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Abstract. This paper introduces a composite iteration scheme for
approximating a zero point of accretive operators in the framework of
uniformly smooth Banach spaces and the reflexive Banach space which
has a weak continuous duality map, respectively. Our results improve
and extend results of Kim, Xu and some others.
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1. Introduction and Preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and
T : C → C a mapping. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set
of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.

One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping [2], [9]. More precisely, take t ∈ (0, 1)
and define a contraction Tt : C → C by

(1.1) Ttx = tu + (1− t)Tx, x ∈ C,

where u ∈ C is a fixed point. Banach’s Contraction Mapping Principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what
is the behavior of xt as t → 0, even if T has a fixed point. However, in the
case of T having a fixed point, Browder [2] proved that if E is a Hilbert space,
then xt converges strongly to a fixed point of T that is nearest to u. Reich [9]
extended Broweder’s result to the setting of Banach spaces and proved that if E
is a uniformly smooth Banach space, then xt converges strongly to a fixed point
of T and the limit defines the (unique) sunny nonexpansive retraction from C
onto F (T ).
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Recall that a (possibly multivalued) operator A with domain D(A) and range
R(A) in E is accretive, if for each xi ∈ D(A) and yi ∈ Axi(i = 1, 2), there exists
a j(x2 − x1) ∈ J(x2 − x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0,

where J is the duality map from E to the dual space E∗ given by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x2‖ = ‖x∗‖2}, x ∈ E.

An accretive operator A is m-accretive if R(I + rA) = E for each r > 0.
Throughout this article we always assume that A is m-accretive and has a zero
(i.e., the inclusion 0 ∈ A(z) is solvable). The set of zeros of A is denoted by F .
Hence,

F = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0).

For each r > 0, we denote by Jr the resolvent of A, i.e., Jr = (I + rA)−1.
Note that if A is m-accretive, then Jr : E → E is nonexpansive and F (Jr) = F
for all r > 0. We also denote by Ar the Yosida approximation of A, i.e.,
Ar = 1

r (I − Jr). It is known that Jr is a nonexpansive mapping from X to
C := D(A) which will be assumed convex.

Recently Kim and Xu [6] and Xu [12] studied the sequence generated by the
algorithm

(1.2) xn+1 = αnu + (1− αn)Jrnxn, n ≥ 0

and proved strong convergence of the scheme (1.2) in the framework of uniformly
smooth Banach spaces.

Inspired and motivated by the iterative sequences (1.2) given by Xu, this
paper gives the following iterative sequences

(1.3)





zn = γnxn + (1− γn)Jrnxn,

yn = βnxn + (1− βn)Jrnzn,

xn+1 = αnu + (1− αn)yn,

where u ∈ C is an arbitrary (but fixed) element in C, and {αn}, {βn}, {γn}
are sequences in (0, 1). We prove, under certain appropriate assumptions on the
sequences {αn}, {βn}, {γn} and {rn}, that {xn} defined by (1.3) converges to
a fixed point of T .

If γn = 1 in (1.3) we have the iterative scheme as follows

(1.4)

{
yn = βnxn + (1− βn)Jrnxn,

xn+1 = αnu + (1− αn)yn.

If βn = 0 in (1.3) we have the iterative sequence {xn} defined by (1.2).
It is our purpose in this paper to introduce this composite iteration scheme

for approximating a zero point of accretive operators in the framework of uni-
formly smooth Banach spaces and the reflexive Banach space which has a weakly
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continuous duality map, respectively. We establish the strong convergence of
the composite iteration scheme {xn} defined by (1.3). The results improve and
extend results of Kim and Xu [6] and Xu [12] and others.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

(1.5) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the
limit in (1.5) is attained uniformly for (x, y) ∈ U × U .

We need the following definitions and lemmas for the proof of our main
results.

Lemma 1. A Banach space E is uniformly smooth if and only if the duality
map J is the single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 2. In a Banach space E, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, x, y ∈ E

where j(x + y) ∈ J(x + y).

Lemma 3. (Xu [11], [10]) Let
∑∞

n=0{αn} be a sequence of nonnegative real
numbers satisfying the property

αn+1 ≤ (1− γn)αn + γnσn, n ≥ 0

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 such that
(i) limn→∞ γn = 0 and

∑∞
n=0 γn = ∞,

(ii) either lim supn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.
Then {αn}∞n=0 converges to zero.

Lemma 4. (The resolvent Identity [1]). For λ > 0 and µ > 0 and x ∈ E,

Jλx = Jµ(
µ

λ
x + (1− µ

λ
)Jλx).

