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ON SPIN Z6-ACTIONS ON SPIN 4-MANIFOLDS1
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Abstract. Let X be a smooth, closed, connected spin 4-manifold with
b1(X) = 0 and non-positive signature σ(X). In this paper we use Seiberg-
Witten theory to prove that if X admits a spin Z6 action of even type,
then b+

2 (X) ≥ |σ(X)|/8 + 2 under some non-degeneracy conditions.
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1. Introduction

Let X be a smooth, closed, connected spin 4-manifold. We denote by b2(X)
the second Betti number and denote by σ(X) the signature of X. In [12], Y.
Matsumoto conjectured the following inequality

(1) b2(X) ≥ 11
8
|σ(X)|.

This conjecture is well known and has been called the 11
8 -conjecture (see also

[7]). All complex surfaces and their connected sums satisfy the conjecture (see
[14]).

From the classification of unimodular even integral quadratic forms and the
Rochlin’s theorem, for the choice of orientation with non-positive signature the
intersection form of a closed spin 4-manifold X is

−2kE8 ⊕mH, k ≥ 0,

where E8 is the 8× 8 intersection form matrix and H is the hyperbolic matrix
(

0 1
1 0

)
.

Thus, m = b+
2 (X) and k = −σ(X)/16 and so the inequality (1) is equivalent

to m ≥ 3k. Since K3 surface satisfies the equality with k = 1 and m = 3, the
coefficient 11

8 is optimal, if the 11
8 -conjecture is true.
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Donaldson has proved that if k > 0 then m ≥ 3 [4]. In early 1995, using
the Seiberg-Witten theory introduced by Seiberg and Witten [17], Furuta [8]
proved that

(2) b2(X) ≥ 5
4
|σ(X)|+ 2.

This estimate has been dubbed the 10
8 -theorem. In fact, if the intersection form

of X is definite, i.e., m = 0, then Donaldson proved that b2(X) and σ(X) are
zero [4, 5]. Thus, Furuta assumed that m is not zero. Inequality (2) follows by
a surgery argument from the non-positive signature, b1(X) = 0 case:

Theorem 1.1. (Furuta [8]). Let X be a smooth spin 4-manifold with b1(X) =
0 with non-positive signature. Let k = −σ(X)/16 and m = b+

2 (X). Then,

2k + 1 ≤ m

if m 6= 0.

His key idea was to use a finite dimensional approximation of the monopole
equation. Later Furuta and Kametani [9] used equivariant e-invariants and
improved the above 10

8 -theorem, which was also proved by N. Minami [13] by
using an equivariant join theorem to reduce the inequality to a theorem of Stolz
[16].

In [2] Bryan and also in [6] Fang used Furuta’s technique of ”finite dimen-
sional approximation” and the equivariant K-theory to improve the above bound
by p under the assumption that X has a spin odd type Z/2p-action satisfying
some non-degeneracy conditions analogous to the condition m 6= 0.

In the paper [10], Kim gave the same bound for smooth, spin even type Z/2p-
action on X satisfying some non-degeneracy conditions analogous to Bryan and
Fang’s.

In the paper [11], Kiyono and the second author obtained a bound for smooth
spin alternating A4 action on X satisfying some non-degeneracy conditions.

In this paper, we will assume m 6= 0 and b1(X) = 0, unless stated otherwise.
We study the spin even type Z6-actions on spin 4-manifolds. We prove that if
X admits a spin Z6-action of even type, then b+

2 (X) ≥ |σ(X)|/8+2 under some
non-degeneracy conditions. We also obtain some results about IndZ6D.

We organize the remainder of this paper as follows. In section 2, we give
some preliminaries to prove the main theorem. We refer the readers to the
Bryan’s excellent exposition [2] for more details. In this section, we also intro-
duce the representation ring and the the character table of cyclic group Z6. In
section 3, we use equivariant K-theory and representation theory to study the
G-equivariant properties of the moduli space. In the last section we give our
main results.

