ON SPIN Z_6 -ACTIONS ON SPIN 4-MANIFOLDS¹

Hongxia Li², Ximin Liu³

Abstract. Let X be a smooth, closed, connected spin 4-manifold with $b_1(X) = 0$ and non-positive signature $\sigma(X)$. In this paper we use Seiberg-Witten theory to prove that if X admits a spin Z_6 action of even type, then $b_2^+(X) \ge |\sigma(X)|/8 + 2$ under some non-degeneracy conditions.

AMS Mathematics Subject Classification (2000): 57R57, 57M60, 57R15 Key words and phrases: spin 4-manifolds, cyclic group, Seiberg-Witten theory

1. Introduction

Let X be a smooth, closed, connected spin 4-manifold. We denote by $b_2(X)$ the second Betti number and denote by $\sigma(X)$ the signature of X. In [12], Y. Matsumoto conjectured the following inequality

(1)
$$b_2(X) \ge \frac{11}{8} |\sigma(X)|.$$

This conjecture is well known and has been called the $\frac{11}{8}$ -conjecture (see also [7]). All complex surfaces and their connected sums satisfy the conjecture (see [14]).

From the classification of unimodular even integral quadratic forms and the Rochlin's theorem, for the choice of orientation with non-positive signature the intersection form of a closed spin 4-manifold X is

$$-2kE_8 \oplus mH, \qquad k \ge 0,$$

where E_8 is the 8×8 intersection form matrix and H is the hyperbolic matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Thus, $m = b_2^+(X)$ and $k = -\sigma(X)/16$ and so the inequality (1) is equivalent to $m \ge 3k$. Since K3 surface satisfies the equality with k = 1 and m = 3, the coefficient $\frac{11}{8}$ is optimal, if the $\frac{11}{8}$ -conjecture is true.

 $^{^1\}mathrm{This}$ work is supported in part by the Specialized Research Fund for the Doctoral Program of Higher Education

 $^{^{2}\}mathrm{Department}$ of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

 $^{^{3}\}mathrm{Department}$ of Applied Mathematics, Dalian University of Technology, Dalian 116024, China, e-mail: xmliu1968@yahoo.com.cn

Donaldson has proved that if k > 0 then $m \ge 3$ [4]. In early 1995, using the Seiberg-Witten theory introduced by Seiberg and Witten [17], Furuta [8] proved that

(2)
$$b_2(X) \ge \frac{5}{4}|\sigma(X)| + 2.$$

This estimate has been dubbed the $\frac{10}{8}$ -theorem. In fact, if the intersection form of X is definite, i.e., m = 0, then Donaldson proved that $b_2(X)$ and $\sigma(X)$ are zero [4, 5]. Thus, Furuta assumed that m is not zero. Inequality (2) follows by a surgery argument from the non-positive signature, $b_1(X) = 0$ case:

Theorem 1.1. (Furuta [8]). Let X be a smooth spin 4-manifold with $b_1(X) = 0$ with non-positive signature. Let $k = -\sigma(X)/16$ and $m = b_2^+(X)$. Then,

$$2k+1 \le m$$

if $m \neq 0$.

His key idea was to use a finite dimensional approximation of the monopole equation. Later Furuta and Kametani [9] used equivariant *e*-invariants and improved the above $\frac{10}{8}$ -theorem, which was also proved by N. Minami [13] by using an equivariant join theorem to reduce the inequality to a theorem of Stolz [16].

In [2] Bryan and also in [6] Fang used Furuta's technique of "finite dimensional approximation" and the equivariant K-theory to improve the above bound by p under the assumption that X has a spin odd type $Z/2^p$ -action satisfying some non-degeneracy conditions analogous to the condition $m \neq 0$.

In the paper [10], Kim gave the same bound for smooth, spin even type $Z/2^p$ action on X satisfying some non-degeneracy conditions analogous to Bryan and Fang's.

In the paper [11], Kiyono and the second author obtained a bound for smooth spin alternating A_4 action on X satisfying some non-degeneracy conditions.

In this paper, we will assume $m \neq 0$ and $b_1(X) = 0$, unless stated otherwise. We study the spin even type Z_6 -actions on spin 4-manifolds. We prove that if X admits a spin Z_6 -action of even type, then $b_2^+(X) \geq |\sigma(X)|/8+2$ under some non-degeneracy conditions. We also obtain some results about $Ind_{Z_6}D$.

We organize the remainder of this paper as follows. In section 2, we give some preliminaries to prove the main theorem. We refer the readers to the Bryan's excellent exposition [2] for more details. In this section, we also introduce the representation ring and the the character table of cyclic group Z_6 . In section 3, we use equivariant K-theory and representation theory to study the G-equivariant properties of the moduli space. In the last section we give our main results.

