*}
$$

where the constant c is independent of u, v, then $\varphi u \in \dot{H}^{-1}\left(\mathbb{R}^{d}\right)$, where $\dot{H}^{-1}\left(\mathbb{R}^{d}\right)=\left(\dot{H}^{1}\left(\mathbb{R}^{d}\right)\right)^{*}$ is a dual Sobolev space, and the multiplication operator can be extended by continuity to all of the space $\dot{H}^{1}\left(\mathbb{R}^{d}\right)$. Here, the space $\dot{H}^{1}\left(\mathbb{R}^{d}\right)$ is defined as the completion of (complex-valued) $\mathcal{D}\left(\mathbb{R}^{d}\right)$ functions with respect to the norm $\|u\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)}=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}$. As usual, this extension is also denoted by φ. By the polarization identity, (1.3) is equivalent to the boundedness of the corresponding quadratic form :

$$
\begin{equation*}
\left.|\langle\varphi u, u\rangle|=|\langle\varphi,| u|^{2}\right\rangle \mid \leq c\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad u \in \mathcal{D}\left(\mathbb{R}^{d}\right) \tag{1.4}
\end{equation*}
$$

where the constant c is independent of u. If φ is a (complex-valued) Borel measure on \mathbb{R}^{d}, then (1.4) can be recast in the form

$$
\int_{\mathbb{R}^{d}}|u(x)|^{2} d \varphi(x) \leq c\|u\|_{\dot{H}^{1}}^{2}, \quad u \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

which has been studied in a comprehensive way. We refer to [2], [3], [6], [8], where different analytic conditions for the so-called trace inequalities of this type can be found.
$\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$ is the Hardy space in the sense of Fefferman and Stein [4] and $B M O\left(\mathbb{R}^{d}\right)$ is the John-Nirenberg space. $B M O\left(\mathbb{R}^{d}\right)$ is the Banach space modulo constants with the norm $\|\cdot\|_{*}$ defined by

$$
\|b\|_{*}=\sup _{x \in \mathbb{R}^{d}} \frac{1}{|Q|} \int_{Q}\left|b(y)-m_{Q}(b)\right| d y
$$

where

$$
m_{Q}(b)=\frac{1}{|Q|} \int_{Q} b(y) d y
$$

Fefferman and Stein [4] proved that the Banach space dual of $\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$ is isomorphic to $B M O\left(\mathbb{R}^{d}\right)$, that is,

$$
\|b\|_{*} \approx \sup _{\|f\| \leq 1}\left|\int_{\mathbb{R}^{d}} b(x) f(x) d x\right|
$$

As a consequence of Theorem 1 in [5], we deduce that if

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{d}} \vec{f} \cdot(\bar{u} \nabla v-v \nabla \bar{u}) d x\right| \leq C\|u\|_{\dot{H}^{1}}\|v\|_{\dot{H}^{1}} \tag{1.5}
\end{equation*}
$$

holds for all $u, v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, then \vec{f} can be decomposed into the form

$$
\vec{f}=\nabla g+\operatorname{Div} H
$$

in the distributional sense, where $g \in B M O\left(\mathbb{R}^{d}\right), H$ is a skew-symmetric matrix field such that $H \in B M O\left(\mathbb{R}^{d}\right)^{d^{2}}$ and Div : $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d \times d} \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ is the row divergence operator defined by

$$
\operatorname{Div}\left(h_{i, j}\right)=\left(\sum_{j=1}^{d} \partial_{j} h_{i, j}\right)_{i=1}^{d}
$$

We now state our main result for arbitrary (complex-valued) distributions \vec{f}.

Theorem 1. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ and $d \geq 3$. If (1.5) is satisfied, then

$$
\begin{equation*}
\vec{f}=\nabla g+\operatorname{Div} H \tag{1.6}
\end{equation*}
$$

in the distributional sense where
(1.7) $g=\Delta^{-1}$ div $\vec{f} \in B M O\left(\mathbb{R}^{d}\right)$ and $H=\Delta^{-1}$ curl $\vec{f} \in B M O\left(\mathbb{R}^{d}\right)^{d^{2}}$.