2. Notations and preliminaries

We assume that we have completely every Banach spaces with suitable
Sobolev norms. Let S = S+ ⊕ S− denote the decomposition of the spinor
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bundle into the positive and negative spinor bundles. Let D : Γ(S+) → Γ(S−)
be the Dirac operator, and ρ : Λ∗C → EndC(S) be the Clifford multiplication.
The Seiberg-Witten equations are for a pair (a, φ) ∈ Ω1(X,

√−1R)×Γ(S+) and
they are

Dφ + ρ(a)φ = 0, ρ(d+a)− φ⊗ φ∗ +
1
2
|φ|2id = 0, d∗a = 0.

Let V = Γ(
√−1Λ1 ⊕ S+), W ′ = (S− ⊕√−1su(S+)⊕√−1Λ0).

We can think of the equation as the zero set of a map

D +Q : V → W,

where D(a, φ) = (Dφ, ρ(d+a), d∗a)), Q(a, φ) = (ρ(a)φ, φ⊗ φ∗ − 1
2 |φ|2id, 0), and

W is defined to be the orthogonal complement to the constant functions in W ′.
Now it is time to describe the group of symmetries of the equations. Define

Pin(2) ⊂ SU(2) to be the normalizer of S1 ⊂ SU(2). Regarding SU(2) as
the group of unit quaternions and taking S1 to be elements of the form e

√−1θ,
Pin(2) then consists of the form e

√−1θ or e
√−1θJ . We define the action of

Pin(2) on V and W as follows: Since S+ and S− are SU(2) bundles, Pin(2)
naturally acts on Γ(S±) by multiplication on the left. Z/2 acts on Γ(Λ∗C) by
multiplication by ±1 and this pulls back to an action of Pin(2) by the natural
map Pin(2) → Z/2. A calculation shows that this pullback also describes the
induced action of Pin(2) on

√−1su(S+). Both D and Q are seen to be Pin(2)
equivariant maps.

If X is a smooth closed spin 4-manifold. Suppose that X admits a spin
structure preserving action by a compact Lie group (or finite group) G. We
may assume a Riemannian metric on X so that G acts by isometries. If the
action is of even type, both D and Q are G̃ = Pin(2)×G equavariant maps.

Now we define Vλ to be the subspace of V spanned by the eigenspaces D∗D
with eigenvalues less than or equal to λ ∈ R. Similarly, define Wλ using DD∗.
The virtual G-representation [Vλ ⊗ C] − [Wλ ⊗ C] ∈ R(G̃) is the G̃-index of
D and can be determined by the G̃-index and is independent of λ ∈ R, where
R(G̃) is the complex representation of G̃. In particular, since V0 = KerD and
W0 = CokerD ⊕ Cokerd+, we have

[Vλ ⊗ C]− [Wλ ⊗ C] = [V0 ⊗ C]− [W0 ⊗ C] ∈ R(G̃).

Note that Cokerd+ = H2
+(X, R).

Now let Z6 =< ξ > be a cyclic group of order 6 generated by ξ. Since Z6

is an Abel group, there are 6 irreducible representations of degree 1. Thus we
have the following character table for Z6 [15]:

where ω = e2πi/6 = 1
2 + i

√
3

2 and satisfies ω2 − ω = −1.

3. The index of D and the character formula for the K-
theory degree

The virtual representation [Vλ,C ]− [Wλ,C ] ∈ R(G̃) is the same as Ind(D) =
[kerD]− [CokerD]. Furuta determines Ind(D) as a Pin(2) representation; de-
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1 ξ ξ2 ξ3 ξ4 ξ5