2. Notations and preliminaries

We assume that we have completely every Banach spaces with suitable Sobolev norms. Let $S = S^+ \oplus S^-$ denote the decomposition of the spinor

bundle into the positive and negative spinor bundles. Let $D: \Gamma(S^+) \to \Gamma(S^-)$ be the Dirac operator, and $\rho : \Lambda_C^* \to End_C(S)$ be the Clifford multiplication. The Seiberg-Witten equations are for a pair $(a, \phi) \in \Omega^1(X, \sqrt{-1}R) \times \Gamma(S^+)$ and they are

$$D\phi + \rho(a)\phi = 0,$$
 $\rho(d^+a) - \phi \otimes \phi^* + \frac{1}{2}|\phi|^2 id = 0,$ $d^*a = 0.$

 $V = \Gamma(\sqrt{-1}\Lambda^1 \oplus S^+), \quad W' = (S^- \oplus \sqrt{-1}su(S^+) \oplus \sqrt{-1}\Lambda^0).$ Let We can think of the equation as the zero set of a map

$$\mathcal{D} + \mathcal{Q}: V \to W,$$

where $\mathcal{D}(a,\phi) = (D\phi,\rho(d^+a),d^*a)), \ \mathcal{Q}(a,\phi) = (\rho(a)\phi,\phi\otimes\phi^* - \frac{1}{2}|\phi|^2id,0), \text{ and}$ W is defined to be the orthogonal complement to the constant functions in W'.

Now it is time to describe the group of symmetries of the equations. Define $Pin(2) \subset SU(2)$ to be the normalizer of $S^1 \subset SU(2)$. Regarding SU(2) as the group of unit quaternions and taking S^1 to be elements of the form $e^{\sqrt{-1}\theta}$, Pin(2) then consists of the form $e^{\sqrt{-1}\theta}$ or $e^{\sqrt{-1}\theta}J$. We define the action of Pin(2) on V and W as follows: Since S^+ and S^- are SU(2) bundles, Pin(2)naturally acts on $\Gamma(S^{\pm})$ by multiplication on the left. Z/2 acts on $\Gamma(\Lambda_C^*)$ by multiplication by ± 1 and this pulls back to an action of Pin(2) by the natural map $Pin(2) \rightarrow Z/2$. A calculation shows that this pullback also describes the induced action of Pin(2) on $\sqrt{-1}su(S^+)$. Both \mathcal{D} and \mathcal{Q} are seen to be Pin(2)equivariant maps.

If X is a smooth closed spin 4-manifold. Suppose that X admits a spin Xstructure preserving action by a compact Lie group (or finite group) G. We may assume a Riemannian metric on X so that G acts by isometries. If the action is of even type, both \mathcal{D} and \mathcal{Q} are $\tilde{G} = Pin(2) \times G$ equavariant maps.

Now we define V_{λ} to be the subspace of V spanned by the eigenspaces $\mathcal{D}^*\mathcal{D}$ with eigenvalues less than or equal to $\lambda \in R$. Similarly, define W_{λ} using \mathcal{DD}^* . The virtual G-representation $[V_{\lambda} \otimes C] - [W_{\lambda} \otimes C] \in R(\tilde{G})$ is the \tilde{G} -index of \mathcal{D} and can be determined by the \tilde{G} -index and is independent of $\lambda \in R$, where R(G) is the complex representation of G. In particular, since $V_0 = KerD$ and $W_0 = CokerD \oplus Cokerd^+$, we have

$$[V_{\lambda} \otimes C] - [W_{\lambda} \otimes C] = [V_0 \otimes C] - [W_0 \otimes C] \in R(\tilde{G}).$$

Note that $Cokerd^+ = H^2_+(X, R)$.

Now let $Z_6 = \langle \xi \rangle$ be a cyclic group of order 6 generated by ξ . Since Z_6 is an Abel group, there are 6 irreducible representations of degree 1. Thus we have the following character table for Z_6 [15]: where $\omega = e^{2\pi i/6} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ and satisfies $\omega^2 - \omega = -1$.

3. The index of \mathcal{D} and the character formula for the Ktheory degree

The virtual representation $[V_{\lambda,C}] - [W_{\lambda,C}] \in R(\hat{G})$ is the same as $Ind(\mathcal{D}) =$ $[ker\mathcal{D}] - [Coker\mathcal{D}]$. Furuta determines $Ind(\mathcal{D})$ as a Pin(2) representation; de-

	1	ξ	ξ^2	ξ^3	ξ^4	ξ^5
χ_0	1	1	1	1	1	1
χ_1	1	ω	ω^2	-1	$-\omega$	$-\omega^2$
χ_2	1	ω^2	$-\omega$	1	ω^2	$-\omega$
χ_3	1	-1	1	-1	1	-1
χ_4	1	$-\omega$	ω^2	1	$-\omega$	ω^2
χ_5	1	$-\omega^2$	$-\omega$	-1	ω^2	ω

noting the restriction map $r: R(\tilde{G}) \to R(Pin(2))$, Furuta shows

$$r(Ind(\mathcal{D})) = 2kh - m\tilde{1}$$

where $k = -\sigma(X)/16$ and $m = b_2^+(X)$. Thus $Ind(\mathcal{D}) = sh - t\tilde{1}$, where s and t are polynomials such that s(1) = 2k and t(1) = m. For a spin even Z_6 action, $\tilde{G} = Pin(2) \times Z_6$, we can write

$$s(\eta) = a_0 + b_0\eta + c_0\eta^2 + d_0\eta^3 + e_0\eta^4 + f_0\eta^5,$$

and

$$t(\eta) = a_1 + b_1\eta + c_1\eta^2 + d_1\eta^3 + e_1\eta^4 + f_1\eta^5$$

so that $a_0 + b_0 + c_0 + d_0 + e_0 + f_0 = 2k$ and $a_1 + b_1 + c_1 + d_1 + e_1 + f_1 = m = b_2^+(X)$. As an element of $R(Z_6)$, we know that $Ind_{Z_6}D = \overline{Ind_{Z_6}D}$, so from $Ind_{Z_6}D = \frac{1}{2}$