Here g and H are defined respectively by

$$
\begin{align*}
g & =\lim _{j \rightarrow+\infty} g_{j}, \quad g_{j}=\Delta^{-1} \operatorname{div}\left(\varphi_{j} \vec{f}\right) \tag{1.8}\\
H & =\lim _{j \rightarrow+\infty} H_{j}, \quad H_{j}=\Delta^{-1} \operatorname{curl}\left(\varphi_{j} \vec{f}\right) \tag{1.9}
\end{align*}
$$

in terms of the convergence in the weak-*topology of $B M O\left(\mathbb{R}^{d}\right)$. The above limits do not depend on the choice of φ_{j}.

Moreover,

$$
\begin{equation*}
\nabla g=\lim _{j \rightarrow+\infty} \nabla g_{j}, \quad \text { Div } H=\lim _{j \rightarrow+\infty} \operatorname{Div} H_{j} \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right) \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{curl}(\nabla g)=0, \operatorname{div}(\operatorname{Div} H)=0, \Delta g=\operatorname{div} \vec{f}, \Delta H=\operatorname{curl} \vec{f} \tag{1.11}
\end{equation*}
$$

The proof of Theorem 1 is rather delicate. We shall need several lemmas for proving some a priori estimates.

Lemma 1. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If (1.5) holds, then we have

$$
\begin{equation*}
\|\operatorname{div} \vec{f}\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}-\frac{1}{d}} \tag{1.12}
\end{equation*}
$$

for every cube Q in \mathbb{R}^{d} with C independent of Q.
Proof. The proof of this fact is straightforward. Let $v \in \mathcal{D}(Q)$ be given and let u be a function in $\mathcal{D}(Q)$ such that $u=1$ on supp v. Then the following estimate is valid :

$$
\begin{aligned}
|\langle\vec{f}, \bar{u} \nabla v-v \nabla \bar{u}\rangle| & =|\langle\vec{f}, \nabla v\rangle|=|\langle\operatorname{div} \vec{f}, v\rangle| \\
& \leq C(d)\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla v\|_{L^{2}(Q)} .
\end{aligned}
$$

Taking the infinimum over all such u on the right-hand side, we get

$$
|\langle\operatorname{div} \vec{f}, v\rangle| \leq C \sqrt{\operatorname{cap}(Q)}\|\nabla v\|_{L^{2}(Q)}
$$

where the capacity of a compact set $e \subset \mathbb{R}^{d} \operatorname{cap}($.$) is defined by ([7], sect.$ 11.15), (see also [1]) :

$$
\operatorname{cap}(e)=\inf \left\{\|u\|_{\dot{H}_{\left(\mathbb{R}^{d}\right)}^{2}}^{2}: u \in \mathcal{D}\left(\mathbb{R}^{d}\right), u \geq 1 \text { on } e\right\} .
$$

Since for a cube Q in \mathbb{R}^{d},

$$
\operatorname{cap}(Q) \simeq|Q|^{1-\frac{2}{d}}
$$

the proof of lemma is complete.
In order to prove our main result, the following lemma will be used.
Lemma 2. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If (1.5) holds, we then have

$$
\begin{equation*}
\|\vec{f}\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}} \tag{1.13}
\end{equation*}
$$

for every cube Q in \mathbb{R}^{d} with C independent of Q.
Proof. Let Q^{*} be the cube with the same center as Q but with the side lenght twice as long. Suppose that $v \in \mathcal{D}(Q)$ and let φ be a C^{∞} function taking values in $[0,1]$ with support in Q^{*} and so that $\varphi=1$ on Q. Let us set $u=\left(x_{i}-a_{i}\right) \varphi$ $(i=\overline{1, d})$, where $a=\left(a_{i}\right)$ is the center of Q. Then it is easy to see that

$$
\|\nabla u\|_{L^{2}\left(Q^{*}\right)} \leq\|\nabla u\|_{L^{2}(Q)} \leq C|Q|^{\frac{1}{2}}
$$

Next note that for such u and v

$$
\begin{aligned}
\langle\vec{f}, \bar{u} \nabla v-v \nabla \bar{u}\rangle & =\langle\vec{f}, \nabla(\bar{u} v)-2 v \nabla \bar{u}\rangle \\
& =-\langle\operatorname{div} \vec{f}, \bar{u} v\rangle-2\langle\vec{f}, v \nabla \bar{u}\rangle \\
& =-\left\langle\operatorname{div} \vec{f},\left(x_{i}-a_{i}\right) v\right\rangle-2\left\langle f_{i}, v\right\rangle .
\end{aligned}
$$