χ0 1 1 1 1 1 1
χ1 1 ω ω2 −1 −ω −ω2

χ2 1 ω2 −ω 1 ω2 −ω
χ3 1 −1 1 −1 1 −1
χ4 1 −ω ω2 1 −ω ω2

χ5 1 −ω2 −ω −1 ω2 ω

noting the restriction map r : R(G̃) → R(Pin(2)), Furuta shows

r(Ind(D)) = 2kh−m1̃

where k = −σ(X)/16 and m = b+
2 (X). Thus Ind(D) = sh− t1̃, where s and t

are polynomials such that s(1) = 2k and t(1) = m. For a spin even Z6 action,
G̃ = Pin(2)× Z6, we can write

s(η) = a0 + b0η + c0η
2 + d0η

3 + e0η
4 + f0η

5,

and
t(η) = a1 + b1η + c1η

2 + d1η
3 + e1η

4 + f1η
5,

so that a0+b0+c0+d0+e0+f0 = 2k and a1+b1+c1+d1+e1+f1 = m = b+
2 (X).

As an element of R(Z6), we know that IndZ6D = IndZ6D, so from IndZ6D =
a0 +b0η+c0η

2 +d0η
3 +e0η

4 +f0η
5 we have b0 = f0 and c0 = e0. Similarly, since

H+(X, C) = H+(X,C), so from H+(X, C) = a1+b1η+c1η
2+d1η

3+e1η
4+f1η

5

we have b1 = f1 and c1 = e1. Thus, we have

s(η) = a0 + b0η + c0η
2 + d0η

3 + c0η
4 + b0η

5,

t(η) = a1 + b1η + c1η
2 + d1η

3 + c1η
4 + b1η

5,

so that a0 + 2b0 + 2c0 + d0 = 2k and a1 + 2b1 + 2c1 + d1 = m = b+
2 (X).

Besides, we have

dim (H+(X)Z6) = a1 = b+
2 (X/Z6) = b+

2 (X/ < ξ >),

dim (H+(X)<ξ2>) = a1 + d1 = b+
2 (X/ < ξ2 >),

dim (H+(X)<ξ3>) = a1 + 2c1 = b+
2 (X/ < ξ3 >),

The Thom isomorphism theory in equivariant K-theory for a general com-
pact Lie group is a deep theory proved using elliptic operator [1]. The subse-
quent character formula of this section uses only elementary properties of the
Bott class.

Let V and W be complex Γ representations for some compact Lie group Γ.
Let BV and BW denote balls in V and W and let f : BV → BW be a Γ-map
preserving the boundaries SV and SW . KΓ(V ) is by definition KΓ(BV, SV ),



On spin Z6-actions on spin 4-manifolds 17

and by the equivariant Thom isomorphism theorem, KΓ(V ) is a free R(Γ) mod-
ule with generator of the Bott class λ(V ). Applying the K-theory functor to f
we get a map

f∗ : KΓ(W ) → KΓ(V )

which defines a unique element αf ∈ R(Γ) by the equation f∗(λ(W )) = αf ·λ(V ).
The element αf is called the K-theory degree of f .

Let Vg and Wg denote the subspaces if V and W fixed by an element g ∈ Γ
and let V ⊥

g and W⊥
g be the orthogonal complements. Let fg : Vg → Wg be the

restriction of f and let d(fg) denote the ordinary topological degree of fg (by
definition, d(fg) = 0 if dimVg 6= dim Wg). For any β ∈ R(Γ), let λ−1β denote
the alternating sum Σ(−1)iλiβ of exterior powers.

Tom Dieck proves the following character formula for the degree αf :

Theorem 3.1. ([3]) Let f : BV → BW be a Γ-map preserving boundaries
and let αf ∈ R(Γ) be the K-theory degree. Then

trg(αf ) = d(fg)trg(λ−1(W⊥
g − V ⊥

g ))

where trg is the trace of the action of an element g ∈ Γ.

This formula is very useful in the case where dimVg 6= dimWg so that
d(fg) = 0.

Recall that λ−1(Σiairi) =
∏

i(λ−1ri)ai and that for a one-dimensional rep-
resentation r, we have λ−1r = (1 − r). A two-dimensional representation such
as h has λ−1h = (1 − h + Λ2h). In this case, since h comes from an SU(2)
representation, Λ2h = det h = 1 so λ−1h = (2− h).