 $H_{1}(X,C) = H_{1}(X,C)$, we know that $H_{2}(2_{6}) = H_{2}(2_{6})$, so from $H_{2}(2_{6}) = -1$ $a_{0} + b_{0}\eta + c_{0}\eta^{2} + d_{0}\eta^{3} + e_{0}\eta^{4} + f_{0}\eta^{5}$ we have $b_{0} = f_{0}$ and $c_{0} = e_{0}$. Similarly, since $H^{+}(X,C) = H^{+}(X,C)$, so from $H^{+}(X,C) = a_{1} + b_{1}\eta + c_{1}\eta^{2} + d_{1}\eta^{3} + e_{1}\eta^{4} + f_{1}\eta^{5}$ we have $b_{1} = f_{1}$ and $c_{1} = e_{1}$. Thus, we have

$$s(\eta) = a_0 + b_0\eta + c_0\eta^2 + d_0\eta^3 + c_0\eta^4 + b_0\eta^5,$$

$$t(\eta) = a_1 + b_1\eta + c_1\eta^2 + d_1\eta^3 + c_1\eta^4 + b_1\eta^5,$$

so that $a_0 + 2b_0 + 2c_0 + d_0 = 2k$ and $a_1 + 2b_1 + 2c_1 + d_1 = m = b_2^+(X)$. Besides, we have

$$dim (H^+(X)^{Z_6}) = a_1 = b_2^+(X/Z_6) = b_2^+(X/<\xi>),$$

$$dim (H^+(X)^{<\xi^2>}) = a_1 + d_1 = b_2^+(X/<\xi^2>),$$

$$dim (H^+(X)^{<\xi^3>}) = a_1 + 2c_1 = b_2^+(X/<\xi^3>),$$

The Thom isomorphism theory in equivariant K-theory for a general compact Lie group is a deep theory proved using elliptic operator [1]. The subsequent character formula of this section uses only elementary properties of the Bott class.

Let V and W be complex Γ representations for some compact Lie group Γ . Let BV and BW denote balls in V and W and let $f : BV \to BW$ be a Γ -map preserving the boundaries SV and SW. $K_{\Gamma}(V)$ is by definition $K_{\Gamma}(BV, SV)$, and by the equivariant Thom isomorphism theorem, $K_{\Gamma}(V)$ is a free $R(\Gamma)$ module with generator of the Bott class $\lambda(V)$. Applying the K-theory functor to f we get a map

$$f^*: K_{\Gamma}(W) \to K_{\Gamma}(V)$$

which defines a unique element $\alpha_f \in R(\Gamma)$ by the equation $f^*(\lambda(W)) = \alpha_f \cdot \lambda(V)$. The element α_f is called the K-theory degree of f.

Let V_g and W_g denote the subspaces if V and W fixed by an element $g \in \Gamma$ and let V_g^{\perp} and W_g^{\perp} be the orthogonal complements. Let $f^g: V_g \to W_g$ be the restriction of f and let $d(f^g)$ denote the ordinary topological degree of f^g (by definition, $d(f^g) = 0$ if $\dim V_g \neq \dim W_g$). For any $\beta \in R(\Gamma)$, let $\lambda_{-1}\beta$ denote the alternating sum $\Sigma(-1)^i \lambda^i \beta$ of exterior powers.

Tom Dieck proves the following character formula for the degree α_f :

Theorem 3.1. ([3]) Let $f : BV \to BW$ be a Γ -map preserving boundaries and let $\alpha_f \in R(\Gamma)$ be the K-theory degree. Then

$$tr_g(\alpha_f) = d(f^g)tr_g(\lambda_{-1}(W_g^{\perp} - V_g^{\perp}))$$

where tr_g is the trace of the action of an element $g \in \Gamma$.

This formula is very useful in the case where $\dim V_g \neq \dim W_g$ so that $d(f^g) = 0$.

Recall that $\lambda_{-1}(\Sigma_i a_i r_i) = \prod_i (\lambda_{-1} r_i)^{a_i}$ and that for a one-dimensional representation r, we have $\lambda_{-1}r = (1 - r)$. A two-dimensional representation such as h has $\lambda_{-1}h = (1 - h + \Lambda^2 h)$. In this case, since h comes from an SU(2) representation, $\Lambda^2 h = det h = 1$ so $\lambda_{-1}h = (2 - h)$.