Concerning $\left\langle\operatorname{div} \vec{f},\left(x_{i}-a_{i}\right) v\right\rangle$, we observe that by using (1.12), the Poincaré inequality with v replaced by $\left(x_{i}-a_{i}\right) v$

$$
\begin{aligned}
\left|\left\langle\operatorname{div} \vec{f},\left(x_{i}-a_{i}\right) v\right\rangle\right| & \leq C|Q|^{\frac{1}{2}-\frac{1}{d}}\left\|\nabla\left[\left(x_{i}-a_{i}\right) v\right]\right\|_{L^{2}(Q)} \\
& \leq C|Q|^{\frac{1}{2}-\frac{1}{d}}\left(\|v\|_{L^{2}(Q)}+\left\|\left(x_{i}-a_{i}\right) \nabla v\right\|_{L^{2}(Q)}\right) \\
& \leq C|Q|^{\frac{1}{2}-\frac{1}{d}}\left(2|Q|^{\frac{1}{d}}\|\nabla v\|_{L^{2}(Q)}+\left\|\left(x_{i}-a_{i}\right) \nabla v\right\|_{L^{2}(Q)}\right) \\
& \leq C|Q|^{\frac{1}{2}}\|\nabla v\|_{L^{2}(Q)}, \quad \forall v \in \mathcal{D}(Q) .
\end{aligned}
$$

Since for every $i=\overline{1, d}$,

$$
\begin{aligned}
2\left|\left\langle f_{i}, v\right\rangle\right| & \leq|\langle\vec{f}, \bar{u} \nabla v-v \nabla \bar{u}\rangle|+\left|\left\langle\operatorname{div} \vec{f},\left(x_{i}-a_{i}\right) v\right\rangle\right| \\
& \leq C\|\nabla u\|_{L^{2}(2 Q)}\|\nabla v\|_{L^{2}(Q)}+C|Q|^{\frac{1}{2}}\|\nabla v\|_{L^{2}(Q)} \\
& \leq C|Q|^{\frac{1}{2}}\|\nabla v\|_{L^{2}(Q)}
\end{aligned}
$$

and we can conclude.
For a fixed cube Q in \mathbb{R}^{d}, we denote by $\left\{\omega_{j}\right\}_{j=0}^{\infty}$ a smooth partition of unity associated with Q, i.e., fix $\omega_{0} \in \mathcal{D}(2 Q)$ with the properties $\omega_{j} \in \mathcal{D}\left(2^{j+1} Q \backslash 2^{j-1} Q\right)$, $j \geq 1$ so that

$$
\begin{equation*}
0 \leq \omega_{j}(x) \leq 1, \quad\left|\nabla \omega_{j}(x)\right| \leq C\left(2^{j} l(Q)\right)^{-1}, \quad j \in \mathbb{N} \tag{1.14}
\end{equation*}
$$

where $l(Q)$ denotes the side lenght of Q and C depends only on d. Finally, we have for all $x \in \mathbb{R}^{d}$,

$$
\sum_{j=0}^{\infty} \omega_{j}(x)=1
$$

In the following \mathcal{R}_{i} (resp. $\left.\mathcal{R}_{i, m}=-\partial_{i} \partial_{m} \Delta^{-1}\right)(i, m=1, \ldots, d)$ denotes the Riesz transforms (resp. the double Riesz transforms) on \mathbb{R}^{d} (see [9]) which are given respectively up to a constant multiple by

$$
K_{i}(x-y)=\frac{\left(x_{i}-y_{i}\right)}{|x-y|^{d}}, \quad K_{i, m}(x-y)=\frac{|x-y|^{2}-d^{-1}\left(x_{i}-y_{i}\right)\left(x_{m}-y_{m}\right)}{|x-y|^{d+2}} .
$$