In the following we use the character formula to examine the K-theory de-
gree αfλ

of the map fλ : BVλ,C → BWλ,C coming from the Seiberg-Witten
equations. We will abbreviate αfλ

as α and Vλ,C and Wλ,C as just V and W .
Let φ ∈ S1 ⊂ Pin(2) ⊂ G be the element generating a dense subgroup of S1,
and recall that there is the element J ∈ Pin(2) coming from the quaternion.
Note that the action of J on h has two invariant subspaces on which J acts by
multiplication with

√−1 and −√−1.

4. The main results

Consider α = αfλ
∈ R(Pin(2)× Z6), it has the following form

α = α0 + α̃01̃ +
∞∑

i=1

αihi.

where αi = li + miη + niη
2 + piη

3 + qiη
4 + riη

5, i ≥ 0 and α̃0 = l̃0 + m̃0η +
ñ0η

2 + p̃0η
3 + q̃0η

4 + r̃0η
5.

Since φ acts non-trivially on h and trivially on 1̃ , ξ2 acts trivially on a1 and
d1ξ

3 and non-trivially on the others, then we have

dim(V (η)h)φξ2 − dim(W (η)1̃)φξ2 = −(a1 + d1) = −b+
2 (X/ < ξ2 >).
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So if b+
2 (X/ < ξ2 >) 6= 0, trφξ2α = 0.

Since φξ3 acts non-trivially on V (η)h and ξ3 acts trivially on a1, c1η
2 and

c1η
4 but non-trivially on the others, then we have

dim(V (η)h)φξ3 − dim(W (η)1̃)φξ3 = −(a1 + 2c1) = −b+
2 (X/ < ξ3 >).

So if a1 + 2c1 = b+
2 (X/ < ξ3 >) 6= 0, trφξ3α = 0.

Since φξ acts non-trivially on V (η)h, and trivially only on a11̃ in W (η)1̃,
then we have

dim(V (η))φξ − dim(W (η))φξ = −a1 = −b+
2 (X/ < ξ >).

So if a1 = b+
2 (X/ξ) 6= 0, trφξα = 0.

From the above analysis, we know if b+
2 (X/ξ) 6= 0 that is a1 6= 0, we have

trφξα = trφξ2α = trφξ3α = 0, which implies that

0 = trφξ2α = trξ2(α0 + α̃01̃ +
∞∑

i=1

αi(φi + φ−i))

= trξ2α0 + trξ2 α̃01̃ +
∞∑

i=1

trξ2αi(φi + φ−i)

= (l0 + m0ω
2 − n0ω + p0 + q0ω

2 − r0ω) + (l̃0 + m̃0ω
2 − ñ0ω

+p̃0 + q̃0ω
2 − r̃0ω) +

∞∑

i=1

trξ2αi(φi + φ−i),

0 = trφξα = trξ(α0 + α̃01̃ +
∞∑

i=1

αi)(φi + φ−i)

= trξα0 + trξα̃01̃ +
∞∑

i=1

trξαi(φi + φ−i)

= (l0 + m0ω + n0ω
2 − p0 − q0ω − r0ω

2) + (l̃0 + m̃0ω + ñ0ω
2

−p̃0 − q̃0ω − r̃0ω
2) +

∞∑

i=1

trξαi(φi + φ−i),

and so on. From these equations we have α0 = −α̃0 and αi = 0, i > 0, that is
α = α0(1− 1̃).

Next we calculate trJα. Since J acts non-trivially on both h and 1̃, dimVJ =
dimWJ = 0, so d(fJ) = 1 and the character formula gives trJ(α) = trJ (λ−1(m1̃−
2kh) = trJ ((1− 1̃)m(2− h)−2k) = 2m−2k using trJh = 0 and trJ 1̃ = −1.