In the following we use the character formula to examine the K-theory degree $\alpha_{f_{\lambda}}$ of the map $f_{\lambda} : BV_{\lambda,C} \to BW_{\lambda,C}$ coming from the Seiberg-Witten equations. We will abbreviate $\alpha_{f_{\lambda}}$ as α and $V_{\lambda,C}$ and $W_{\lambda,C}$ as just V and W. Let $\phi \in S^1 \subset Pin(2) \subset G$ be the element generating a dense subgroup of S^1 , and recall that there is the element $J \in Pin(2)$ coming from the quaternion. Note that the action of J on h has two invariant subspaces on which J acts by multiplication with $\sqrt{-1}$ and $-\sqrt{-1}$.

4. The main results

Consider $\alpha = \alpha_{f_{\lambda}} \in R(Pin(2) \times Z_6)$, it has the following form

$$\alpha = \alpha_0 + \tilde{\alpha_0}\tilde{1} + \sum_{i=1}^{\infty} \alpha_i h_i.$$

where $\alpha_i = l_i + m_i \eta + n_i \eta^2 + p_i \eta^3 + q_i \eta^4 + r_i \eta^5$, $i \ge 0$ and $\tilde{\alpha_0} = \tilde{l_0} + \tilde{m_0} \eta + \tilde{n_0} \eta^2 + \tilde{p_0} \eta^3 + \tilde{q_0} \eta^4 + \tilde{r_0} \eta^5$.

Since ϕ acts non-trivially on h and trivially on $\tilde{1}$, ξ^2 acts trivially on a_1 and $d_1\xi^3$ and non-trivially on the others, then we have

$$\dim(V(\eta)h)_{\phi\xi^2} - \dim(W(\eta)\tilde{1})_{\phi\xi^2} = -(a_1 + d_1) = -b_2^+(X/\langle\xi^2\rangle).$$

So if $b_2^+(X/<\xi^2>) \neq 0$, $tr_{\phi\xi^2}\alpha = 0$.

Since $\phi \xi^3$ acts non-trivially on $V(\eta)h$ and ξ^3 acts trivially on a_1 , $c_1\eta^2$ and $c_1\eta^4$ but non-trivially on the others, then we have

$$dim(V(\eta)h)_{\phi\xi^3} - dim(W(\eta)\tilde{1})_{\phi\xi^3} = -(a_1 + 2c_1) = -b_2^+(X/\langle\xi^3\rangle).$$

So if $a_1 + 2c_1 = b_2^+(X/\langle \xi^3 \rangle) \neq 0$, $tr_{\phi\xi^3}\alpha = 0$.

Since $\phi \xi$ acts non-trivially on $V(\eta)h$, and trivially only on $a_1 \tilde{1}$ in $W(\eta)\tilde{1}$, then we have

$$dim(V(\eta))_{\phi\xi} - dim(W(\eta))_{\phi\xi} = -a_1 = -b_2^+(X/\langle \xi \rangle).$$

So if $a_1 = b_2^+(X/\xi) \neq 0$, $tr_{\phi\xi}\alpha = 0$.

From the above analysis, we know if $b_2^+(X/\xi) \neq 0$ that is $a_1 \neq 0$, we have $tr_{\phi\xi}\alpha = tr_{\phi\xi^2}\alpha = tr_{\phi\xi^3}\alpha = 0$, which implies that

$$0 = tr_{\phi\xi^{2}}\alpha = tr_{\xi^{2}}(\alpha_{0} + \tilde{\alpha_{0}}\tilde{1} + \sum_{i=1}^{\infty} \alpha_{i}(\phi^{i} + \phi^{-i}))$$

$$= tr_{\xi^{2}}\alpha_{0} + tr_{\xi^{2}}\tilde{\alpha_{0}}\tilde{1} + \sum_{i=1}^{\infty} tr_{\xi^{2}}\alpha_{i}(\phi^{i} + \phi^{-i})$$

$$= (l_{0} + m_{0}\omega^{2} - n_{0}\omega + p_{0} + q_{0}\omega^{2} - r_{0}\omega) + (\tilde{l_{0}} + \tilde{m_{0}}\omega^{2} - \tilde{n_{0}}\omega + \tilde{p_{0}} + \tilde{q_{0}}\omega^{2} - \tilde{r_{0}}\omega) + \sum_{i=1}^{\infty} tr_{\xi^{2}}\alpha_{i}(\phi^{i} + \phi^{-i}),$$

$$0 = tr_{\phi\xi}\alpha = tr_{\xi}(\alpha_{0} + \tilde{\alpha_{0}}\tilde{1} + \sum_{i=1}^{\infty} \alpha_{i})(\phi^{i} + \phi^{-i})$$

$$= tr_{\xi}\alpha_{0} + tr_{\xi}\tilde{\alpha_{0}}\tilde{1} + \sum_{i=1}^{\infty} tr_{\xi}\alpha_{i}(\phi^{i} + \phi^{-i})$$

$$= (l_{0} + m_{0}\omega + n_{0}\omega^{2} - p_{0} - q_{0}\omega - r_{0}\omega^{2}) + (\tilde{l_{0}} + \tilde{m_{0}}\omega + \tilde{n_{0}}\omega^{2} - \tilde{p_{0}} - \tilde{q_{0}}\omega - \tilde{r_{0}}\omega^{2}) + \sum_{i=1}^{\infty} tr_{\xi}\alpha_{i}(\phi^{i} + \phi^{-i}),$$

and so on. From these equations we have $\alpha_0 = -\tilde{\alpha_0}$ and $\alpha_i = 0, i > 0$, that is $\alpha = \alpha_0(1 - \tilde{1})$.