From this we derive

Lemma 3. The following estimates hold.
(i) For every $v \in \mathcal{D}(Q)$ and $j \geq 0$

$$
\begin{equation*}
\left\|\nabla\left(\omega_{j} \partial_{i} \partial_{m} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \leq C 2^{-j\left(1+\frac{d}{2}\right)}\|\nabla v\|_{L^{2}(Q)}, \quad i, m=1, \ldots, d \tag{1.15}
\end{equation*}
$$

where C depends only on d.
(ii) For every $v \in \mathcal{D}(Q)$ such that $\int_{Q} v d x=0$ and $j \geq 2$

$$
\begin{equation*}
\left\|\nabla\left(\omega_{j} \partial_{i} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \leq C 2^{-j\left(1+\frac{d}{2}\right)}|Q|^{-\frac{1}{2}}\|\nabla v\|_{L^{1}(Q)}, \quad i=1, \ldots, d \tag{1.16}
\end{equation*}
$$

where C depends only on d.
Proof. To prove (1.15), let $v \in \mathcal{D}(Q)$ and let $a=a_{Q}$ be the center of Q and $\rho=l(Q)$ its side lenght. For $j=0,1$, it follows from Poincaré's inequality, the boundedness of $\mathcal{R}_{i, m}$ on $L^{2}\left(\mathbb{R}^{d}\right)$, that

$$
\begin{aligned}
\left\|\nabla\left(\omega_{j} \partial_{i} \partial_{m} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \leq & \left\|\nabla \omega_{j}\left(\partial_{i} \partial_{m} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \\
& +\left\|\omega_{j} \partial_{i} \partial_{m}\left(\Delta^{-1} \nabla v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \\
\leq & C\left(\rho^{-1}\left\|\mathcal{R}_{i, m} v\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\left\|\mathcal{R}_{i, m} \nabla v\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}\right) \\
\leq & C\left(\rho^{-1}\|v\|_{L^{2}(Q)}+\|\nabla v\|_{L^{2}(Q)}\right) \\
\leq & C\|\nabla v\|_{L^{2}(Q)} .
\end{aligned}
$$

On the other hand, we have for $j \geq 2$,

$$
\begin{align*}
\left|K_{i}(x-y)-K_{i}(x-a)\right| & \leq C(d) \frac{|y-a|}{|x-y|^{d}} \tag{1.17}\\
\left|K_{i, m}(x-y)-K_{i, m}(x-a)\right| & \leq C(d) \frac{|y-a|}{|x-y|^{d+1}} \tag{1.18}
\end{align*}
$$

if $|y-a|<R,|y-a|>2 R$. Using the preceding estimates with $R=c(d) 2^{j} \rho$, we see that for $x \in 2^{j+1} Q \backslash 2^{j-1} Q$:

$$
\begin{aligned}
\left|\partial_{i} \partial_{m} \Delta^{-1} v(x)\right| & =\left|\int_{Q}\left(K_{i}(x-y)-K_{i}(x-a)\right) \partial_{m} v(y) d y\right| \\
& \leq \int_{Q}\left|K_{i}(x-y)-K_{i}(x-a)\right||\nabla v(y)| d y \\
& \leq C 2^{-j d} \rho^{1-d}\|\nabla v\|_{L^{1}(Q)}
\end{aligned}
$$

$$
\begin{aligned}
\left|\nabla \partial_{i} \partial_{m} \Delta^{-1} v(x)\right| & =\left|\int_{Q}\left(K_{i, m}(x-y)-K_{i, m}(x-a)\right) \partial_{m} \nabla v(y) d y\right| \\
& \leq \int_{Q}\left|K_{i, m}(x-y)-K_{i, m}(x-a)\right||\nabla v(y)| d y \\
& \leq C 2^{-j(d+1)} \rho^{-d}\|\nabla v\|_{L^{1}(Q)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|\nabla\left(\omega_{j} \partial_{i} \partial_{m} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \leq & \left\|\nabla \omega_{j}\left(\partial_{i} \partial_{m} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \\
& +\left\|\omega_{j} \partial_{i} \partial_{m}\left(\Delta^{-1} \nabla v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \\
\leq & C 2^{-j\left(\frac{d}{2}+1\right)} \rho^{-\frac{d}{2}}\|\nabla v\|_{L^{1}(Q)} \\
\leq & C 2^{-j\left(1+\frac{d}{2}\right)}\|\nabla v\|_{L^{2}(Q)},
\end{aligned}
$$

which gives (1.15).
The proof of (1.16) for $j \geq 2$, provided $\int_{Q} v d x=0$, is similar to that of (1.15).
Using the estimates (1.17) and (1.18) we deduce that for $x \in 2^{j+1} Q \backslash 2^{j-1} Q$,

$$
\begin{aligned}
\left|\nabla\left(\omega_{j} \partial_{i} \Delta^{-1} v\right)(x)\right| \leq & \left|\nabla \omega_{j}(x)\right|\left|\partial_{i} \Delta^{-1} v(x)\right|+\left|\omega_{j}(x)\right|\left|\nabla \partial_{i} \Delta^{-1} v(x)\right| \\
\leq & C 2^{-j} \rho^{-1} \int_{Q}\left|G_{i}(x-y)-G_{i}(x)\right||v(y)| d y \\
& +C \sum_{m=1}^{d} \int_{Q}\left|G_{i, m}(x-y)-G_{i, m}(x)\right||v(y)| d y \\
\leq & C 2^{-j(1+d)}|Q|^{-1} \int_{Q}|v(y)| d y .
\end{aligned}
$$