Now we calculate trJξ2α. Since Jξ2 acts non-trivially on both V (η)h and
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W (η)1̃, so d(fJξ2
) = 1. By Tom Dieck formula, we have

trJξ2(α) = trJξ2 [λ−1(a1 + b1η + c1η
2 + d1η

3 + c1η
4 + b1η

5)1̃
−λ−1(a0 + b0η + c0η

2 + d0η
3 + c0η

4 + b0η
5)h]

= 2a1(1 + ω2)b1(1− ω)c12d1(1 + ω2)c1(1− ω)b1

2−a0(1 + ω2)−b0(1− ω)−c02−d0(1 + ω2)−c0(1− ω)−b0

= 2(a1+d1)−(a0+d0)

Here the 2-dimensional representation h decomposes into two complex lines on
which J acts as

√−1 and −√−1. Besides, J acts on 1̃ as −1. And ξ2 acts on
the 1-dimensional representation η, η2, η3, η4 and η5 as ω2, −ω, 1, ω2 and −ω.

Since ξ3 acts trivially on η2 and η4 but acts on η, η3, η5 all as −1, which
combines with the action of J , then tells us that

dim(V (η)h)Jξ3 − dim(W (η)1̃)Jξ3 = −(2b1 + d1) = −(b+
2 (X)− b+

2 (X/ < ξ3 >))

So, if 2b1 + d1 6= 0, that is b+
2 (X) 6= b+

2 (X/ < ξ3 >), then trJξ3α = 0
By direct calculation, we have

(3) trJα0 = l0 + m0 + n0 + p0 + q0 + r0 = 2m−2k−1,

(4) trξ2α0 = l0 + m0ω
2 − n0ω + p0 + q0ω

2 − r0ω = 2(a1+d1)−(a0+d0)−1,

(5) trξ3α0 = l0 −m0 + n0 − p0 + q0 − r0 = 0.

Here we use trJgα = trg(2 · α0) = 2 · trgα0 where g is any element of Z6.
From (3) and (5) we get l0 + n0 + q0 = 2m−2k−2. So, we have the following

main result.

Theorem 1. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-
positive signature. Let k = −σ(X)/16 and m = b+

2 (X). If the cyclic group
Z6 acts on X as spin even type, then 2k + 2 ≤ m if b+

2 (X/ < ξ >) 6= 0 and
b+
2 (X) 6= b+

2 (X/ < ξ3 >).

On the other hand, if b+
2 (X) = b+

2 (X/ < ξ3 >), i.e., 2b1 + d1 = 0 that is
b1 = d1 = 0, then from the action of Jξ3 and (3), we easily get l0 + n0 + q0 =
2m−2k−1, which means m ≥ 2k + 1, and this was proved in Theorem 1.1 by
Furuta under a more weaker condition.

Since ξ acts on η3 as −1, we have

dim(V (η)h)Jξ − dim(W (η)1̃)Jξ = −d1 = −(b+
2 (X/ < ξ2 >)− b+

2 (X/ < ξ >)).

If d1 = b+
2 (X/ < ξ2 >)− b+

2 (X/ < ξ >) 6= 0, then trJξα = 0.
Then, by direct calculation we have

(6) trξα0 = l0 + m0ω + n0ω
2 − p0 − q0ω − r0ω

2
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From (4) and (6), we obtain l0 = p0, m0 = n0 = q0 = r0. Thus (3) and (4)
become

l0 + 2n0 = 2m−2k−2(7)
2l0 + 2n0ω

2 − 2n0ω = 2(a1+d1)−(a0+d0)−1(8)

From the above we get

n0 =
2m−2k−2 − 2(a1+d1)−(a0+d0)−2

3
, l0 =

2m−2k−2 + 2(a1+d1)−(a0+d0)−1

3

Since n0 ∈ Z, then 2m−2k−2− 2(a1+d1)−(a0+d0)−2 ∈ 3Z ⊂ Z. From Theorem
1, we know 2m−2k−2 ∈ Z. So 2(a1+d1)−(a0+d0)−2 ∈ Z, i.e., a1+d1 ≥ (a0+d0)−2.
Hence, we have the following proposition.