Next we calculate $tr_J\alpha$. Since J acts non-trivially on both h and $\tilde{1}$, $dimV_J = dimW_J = 0$, so $d(f^J) = 1$ and the character formula gives $tr_J(\alpha) = tr_J(\lambda_{-1}(m\tilde{1}-2kh)) = tr_J((1-\tilde{1})^m(2-h)^{-2k}) = 2^{m-2k}$ using $tr_Jh = 0$ and $tr_J\tilde{1} = -1$.

Now we calculate $tr_{J\xi^2}\alpha$. Since $J\xi^2$ acts non-trivially on both $V(\eta)h$ and

On spin Z_6 -actions on spin 4-manifolds

 $W(\eta)$ Ĩ, so $d(f^{J\xi^2}) = 1$. By Tom Dieck formula, we have

$$tr_{J\xi^{2}}(\alpha) = tr_{J\xi^{2}}[\lambda_{-1}(a_{1}+b_{1}\eta+c_{1}\eta^{2}+d_{1}\eta^{3}+c_{1}\eta^{4}+b_{1}\eta^{5})\tilde{1} -\lambda_{-1}(a_{0}+b_{0}\eta+c_{0}\eta^{2}+d_{0}\eta^{3}+c_{0}\eta^{4}+b_{0}\eta^{5})h] = 2^{a_{1}}(1+\omega^{2})^{b_{1}}(1-\omega)^{c_{1}}2^{d_{1}}(1+\omega^{2})^{c_{1}}(1-\omega)^{b_{1}} 2^{-a_{0}}(1+\omega^{2})^{-b_{0}}(1-\omega)^{-c_{0}}2^{-d_{0}}(1+\omega^{2})^{-c_{0}}(1-\omega)^{-b_{0}} = 2^{(a_{1}+d_{1})-(a_{0}+d_{0})}$$

Here the 2-dimensional representation h decomposes into two complex lines on which J acts as $\sqrt{-1}$ and $-\sqrt{-1}$. Besides, J acts on $\tilde{1}$ as -1. And ξ^2 acts on the 1-dimensional representation η , η^2 , η^3 , η^4 and η^5 as ω^2 , $-\omega$, 1, ω^2 and $-\omega$. Since ξ^3 acts trivially on η^2 and η^4 but acts on η , η^3 , η^5 all as -1, which

combines with the action of J, then tells us that

$$dim(V(\eta)h)_{J\xi^3} - dim(W(\eta)\tilde{1})_{J\xi^3} = -(2b_1 + d_1) = -(b_2^+(X) - b_2^+(X/\langle\xi^3\rangle))$$

So, if $2b_1 + d_1 \neq 0$, that is $b_2^+(X) \neq b_2^+(X/<\xi^3>)$, then $tr_{J\xi^3}\alpha = 0$ By direct calculation, we have

(3)
$$tr_J\alpha_0 = l_0 + m_0 + n_0 + p_0 + q_0 + r_0 = 2^{m-2k-1},$$

(4)
$$tr_{\xi^2}\alpha_0 = l_0 + m_0\omega^2 - n_0\omega + p_0 + q_0\omega^2 - r_0\omega = 2^{(a_1+d_1)-(a_0+d_0)-1},$$

(5)
$$tr_{\xi^3}\alpha_0 = l_0 - m_0 + n_0 - p_0 + q_0 - r_0 = 0.$$

Here we use $tr_{Jg}\alpha = tr_g(2 \cdot \alpha_0) = 2 \cdot tr_g\alpha_0$ where g is any element of Z₆. From (3) and (5) we get $l_0 + n_0 + q_0 = 2^{m-2k-2}$. So, we have the following main result.

Theorem 1. Let X be a smooth spin 4-manifold with $b_1(X) = 0$ and nonpositive signature. Let $k = -\sigma(X)/16$ and $m = b_2^+(X)$. If the cyclic group Z_6 acts on X as spin even type, then $2k+2 \leq m$ if $b_2^+(X/\langle \xi \rangle) \neq 0$ and $b_2^+(X) \neq b_2^+(X/<\xi^3>).$

On the other hand, if $b_2^+(X) = b_2^+(X/\langle \xi^3 \rangle)$, i.e., $2b_1 + d_1 = 0$ that is $b_1 = d_1 = 0$, then from the action of $J\xi^3$ and (3), we easily get $l_0 + n_0 + q_0 = 2^{m-2k-1}$, which means $m \geq 2k + 1$, and this was proved in Theorem 1.1 by Furuta under a more weaker condition.