Recall that if C and D are nonempty subsets of a Banach space E such that
C is nonempty closed convex and D ⊂ C, then a map Q : C → D is sunny
[4], [8] provided Q(x + t(x − Q(x))) = Q(x) for all x ∈ C and t ≥ 0 whenever
x + t(x − Q(x)) ∈ C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive. Sunny nonexpansive retractions play an important
role in our argument. They are characterized as follows [4], [5], [8]: if E is a
smooth Banach space, then Q : C → D is a sunny nonexpansive retraction if
and only if there holds the inequality

(1.6) 〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ D.
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Reich [9] showed that if E is uniformly smooth and if D is the fixed point set
of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive
retraction from C onto D and it can be constructed as follows.

Lemma 5. (Reich [11]). Let E be a uniformly smooth Banach space and
let T : C → C be a nonexpansive mapping with a fixed point xt ∈ C of the
contraction C 3 x 7→ tu + (1− t)tx converges strongly as t → 0 to a fixed point
of T . Define Q : C → F (T ) by Qu = s− limt→0 xt. Then Q is the unique sunny
nonexpansive retract from C onto F (T ); that is, Q satisfies the property:

〈u−Qu, J(z −Qu)〉 ≤ 0, u ∈ C, z ∈ F (T ).

Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) →∞ as t →∞. Associated to a gauge ϕ is
the duality map Jϕ : X → X∗ defined by

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖). ‖x∗‖ = ϕ(‖x‖)}, x ∈ X.

Following Browder [3], we say that a Banach space X has a weakly con-
tinuous duality map if there exists a gauge ϕ for which the duality map Jϕ is
single-valued and weak-to-weak∗ sequentially continuous (i.e., if {xn} is a se-
quence in X weakly convergent to a point x, then the sequence Jϕ(xn) converges
weak∗ly to Jϕ). It is known that lp has a weakly continuous duality map for all
1 < p < ∞. Set

Φ(t) =
∫ t

0

ϕ(τ)dτ , t ≥ 0.

Then
Jϕ(x) = ∂Φ(‖x‖), x ∈ X,

where ∂ denotes the subdifferential in the sense of convex analysis. The first part
of the next lemma is an immediate consequence of the subdiferential inequality
and the proof of the second part can be found in [7].

Lemma 6. Assume that X has a weakly continuous duality map Jϕ with gauge
ϕ.
(i) For all x, y ∈ X, there holds the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, JΦ(x + y)〉.

(ii) Assume a sequence xn in X is weakly convergent to a point x. Then there
holds the identity

lim sup lim
n→∞

Φ(‖xn − y‖) = lim sup lim
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖), x, y ∈ X.

Notation: ” ⇀ ” stands for weak convergence and ” → ” for strong conver-
gence.
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Lemma 7. [7] Let X be a reflexive Banach space and have a weakly continuous
duality map Jϕ(x) with gauge ϕ. Let C be a closed convex subset of X and let
T : C → C be a nonexpansive mapping. Fix u ∈ C and t ∈ (0, 1). Let xt ∈ C be
the unique solution in C to Eq.(1.1). Then T has a fixed point if and only if xt

remains bounded as t → 0+, and in this case, xt converges as t → 0+ strongly
to a fixed point of T .

Under the condition of Lemma 6, we define a map Q : C → F (T ) by

Q(u) := lim
t→0

xt, u ∈ C.

From [11], Theorem 3.2, we know Q is the sunny nonexpansive retraction from
C onto F (T ).

2. Main Results

Theorem 1. Assume that E is a uniformly smooth Banach space and A is an
m-accretive operator in E such that A(0) 6= ∅. Given a point u ∈ C and given
sequences {αn}∞n=0 in (0,1) and {βn}∞n=0, {γn}∞n=0 in [0,1] suppose {αn}∞n=0,
{βn}∞n=0, {γn}∞n=0 and {rn}∞n=0 satisfy the conditions:
(i)

∑∞
n=0 αn = ∞, αn → 0;

(ii) rn ≥ ε for all n and γn − βn(2− γn) ∈ [0, a), for some a ∈ (0, 1);
(iii)

∑∞
n=0 |αn+1−αn| < ∞,

∑∞
n=0 |βn+1−βn| < ∞ ∑∞

n=0 |γn+1−γn| < ∞ and∑∞
n=0 |rn − rn−1| < ∞.

Let {xn}∞n=1 be the composite process defined by




zn = γnxn + (1− γn)Jrnxn

yn = βnxn + (1− βn)Jrnzn

xn+1 = αnu + (1− αn)yn

Then {xn}∞n=1 converges strongly to a zero point of A.

Proof. First we observe that {xn}∞n=0 is bounded. Indeed, if we take a fixed
point p of T , noting that

‖zn − p‖ ≤ γn‖xn − p‖+ (1− γn)‖Jrnxn − p‖ ≤ ‖xn − p‖,
and

‖yn − p‖ ≤ βn‖xn − p‖+ (1− βn)‖Jrnzn − p‖
≤ βn‖xn − p‖+ (1− βn)‖zn − p‖
≤ βn‖xn − p‖+ (1− βn)‖xn − p‖
≤ ‖xn − p‖.