This yields

$$
\left\|\nabla\left(\omega_{j} \partial_{i} \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \leq C 2^{-j\left(1+\frac{d}{2}\right)}|Q|^{-\frac{1}{2}}\|\nabla v\|_{L^{2}(Q)}
$$

This completes the proof.
If we want to prepare the scaling argument, we consider a function $\varphi \in$ $\mathcal{D}\left(\mathbb{R}^{d}\right)$ with the properties

$$
0 \leq \varphi \leq 1, \quad \varphi(x)=1 \quad \text { if } \quad|x| \leq 1, \quad \varphi(x)=0 \quad \text { if } \quad|x| \geq 2
$$

and define the functions

$$
\varphi_{j} \in \mathcal{D}\left(\mathbb{R}^{d}\right), \quad \varphi_{j}(x)=\varphi\left(j^{-1} x\right), \quad x \in \mathbb{R}^{d}, \quad j \in \mathbb{N} .
$$

It follows that

$$
\lim _{j \rightarrow+\infty} \varphi_{j}(x)=1 \text { for all } x \in \mathbb{R}^{d}
$$

and setting

$$
B_{j}=\left\{x \in \mathbb{R}^{d}:|x|<j\right\}, \quad G_{j}=B_{2 j} \backslash \overline{B_{j}}
$$

we get $\operatorname{Supp} \nabla \varphi_{j} \subseteq \overline{G_{j}}$, $\operatorname{Supp} \varphi_{j} \subseteq \overline{B_{j}}, j \in \mathbb{N}$.
With these notations we obtain
Lemma 4. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Then, we have

$$
\left\|\varphi_{j} \vec{f}\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}}
$$

for every cube Q in \mathbb{R}^{d} where C does not depend on Q.
Proof. The proof is straightforward. By using (1.13) with \vec{f} replaced by $\varphi_{j} \vec{f}$ we obtain

$$
\begin{equation*}
\left\|\varphi_{j} \vec{f}\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}}, \tag{1.19}
\end{equation*}
$$

for every cube Q where C does not depend on Q and j. This is a consequence of the inequality

$$
\left\|\left(\nabla \varphi_{j}\right) v\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq c(d)\|\nabla v\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

for $v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, which follows from Poincaré's inequality.

Remark 1. We observe that g_{j} and H_{j} given respectively by (1.8) and (1.9) are well-defined in the distributional sense. Moreover, by (1.19), $\varphi_{j} \vec{f} \in \dot{H}^{-1}(Q)$ and hence $g_{j} \in L^{2}\left(\mathbb{R}^{d}\right), H_{j} \in L^{2}\left(\mathbb{R}^{d}\right)^{d^{2}}$.

Next, we have to show that the following lemma.
Lemma 5. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Then

$$
\begin{equation*}
\left\|\partial_{i} \partial_{m} \Delta^{-1}\left(\varphi_{j} \vec{f}\right)\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}} \tag{1.20}
\end{equation*}
$$

for all $i, m=1,2, \ldots, d$ with a constant C independent of the cube Q and j.
Proof. We know already that $\partial_{i} \partial_{m} \Delta^{-1}\left(\varphi_{j} \vec{f}\right)$ is well-defined in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Then

$$
\left\langle\partial_{i} \partial_{m} \Delta^{-1}\left(\varphi_{j} \vec{f}\right), \vec{v}\right\rangle=\left\langle\varphi_{j} \vec{f}, \Delta^{-1} \partial_{i} \partial_{m} \vec{v}\right\rangle=\sum_{j=0}^{\infty}\left\langle\varphi_{j} \vec{f}, \omega_{j} \Delta^{-1} \partial_{i} \partial_{m} \vec{v}\right\rangle
$$

for every $v \in \mathcal{D}(Q)$, where the sum on the right contains only a finite number of non-zero terms. Therefore, it follows from (1.19), statement (i) of Lemma 3, and Schwarz inequality,