Since ξ acts on η^3 as -1, we have

$$dim(V(\eta)h)_{J\xi} - dim(W(\eta)\tilde{1})_{J\xi} = -d_1 = -(b_2^+(X/\langle\xi^2\rangle) - b_2^+(X/\langle\xi\rangle)).$$

If $d_1 = b_2^+(X/\langle \xi^2 \rangle) - b_2^+(X/\langle \xi \rangle) \neq 0$, then $tr_{J\xi}\alpha = 0$. Then, by direct calculation we have

(6)
$$tr_{\xi}\alpha_0 = l_0 + m_0\omega + n_0\omega^2 - p_0 - q_0\omega - r_0\omega^2$$

From (4) and (6), we obtain $l_0 = p_0$, $m_0 = n_0 = q_0 = r_0$. Thus (3) and (4) become

(7)
$$l_0 + 2n_0 = 2^{m-2k-2}$$

(8) $2l_0 + 2n_0\omega^2 - 2n_0\omega = 2^{(a_1+d_1)-(a_0+d_0)}$

$$2l_0 + 2n_0\omega^2 - 2n_0\omega = 2^{(a_1+d_1)-(a_0+d_0)-1}$$

From the above we get

$$n_0 = \frac{2^{m-2k-2} - 2^{(a_1+d_1)-(a_0+d_0)-2}}{3} \ , \ l_0 = \frac{2^{m-2k-2} + 2^{(a_1+d_1)-(a_0+d_0)-1}}{3}$$

Since $n_0 \in \mathbb{Z}$, then $2^{m-2k-2} - 2^{(a_1+d_1)-(a_0+d_0)-2} \in 3\mathbb{Z} \subset \mathbb{Z}$. From Theorem 1, we know $2^{m-2k-2} \in Z$. So $2^{(a_1+d_1)-(a_0+d_0)-2} \in Z$, i.e., $a_1+d_1 \ge (a_0+d_0)-2$. Hence, we have the following proposition.

Proposition 2. Let X be a smooth spin 4-manifold with $b_1(X) = 0$ and nonpositive signature. If X admits a spin Z_6 action of even type, then

$$b_2^+(X/<\xi^2>) \ge dim((Ind_{Z_6}D)^{<\xi^2>})+2$$

if $b_2^+(X/<\xi>) \neq 0$, $b_2^+(X) \neq b_2^+(X/<\xi^3>)$ and $b_2^+(X/<\xi^2>) \neq b_2^+(X/<\xi>)$. Moreover, under this condition, the K-theory degree $\alpha = \alpha_0(1-\tilde{1})$ for some $\alpha_0 = l_0(1+\eta^3) + m_0\eta(1+\eta+\eta^3+\eta^4).$

In fact F. Fang obtained the following equivalent version of Furuta's $\frac{10}{8}$ theorem

Proposition 3. (Fang [6]). Let X be a smooth closed spin G-manifold of dimension 4, where G is compact. Suppose that $b_1(X) = 0$ and $\sigma(X) \leq 0$. If the G-action is of even type so that $ind^G(D) \neq 0$, then

$$b_2^+(X/G) \ge ind^G(D) + 1,$$

where $ind^G(D) = dim(ker D)^G - dim(coker D)^G$.

On the other hand, if $b_2^+(X/<\xi>) = b_2^+(X/\xi^2)$, i.e., $d_1 = 0$, then $J\xi$ acts non-trivially on both $V(\eta)h$ and $W(\eta)\hat{1}$, we have $\dim(V(\eta)h)_{J\xi} =$ $dim(W(\eta)\tilde{1})_{J\xi}$. From Tom Dieck formula, we have

$$tr_{J\xi}\alpha = tr_{J\xi}[\lambda_{-1}(a_{1}+b_{1}\eta+c_{1}\eta^{2}+c_{1}\eta^{4}+b_{1}\eta^{5})\tilde{1} - \lambda_{-1}(a_{0}+b_{0}\eta+c_{0}\eta^{2}+d_{0}\eta^{3}+c_{0}\eta^{4}+b_{0}\eta^{5})h]$$

$$= 2^{a_{1}}(1+\omega)^{b_{1}}(1+\omega^{2})^{c_{1}}(1-\omega)^{c_{1}}(1-\omega^{2})^{b_{1}} 2^{-a_{0}}(1+\omega^{2})^{-b_{0}}(1-\omega)^{-c_{0}}2^{-d_{0}}(1+\omega^{2})^{-c_{0}}(1-\omega)^{-b_{0}}$$

$$= 2^{a_{1}-(a_{0}+d_{0})}[(1+\omega)(1-\omega^{2})]^{b_{1}}[(1+\omega^{2})(1-\omega)]^{c_{1}-(b_{0}+c_{0})} 2^{a_{1}-(a_{0}+d_{0})}3^{b_{1}}$$

Besides, by direct calculation, we have

(9)
$$tr_{J\xi}\alpha = 2[(l_0 - p_0) + (m_0 - q_0)\omega + (n_0 - r_0)\omega^2]$$

So we have $l_0 - p_0 = 2^{a_1 - (a_0 + d_0) - 1} 3^{b_1}$, $m_0 = q_0$ and $n_0 = r_0$, for the reason that 1, ω and ω^2 are linear independent of each other. Thus we get the following proposition.