Thus
‖xn+1 − p‖ ≤ αn‖u− p‖+ (1− αn)‖Jrnyn − p‖

≤ αn‖u− p‖+ (1− αn)‖yn − p‖
≤ αn‖u− p‖+ (1− αn)‖xn − p‖
≤ max{‖u− p‖, ‖xn − p‖}.
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Now, an induction gives that

(2.1) ‖xn − p‖ ≤ max{‖u− p‖, ‖x0 − p‖}, n ≥ 0.

This implies that {xn} is bounded, so are {yn} and {zn}. As a result, we obtain
by condition (i),

(2.2) ‖xn+1 − Jrn
yn‖ = αn‖u− yn‖ → 0, as n →∞.

Next we prove

(2.3) ‖xn+1 − xn‖ → 0.

In order to prove (2.3) we calculate xn+1 − xn first. From (1.3) we have
{

zn = γnxn + (1− γn)Jrnxn,

zn−1 = γn−1xn−1 + (1− γn−1)Jrn−1xn−1,

Simple calculations show that

(2.4)
zn − zn−1 = (1− γn)(Jrnxn − Jrn−1xn−1) + γn(xn − xn−1)

+ (xn−1 − Jrn−1xn−1)(γn − γn−1).

It follows that

(2.5)
‖zn − zn−1‖ ≤ (1− γn)‖Jrnxn − Jrn−1xn−1‖+ γn‖xn − xn−1‖

+ ‖xn−1 − Jrn−1xn−1‖|γn − γn−1|.
Lemma 4 the resolvent identity implies that

Jrnxn = Jrn−1(
rn−1

rn
xn + (1− rn−1

rn
)Jrnxn).

If rn−1 ≤ rn, which in turn implies that
(2.6)

‖Jrnxn − Jrn−1xn−1‖ ≤ ‖rn−1

rn
xn + (1− rn−1

rn
)Jrnxn − xn−1‖

≤ ‖rn−1

rn
(xn − xn−1) + (1− rn−1

rn
)(Jrnxn − xn−1)‖

≤ ‖xn − xn−1‖+ (
rn − rn−1

rn
)‖Jrnxn − xn−1‖

≤ ‖xn − xn−1‖+ (
rn − rn−1

ε
)‖Jrnxn − xn−1‖.

Substituting (2.6) into (2.5) we obtain

(2.7)
‖zn − zn−1‖ ≤ (1− γn)(‖xn − xn−1‖+ (

rn − rn−1

ε
)‖Jrnxn − xn−1‖)

+ γn‖xn − xn−1‖+ ‖xn−1 − Jrn−1xn−1‖|γn − γn−1|
≤ ‖xn − xn−1‖+ M1(|rn − rn−1|+ |γn − γn−1|),
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where M1 is a constant such that

M1 > max{‖Jrnxn − xn−1‖
ε

, ‖xn−1 − Jrn−1xn−1‖}.

Similarly, we have
{

yn = βnxn + (1− βn)Jrn
zn,

yn−1 = βn−1xn−1 + (1− βn−1)Jrn−1zn−1,

Simple calculations show that

(2.8)
yn − yn−1 = (1− βn)(Jrnzn − Jrn−1zn−1) + βn(xn − xn−1)

+ (xn−1 − Jrn−1zn−1)(βn − βn−1).

It follows that

(2.9)
‖yn − yn−1‖ ≤ (1− βn)‖Jrnzn − Jrn−1zn−1‖+ βn‖xn − xn−1‖

+ ‖xn−1 − Jrn−1zn−1‖|βn − βn−1|.
It follows from resolvent identity that
(2.10)

‖Jrnzn − Jrn−1zn−1‖ ≤ ‖rn−1

rn
zn + (1− rn−1

rn
)Jrnzn − zn−1‖

≤ ‖rn−1

rn
(zn − zn−1) + (1− rn−1

rn
)(Jrnzn − zn−1)‖

≤ ‖zn − zn−1‖+ (
rn − rn−1

rn
)‖Jrnzn − zn−1‖

≤ ‖zn − zn−1‖+ (
rn − rn−1

ε
)‖Jrnzn − zn−1‖.

Substitute (2.7) into (2.10) yields that

(2.11)
‖Jrnzn − Jrn−1zn−1‖ ≤ ‖xn − xn−1‖+ M1(|rn − rn−1|+ |γn − γn−1|)

+ (
rn − rn−1

ε
)‖Jrnzn − zn−1‖.