$$
\begin{aligned}
\left|\left\langle\varphi_{j} \vec{f}, \Delta^{-1} \partial_{i} \partial_{m} \vec{v}\right\rangle\right| & \leq \sum_{j=0}^{\infty}\left|\left\langle\varphi_{j} \vec{f}, \omega_{j} \Delta^{-1} \partial_{i} \partial_{m} \vec{v}\right\rangle\right| \\
& \leq c \sum_{j=0}^{\infty} 2^{j \frac{d}{2}}|Q|^{\frac{1}{2}}\left\|\nabla\left(\omega_{j} \partial_{i} \partial_{m} \Delta^{-1} \vec{v}\right)\right\|_{L^{2}\left(2^{j+1} Q\right)} \\
& \leq C \sum_{j=0}^{\infty} 2^{j \frac{d}{2}}|Q|^{\frac{1}{2}} 2^{-j\left(1+\frac{d}{2}\right)}\|\nabla v\|_{L^{2}(Q)} \\
& \leq C|Q|^{\frac{1}{2}}\|\nabla v\|_{L^{2}(Q)}
\end{aligned}
$$

which proves (1.20). In particular,

$$
\left\|\nabla g_{j}\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}}, \quad\left\|\mathbf{D}\left(H_{j}\right)\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}} .
$$

From this, we deduce immediately

Corollary 1. Let $\vec{f} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If (1.5) is satisfied, then

$$
\begin{aligned}
\left\|g_{j}-m_{Q}\left(g_{j}\right)\right\|_{L^{2}(Q)} & \leq c\left\|\nabla g_{j}\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}} \\
\left\|H_{j}-m_{Q}\left(H_{j}\right)\right\|_{L^{2}(Q)} & \leq c\left\|\mathbf{D}\left(H_{j}\right)\right\|_{\dot{H}^{-1}(Q)} \leq C|Q|^{\frac{1}{2}}
\end{aligned}
$$

where $m_{Q}\left(g_{j}\right)$ (resp. $\left.m_{Q}\left(H_{j}\right)\right)$ denotes the mean value of $g_{j}\left(\right.$ resp. $\left.H_{j}\right)$ over Q and C does not depend on Q and j. Hence

$$
\sup _{j}\left\|g_{j}\right\|_{B M O\left(\mathbb{R}^{d}\right)}<\infty \quad \text { and } \quad \sup _{j}\left\|H_{j}\right\|_{B M O\left(\mathbb{R}^{d}\right)^{d^{2}}}<\infty .
$$

We claim that both $\left\{g_{j}\right\}$ and $\left\{H_{j}\right\}$ converge in the weak-* topology of $B M O$ repectively to $f \in B M O\left(\mathbb{R}^{d}\right)$ and $H \in B M O\left(\mathbb{R}^{d}\right)^{d^{2}}$ defined up to an additive constant. We will deduce that

$$
\Delta g=\operatorname{div} \vec{f} \quad \text { and } \quad \Delta H=\operatorname{curl} \vec{f} \text { in the distributional sense }
$$

and set

$$
g=\Delta^{-1} \operatorname{div} \vec{f} \quad \text { and } \quad H=\Delta^{-1} \operatorname{curl} \vec{f}
$$

Proof. Since $\left\{g_{j}\right\}$ is uniformly bounded in the $B M O$-norm, it is enough to verify that it forms a Cauchy sequence in the weak-*topology of $B M O$ on a dense
family of C_{0}^{∞}-functions in $\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$. Suppose that $v \in \mathcal{D}(Q)$ and $\int_{Q} v d x=0$. Then one can easily check that

$$
\left|\int_{\mathbb{R}^{d}}\left(g_{n}-g_{m}\right) \bar{v} d x\right| \leq \sum_{j \geq n_{0}}\left|\left\langle\left(\varphi_{n}-\varphi_{m}\right) \vec{f}, \omega_{j} \nabla \Delta^{-1} v\right\rangle\right|,
$$

where $n_{0} \rightarrow+\infty$ as $m, n \rightarrow+\infty$. By (1.19), it follows that

$$
\left|\left\langle\left(\varphi_{n}-\varphi_{m}\right) \vec{f}, \omega_{j} \nabla \Delta^{-1} v\right\rangle\right| \leq c 2^{\frac{j}{2}}|Q|^{\frac{1}{2}}\left\|\nabla\left(\omega_{j} \nabla \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j} Q\right)}
$$