Proposition 4. Let X be a smooth spin 4-manifold with $b_1(X) = 0$ and nonpositive signature. If X admits a spin Z_6 action of even type, then the K-theory degree $\alpha = \alpha_0(1-\tilde{1})$ for some $\alpha_0 = (1+\eta^3)(p_0+m_0\eta+n_0\eta^2)+2^{a_1-(a_0+d_0)-1}3^{b_1}$.

Now we assume $b_2^+(X/\langle \xi \rangle) = 0$ and $b_2^+(X) \neq 0$, that is $a_1 = 0$ and $2b_1 + 2c_1 + d_1 \neq 0$. Next we will consider six cases of this condition.

Case 1. $b_1 \neq 0, a_1 = c_1 = d_1 = 0$

Since $b_2^+(X/<\xi^2>) = a_1 + d_1 = 0$, $dim(V(\eta)h)_{\phi\xi^2} = dim(W(\eta)\tilde{1})_{\phi\xi^2}$, then we have

$$tr_{\phi\xi^{2}}\alpha = tr_{\phi\xi^{2}}[\lambda_{-1}(b_{1}\eta + b_{1}\eta^{5})\tilde{1} - \lambda_{-1}(a_{0} + b_{0}\eta + c_{0}\eta^{2} + d_{0}\eta^{3} + c_{0}\eta^{4} + b_{0}\eta^{5})h]$$

= $(1 + \omega)^{b_{1}}(1 - \omega^{2})^{b_{1}}[(1 - \phi)(1 - \phi^{-1})]^{-(a_{0} + d_{0})}$
 $[(1 + \omega\phi)(1 + \omega\phi^{-1})]^{-(b_{0} + c_{0})}[(1 - \omega^{2}\phi)(1 - \omega^{2}\phi^{-1})]^{-(b_{0} + c_{0})}$

Since $tr_{\xi^2}\alpha : U(1) \to C$ is a C^0 -function, ϕ is a generic element, so $-(a_0 + d_0) \ge 0$ and $-(b_0 + c_0) \ge 0$.

On the other hand, $IndD = -\frac{\sigma}{8} \in Z$, but we have $IndD = a_0 + 2b_0 + 2c_0 + d_0 \leq 0$, so $a_0 + d_0 = b_0 + c_0 = 0$, and X is homotopic to $\sharp_n S^2 \times S^2$ for some even integer n. Besides, $Ind_{Z_6}D = a_0(1 - \eta^3) + b_0\eta(1 - \eta - \eta^3 + \eta^4)$.

Case 2. $c_1 \neq 0$ and $a_1 = b_1 = d_1 = 0$ or $b_1 \neq 0$, $c_1 \neq 0$ and $a_1 = d_1 = 0$

Under the two kinds of conditions, we can obtain the same result as in Case 1.

Case 3. $d_1 \neq 0$ and $a_1 = b_1 = c_1 = 0$. Since $b_2^+(X/\xi^3) = a_1 + 2c_1 = 0$, $dim(V(\eta)h)_{J\xi^3} = dim(W(\eta)\tilde{1})_{J\xi^3} = 0$, then by Tom Dieck formula we have

$$tr_{\phi\xi^{3}}\alpha = tr_{\phi\xi^{3}}[\lambda_{-1}(d_{1}\eta^{3}\tilde{1}) - \lambda_{-1}(a_{0} + b_{0}\eta + c_{0}\eta^{2} + d_{0}\eta^{3} + c_{0}\eta^{4} + b_{0}\eta^{5})h]$$

$$= 2^{d_{1}}[(1 - \phi)(1 - \phi^{(-1)})]^{-(a_{0} + 2c_{0})}[(1 + \phi)(1 + \phi^{-1})]^{-(2b_{0} + d_{0})}$$

By the same reason as in Case 1, we have $-(a_0 + 2c_0) \ge 0$, $-(2b_0 + d_0) \ge 0$. Since $0 \le -\frac{\sigma}{8} \le IndD = a_0 + 2b_0 + 2c_0 + d_0 \le 0$, then we get $a_0 + 2c_0 = 2b_0 + d_0 = 0$ and X is homotopic to $\sharp_n S^2 \times S^2$ for some integer n. Besides, $Ind_{Z_6}D = c_0(-2 + \eta^2 + \eta^4) + b_0(\eta - 2\eta^3 + \eta^5)$.

Case 4. $b_1 \neq 0$, $d_1 \neq 0$ and $a_1 = c_1 = 0$. We can obtain the same result as in Case 3.