Proposition 2. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-
positive signature. If X admits a spin Z6 action of even type, then

b+
2 (X/ < ξ2 >) ≥ dim((IndZ6D)<ξ2>) + 2

if b+
2 (X/ < ξ >) 6= 0, b+

2 (X) 6= b+
2 (X/ < ξ3 >) and b+

2 (X/ < ξ2 >) 6= b+
2 (X/ <

ξ >). Moreover, under this condition, the K-theory degree α = α0(1 − 1̃) for
some α0 = l0(1 + η3) + m0η(1 + η + η3 + η4).

In fact F. Fang obtained the following equivalent version of Furuta’s 10
8 -

theorem

Proposition 3. (Fang [6]). Let X be a smooth closed spin G-manifold of
dimension 4, where G is compact. Suppose that b1(X) = 0 and σ(X) ≤ 0. If
the G-action is of even type so that indG(D) 6= 0, then

b+
2 (X/G) ≥ indG(D) + 1,

where indG(D) = dim(ker D)G − dim(coker D)G.

On the other hand, if b+
2 (X/ < ξ >) = b+

2 (X/ξ2), i.e., d1 = 0, then
Jξ acts non-trivially on both V (η)h and W (η)1̃, we have dim(V (η)h)Jξ =
dim(W (η)1̃)Jξ. From Tom Dieck formula, we have

trJξα = trJξ[λ−1(a1 + b1η + c1η
2 + c1η

4 + b1η
5)1̃−

λ−1(a0 + b0η + c0η
2 + d0η

3 + c0η
4 + b0η

5)h]
= 2a1(1 + ω)b1(1 + ω2)c1(1− ω)c1(1− ω2)b1

2−a0(1 + ω2)−b0(1− ω)−c02−d0(1 + ω2)−c0(1− ω)−b0

= 2a1−(a0+d0)[(1 + ω)(1− ω2)]b1 [(1 + ω2)(1− ω)]c1−(b0+c0)

= 2a1−(a0+d0)3b1
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Besides, by direct calculation, we have

(9) trJξα = 2[(l0 − p0) + (m0 − q0)ω + (n0 − r0)ω2]

So we have l0−p0 = 2a1−(a0+d0)−13b1 , m0 = q0 and n0 = r0, for the reason that
1, ω and ω2 are linear independent of each other. Thus we get the following
proposition.

Proposition 4. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-
positive signature. If X admits a spin Z6 action of even type, then the K-theory
degree α = α0(1− 1̃) for some α0 = (1+η3)(p0+m0η+n0η

2)+2a1−(a0+d0)−13b1 .

Now we assume b+
2 (X/ < ξ >) = 0 and b+

2 (X) 6= 0, that is a1 = 0 and
2b1 + 2c1 + d1 6= 0. Next we will consider six cases of this condition.

Case 1. b1 6= 0, a1 = c1 = d1 = 0
Since b+

2 (X/ < ξ2 >) = a1 + d1 = 0, dim(V (η)h)φξ2 = dim(W (η)1̃)φξ2 , then
we have

trφξ2α = trφξ2 [λ−1(b1η + b1η
5)1̃− λ−1(a0+ b0η+ c0η

2+ d0η
3+ c0η

4+ b0η
5)h]

= (1 + ω)b1(1− ω2)b1 [(1− φ)(1− φ−1)]−(a0+d0)

[(1 + ωφ)(1 + ωφ−1)]−(b0+c0)[(1− ω2φ)(1− ω2φ−1)]−(b0+c0)

Since trξ2α : U(1) → C is a C0-function, φ is a generic element, so −(a0 +
d0) ≥ 0 and −(b0 + c0) ≥ 0.