By statement (ii) of Lemma 3,

$$
\begin{equation*}
\left\|\nabla\left(\omega_{j} \nabla \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j} Q\right)} \leq C 2^{-j\left(1+\frac{d}{2}\right)}|Q|^{-\frac{1}{2}}\|v\|_{L^{1}(Q)}, \quad j \geq n_{0} \tag{1.21}
\end{equation*}
$$

where C does not depend on j, Q and v. Thus, we get

$$
\left|\left\langle\left(\varphi_{n}-\varphi_{m}\right) \vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle\right| \leq C 2^{-j}\|v\|_{L^{1}(Q)}, \quad j \geq n_{0}
$$

and consequently

$$
\sum_{j \geq n_{0}}\left|\left\langle\left(\varphi_{n}-\varphi_{m}\right) \vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle\right| \leq C\|v\|_{L^{1}(Q)} \sum_{j \geq n_{0}} 2^{-j}, \quad j \geq n_{0}
$$

Using the preceding inequalities and letting $m, n \rightarrow+\infty$ so that $n_{0} \rightarrow+\infty$, it follows that $\left\{g_{j}\right\}$ is a Cauchy sequence in the weak-*topology of $B M O$ which implies in particular,

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \int_{\mathbb{R}^{d}} g_{j} \bar{v} d x=\int_{\mathbb{R}^{d}} g \bar{v} d x, \quad v \in \mathcal{D}\left(\mathbb{R}^{d}\right), \quad \int_{\mathbb{R}^{d}} v d x=0 \tag{1.22}
\end{equation*}
$$

where $g \in B M O\left(\mathbb{R}^{d}\right)$.
Furthermore, we have

Lemma 6. The limit in (1.22) does not depend on the choice of the cut-off functions φ_{j}.

Proof. To prove this lemma, we show that for every $v \in \mathcal{D}(Q)$ and $\int_{Q} v d x=0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} g \bar{v} d x=-\sum_{j \geq 0}\left\langle\vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle . \tag{1.23}
\end{equation*}
$$

which will imply the assertion. By (1.13) and statement (ii) of Lemma 3, it follows immediately that

$$
\begin{aligned}
\sum_{j \geq m}\left|\left\langle\vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle\right| & \leq C \sum_{j \geq m} 2^{\frac{j}{2}}|Q|^{\frac{1}{2}}\left\|\nabla\left(\omega_{j} \nabla \Delta^{-1} v\right)\right\|_{L^{2}\left(2^{j} Q\right)} \\
& \leq C\|v\|_{L^{1}(Q)} \sum_{j \geq m} 2^{-j}
\end{aligned}
$$

for every $m \geq 1$. Moreover, by (1.19) a similar estimate holds with $\varphi_{j} \vec{f}$ in place of \vec{f} and C does not depend on m and j.

Clearly, (1.23) holds with \vec{f} replaced by $\varphi_{j} \vec{f}$ and for j large,

$$
\sum_{0 \leq j \leq m}\left\langle\vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle=\sum_{0 \leq j \leq m}\left\langle\varphi_{j} \vec{f}, \omega_{j} \nabla\left(\Delta^{-1} v\right)\right\rangle
$$

By picking m and j large enough, and taking into account the above estimates together with (1.22), we arrive at (1.23).

We observe that (1.23) with div \vec{v} in place of v yields

$$
\begin{equation*}
\langle\nabla g, \vec{v}\rangle=-\int_{\mathbb{R}^{d}} g \overline{\operatorname{div} \vec{v}} d x=\sum_{j \geq 0}\left\langle\vec{f}, \omega_{j} \nabla\left(\Delta^{-1} \operatorname{div} \vec{v}\right)\right\rangle \tag{1.24}
\end{equation*}
$$

for every $v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ supported on a cube Q. Furthermore, we have $\nabla g \in$ $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d}$ and

$$
\nabla g=\lim _{j \rightarrow+\infty} \nabla g_{j} \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d}, \quad \operatorname{curl}(\nabla g)=0, \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d^{2}}
$$