Case 5. $c_1 \neq 0$, $d_1 \neq 0$ and $a_1 = b_1 = 0$. Since $b_2^+(X/\langle \xi \rangle) = a_1 = 0$ and $dim(V(\eta)h)_{\phi\xi} = dim(W(\eta)\tilde{1})_{\phi\xi}$, we have $d(f^{\phi\xi}) = 1$. Then the Tom Dieck formula gives us,

$$\begin{aligned} tr_{\phi\xi}\alpha &= tr_{\phi\xi}[\lambda_{-1}(c_{1}\eta^{2}+d_{1}\eta^{3}+c_{1}\eta^{4})\hat{1} - \\ \lambda_{-1}(a_{0}+b_{0}\eta+c_{0}\eta^{2}+d_{0}\eta^{3}+c_{0}\eta^{4}+b_{0}\eta^{5})h] \\ &= (1-\omega^{2})^{c_{1}}2^{d_{1}}(1+\omega)^{c_{1}}[(1-\phi)(1-\phi^{-1})]^{-a_{0}}[(1-\omega\phi)(1-\omega\phi^{-1})]^{-b_{0}} \\ &[(1-\omega^{2}\phi)(1-\omega^{2}\phi^{-1})]^{-c_{0}}[(1+\phi)(1+\phi^{-1})]^{-d_{0}}[(1+\omega\phi)(1+\omega\phi^{-1})]^{-c_{0}} \\ &[(1+\omega^{2}\phi)(1+\omega^{2}\phi^{-1})]^{-b_{0}} \end{aligned}$$

By the same reason as in Case 1, we have $a_0 \leq 0, b_0 \leq 0, c_0 \leq 0$ and $d_0 \leq 0$, so $a_0 = b_0 = c_0 = d_0 = 0$, which means that $Ind_{Z_6}D = 0$.

Case 6. $b_1 \neq 0, c_1 \neq 0, d_1 \neq 0$ and $a_1 = 0$. We can get the same result as in Case 5.

In summary, we have the following result:

Proposition 5. Let X be a smooth spin 4-manifold with $b_1(X) = 0$ and nonpositive signature. If X admits a spin Z_6 -action of even type and $b_2^+(X/<\xi)$) = 0 and $b_2^+(X) \neq 0$, then as an element of $R(Z_6)$, $Ind_{Z_6}D$ has the following three cases

(1). When $b_2^+(X/<\xi^2>)=0$, $Ind_{Z_6}D=a_0(1-\eta^3)+b_0\eta(1-\eta-\eta^3+\eta^4)$

(1). When $b_2(X/\langle \zeta^2 \rangle) = 0$, $Ina_{Z_6}D = a_0(1 - \eta) + b_0\eta(1 - \eta - \eta + \eta)$ and X is homotopic to $\sharp_n S^2 \times S^2$ for some even integer n. (2). When $b_2^+(X/\langle \xi^2 \rangle) \neq 0$ and $b_2^+(X/\langle \xi^3 \rangle) = 0$, $Ind_{Z_6}D = c_0(-2 + \eta^2 + \eta^4) + b_0\eta(\eta - 2\eta^3 + \eta^5)$ and X is homotopic to $\sharp_n S^2 \times S^2$ for some integer n.

(3). When $b_2^+(X/\langle \xi^3 \rangle) \neq 0$, $Ind_{Z_6}D = 0$ and X is homotopic to $\sharp_n S^2 \times S^2$ for some integer n.

Remark. If $b_2^+(X) = 0$, by the same method we can also obtain the same result as in Case 6.

References

- [1] Atiyah, M. F., Bott periodicity and the index of ellptic operators. Quart. J. Math. Oxford Ser. (2) 19 (1968), 113-140.
- [2] Bryan, J., Seiberg-Witten theory and $Z/2^p$ actions on spin 4-manifolds. Math. Res. Letter 5 (1998), 165-183.
- [3] Dieck, T., Transformation Groups and Representation Theory, Lecture Notes in Mathematics, 766. Berlin: Springer 1979.
- [4] Donaldson, S. K., Connections, cohomology and the intersection form of 4manifolds. J. Diff. Geom. 24 (1986), 275-341.
- [5] Donaldson, S. K., The orientation of Yang-Mills moduli spaces and four manifold topology. J. Diff. Geom. 26 (1987), 397-428.
- [6] Fang, F., Smooth group actions on 4-manifolds and Seiberg-Witten theory. Diff. Geom. and its Applications 14 (2001), 1-14.
- [7] Freed, D., Uhlenbeck, K., Instantons and Four-manifolds. Berlin: Springer 1991.

- [8] Furuta, M., Monopole equation and $\frac{11}{8}$ -conjecture. Math. Res. Letter 8 (2001), 279-201.
- [9] Furuta, M., Kametani, Y., The Seiberg-Witten equations and equivariant einvariants. Priprint, 2001.
- [10] Kim, J. H., On spin Z/2^p-actions on spin 4-manifolds. Toplogy and its Applications 108 (2000), 197-215.
- [11] Kiyono, K., Liu, X., On spin alternating group actions on spin 4-manifolds, J. Korean Math. Soc. 43(2006), 1183-1197
- [12] Matsumoto, Y., On the bounding genus of homology 3-spheres. J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 29 (1982), 287-318.
- [13] Minami, N., The G-join theorem an unbased G-Freudenthal theorem. preprint.
- [14] Kirby, R., Problems in low-dimensional topology. Berkeley, Preprint, 1995.
- [15] Serre, J.P., Linear Representation of Finite Groups. New York: Springer-Verlag 1977.
- [16] Stolz, S., The level of real projective spaces. Comment. Math. Helvetici, 64 (1989), 661-674.
- [17] Witten, E., Monopoles and four-manifolds. Math. Res. Letter 1 (1994), 769-796.

Received by the editors January 18, 2006