On the other hand, IndD = −σ
8 ∈ Z, but we have IndD = a0 + 2b0 + 2c0 +

d0 ≤ 0, so a0 +d0 = b0 + c0 = 0, andX is homotopic to ]nS2×S2 for some even
integer n. Besides, IndZ6D = a0(1− η3) + b0η(1− η − η3 + η4).

Case 2. c1 6= 0 and a1 = b1 = d1 = 0 or b1 6= 0, c1 6= 0 and a1 = d1 = 0
Under the two kinds of conditions, we can obtain the same result as in Case

1.
Case 3. d1 6= 0 and a1 = b1 = c1 = 0. Since b+

2 (X/ξ3) = a1 + 2c1 = 0,
dim(V (η)h)Jξ3 = dim(W (η)1̃)Jξ3 = 0, then by Tom Dieck formula we have

trφξ3α = trφξ3 [λ−1(d1η
31̃)− λ−1(a0 + b0η + c0η

2 + d0η
3 + c0η

4 + b0η
5)h]

= 2d1 [(1− φ)(1− φ( − 1))]−(a0+2c0)[(1 + φ)(1 + φ−1)]−(2b0+d0)

By the same reason as in Case 1, we have −(a0 + 2c0) ≥ 0, −(2b0 + d0) ≥ 0.
Since 0 ≤ −σ

8 ≤ IndD = a0 + 2b0 + 2c0 + d0 ≤ 0, then we get a0 + 2c0 =
2b0 + d0 = 0 and X is homotopic to ]nS2 × S2 for some integer n. Besides,
IndZ6D = c0(−2 + η2 + η4) + b0(η − 2η3 + η5).

Case 4. b1 6= 0, d1 6= 0 and a1 = c1 = 0. We can obtain the same result as
in Case 3.

Case 5. c1 6= 0, d1 6= 0 and a1 = b1 = 0. Since b+
2 (X/ < ξ >) = a1 = 0

and dim(V (η)h)φξ = dim(W (η)1̃)φξ, we have d(fφξ) = 1. Then the Tom Dieck
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formula gives us,

trφξα = trφξ[λ−1(c1η
2 + d1η

3 + c1η
4)1̃−

λ−1(a0 + b0η + c0η
2 + d0η

3 + c0η
4 + b0η

5)h]
= (1− ω2)c12d1(1 + ω)c1 [(1− φ)(1− φ−1)]−a0 [(1− ωφ)(1− ωφ−1)]−b0

[(1− ω2φ)(1− ω2φ−1)]−c0 [(1 + φ)(1 + φ−1)]−d0 [(1 + ωφ)(1 + ωφ−1)]−c0

[(1 + ω2φ)(1 + ω2φ−1)]−b0

By the same reason as in Case 1, we have a0 ≤ 0, b0 ≤ 0, c0 ≤ 0 and d0 ≤ 0,
so a0 = b0 = c0 = d0 = 0, which means that IndZ6D = 0.

Case 6. b1 6= 0, c1 6= 0, d1 6= 0 and a1 = 0. We can get the same result as
in Case 5.

In summary, we have the following result:

Proposition 5. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-
positive signature. If X admits a spin Z6-action of even type and b+

2 (X/ < ξ >
) = 0 and b+

2 (X) 6= 0, then as an element of R(Z6), IndZ6D has the following
three cases

(1). When b+
2 (X/ < ξ2 >) = 0, IndZ6D = a0(1− η3) + b0η(1− η− η3 + η4)

and X is homotopic to ]nS2 × S2 for some even integer n.
(2). When b+

2 (X/ < ξ2 >) 6= 0 and b+
2 (X/ < ξ3 >) = 0, IndZ6D =

c0(−2+ η2 + η4)+ b0η(η− 2η3 + η5) and X is homotopic to ]nS2×S2 for some
integer n.

(3). When b+
2 (X/ < ξ3 >) 6= 0, IndZ6D = 0 and X is homotopic to

]nS2 × S2 for some integer n.

Remark. If b+
2 (X) = 0, by the same method we can also obtain the same

result as in Case 6.
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