Moreover, for every $v \in \mathcal{D}\left(\mathbb{R}^{d}\right)$,

$$
\langle\Delta g, v\rangle=\lim _{j \rightarrow+\infty}\left\langle g_{j}, \Delta v\right\rangle=-\lim _{j \rightarrow+\infty}\left\langle\varphi_{j} \vec{f}, \nabla v\right\rangle=-\langle\vec{f}, \nabla v\rangle,
$$

which gives $\Delta g=\operatorname{div} \vec{f}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$.
In a completely analogous fashion, one verifies that $H_{j} \rightarrow H$ in the weak*topology of BMO,

$$
\operatorname{Div} H=\lim _{j \rightarrow+\infty} \operatorname{Div} H_{j} \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d}
$$

and $\Delta H=\operatorname{curl} \vec{f}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d^{2}}$, div $(\operatorname{Div} H)=0$. Moreover, H is a skewsymmetric matrix field since H_{j} is skew-symmetric for every j.

We are in a position to establish decomposition (1.6) for vector fields which obey (1.5).

Proof. Let us set $\vec{\alpha}=\nabla g$ and $\vec{\beta}=\operatorname{Div} H$. Using a standard decomposition for $v \in \mathcal{D}\left(\mathbb{R}^{d}\right)^{d}$

$$
\begin{equation*}
\vec{v}=\nabla\left(\Delta^{-1} \operatorname{div} \vec{v}\right)+\operatorname{Div}\left(\Delta^{-1} \operatorname{curl} \vec{v}\right) \tag{1.25}
\end{equation*}
$$

we deduce

$$
\begin{aligned}
\left\langle\nabla g_{j}, \vec{v}\right\rangle & =-\left\langle g_{j}, \operatorname{div} \vec{v}\right\rangle=\left\langle\varphi_{j} \vec{f}, \nabla\left(\Delta^{-1} \operatorname{div} \vec{v}\right)\right\rangle \\
& =\left\langle\varphi_{j} \vec{f}, \vec{v}\right\rangle-\left\langle\varphi_{j} \vec{f}, \operatorname{Div}\left(\Delta^{-1} \operatorname{curl} \vec{v}\right)\right\rangle
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\langle\vec{\alpha}, \vec{v}\rangle & =\lim _{j \rightarrow+\infty}\left\langle\nabla g_{j}, \vec{v}\right\rangle \\
& =\lim _{j \rightarrow+\infty}\left\langle\varphi_{j} \vec{f}, \vec{v}\right\rangle-\lim _{j \rightarrow+\infty}\left\langle\varphi_{j} \vec{f}, \operatorname{Div}\left(\Delta^{-1} \text { curl } \vec{v}\right)\right\rangle \\
& =\langle\vec{f}, \vec{v}\rangle-\lim _{j \rightarrow+\infty}\left\langle\operatorname{Div} H_{j}, \vec{v}\right\rangle \\
& =\langle\vec{f}, \vec{v}\rangle-\langle\vec{\beta}, \vec{v}\rangle .
\end{aligned}
$$

This completes the proof.

References

[1] Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory. Berlin-Heidelberg-New York: Springer-Verlag 1996.
[2] Chang, S. Y. A., Wilson, J. M., Wolf, T. H., Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60 (1985), 217-246.
[3] Fefferman, C., The uncertainty principle. Bull. Amer. Math. Soc. 9 (1983), 129206.
[4] Fefferman, C., Stein, E. M., H^{p} spaces of several variables. Acta Math. 129 (1972), 137-193.
[5] Gala, S., The form Boundedness criterion for the Laplacian operator. J. Math. Anal. Appl. 323(2) (2006), 1253-1263.
[6] Kerman, R., Sawyer, E., The trace inequality and eigenvalue estimates for Shrödinger operators. Ann. Inst. Fourier 36 (1987), 207-228.
[7] Lieb, E. H., Loss, M., Analysis, Second Edition. Providence, RI: Amer. Math. Soc. 2001.
[8] Maz'ya, V. G., Verbitsky, I. G., The Schrödinger operator on the energy space: Boundedness and compactness criteria. Acta Math. 188 (2002), 263-302.
[9] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, New Jersey: Princeton Univ. Press 1993.

Received by the editors December 20, 2005

[^0]: ${ }^{1}$ University of Mostaganem, Department of Mathematics, B.P. 227 - Mostaganem (27000), Algeria
 ${ }^{2}$ University of Mostaganem, Department of Mathematics, B.P. 227 - Mostaganem (27000), Algeria, e-mail: sadek.gala@maths.univ-evry.fr