Substitute (2.11) into (2.9) yields that
(2.12)
‖yn − yn−1‖ ≤ (1− βn)[‖xn − xn−1‖+ M1(|rn − rn−1|+ |γn − γn−1|)

+ (
rn − rn−1

ε
)‖Jrnzn − zn−1‖] + βn‖xn − xn−1‖

+ ‖xn−1 − Jrn−1zn−1‖|βn − βn−1|
≤ ‖xn − xn−1‖+ M2(|βn − βn−1|+ |γn − γn−1|+ 2|rn − rn−1|).

where M2 is a constant such that

M2 > max{‖Jrnzn − zn−1‖
ε

, ‖xn−1 − Jrn−1zn−1‖, M1}.
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On the other hand, we have

{
xn+1 = αnu + (1− αn)yn,

xn = αn−1u + (1− αn−1)yn−1,

Simple calculations show that

xn+1 − xn = (1− αn)(Jrnyn − Jrnyn−1) + (αn − αn−1)(u− yn−1).

It follows that

(2.13)
‖xn+1 − xn‖ ≤ (1− αn)‖yn − yn−1‖+ |αn − αn−1|‖u− yn−1‖

≤ (1− αn)‖yn − yn−1‖+ |αn − αn−1|‖u− yn−1‖.

Substituting (2.12) into (2.13) we obtain
(2.14)
‖xn+1 − xn‖
≤ (1− αn)(‖xn − xn−1‖+ M2(|βn − βn−1|+ |γn − γn−1|+ 2|rn − rn−1|))

+ |αn − αn−1|‖u− yn−1‖
≤ (1− αn)‖xn − xn−1‖

+ M3(2|rn − rn−1|+ |βn − βn−1|+ |αn − αn−1|+ |γn − γn−1|),

where M3 is a constant such that

M3 > max{‖u− yn−1‖, M2}.

Similarly, we can prove (2.14) if rn−1 ≥ rn, by assumptions (i)-(iii), we have
that

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

and

∞∑
n=1

(|βn − βn−1|+ 2|rn − rn−1|+ |αn − αn−1|+ |γn − γn−1|) < ∞.

Hence, Lemma 3 is applicable to (2.14) and we obtain

(2.15) ‖xn+1 − xn‖ → 0.
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On the other hand, it follows from (1.3) that

(2.16)

‖Jrnxn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Jrnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Jrn

zn‖
+ ‖Jrnzn − Jrnxn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ βn‖xn − Jrn
zn‖

+ ‖zn − xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ βn‖xn − Jrn

xn‖
+ βn‖Jrnxn − Jrnzn‖+ ‖zn − xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ βn‖xn − Jrn
xn‖

+ (1 + βn)‖xn − zn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+

[βn + (1 + βn)(1− γn)]‖xn − Jrn
xn‖.

That is,

(γn − βn(2− γn))‖Jrnxn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖.
It follows from (2.2), (2.15) and condition (ii) that

‖Jrnxn − xn‖ → 0,

Taking a fixed number r such that ε > r > 0, from Lemma 4 we have

(2.17)

‖Jrnxn − Jrxn‖ = ‖Jr(
r

rn
xn + (1− r

rn
)Jrnxn)− Jrxn‖

≤ (1− r

rn
)‖xn − Jrnxn‖

≤ ‖xn − Jrnxn‖.
Therefore, we obtain

(2.18)
‖xn − Jrxn‖ ≤ ‖xn − Jrnxn‖+ ‖Jrnxn − Jrxn‖

≤ ‖Jrn
− xn‖+ ‖Jrn

− xn‖
≤ 2‖Jrn − xn‖.

Hence we have
‖xn − Jrxn‖ → 0.

Since in a uniformly smooth Banach space, the sunny nonexpansive retract Q
from E onto the fixed point set F (Jr)(= F = A−1(0)) of Jr is unique, it must
be obtained from Reich’s theorem (Lemma 5). Namely,

Qu = s− lim
t→0

zt, u ∈ E,

where t ∈ (0, 1) and zt solves the fixed point equation

zt = tu + (1− t)Jrzt.
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Next, we claim that

(2.19) lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0.

Thus we have

‖zt − xn‖ = ‖(1− t)(Jrzt − xn) + t(u− xn)‖.
It follows From Lemma 2 that

(2.20)

‖zt − xn‖2 ≤ (1− t)2‖Jrzt − xn‖2 + 2t〈u− xn, J(zt − xn)〉
≤ (1− 2t + t2)‖zt − xn‖2 + fn(t)

+ 2t〈u− zt, J(zt − xn)〉+ 2t‖zt − xn‖2,
where

(2.21) fn(t) = (2‖zt − xn‖+ ‖xn − Jrxn‖)‖xn − Jrxn‖ → 0, as n → 0.

It follows that

(2.22) 〈zt − u, J(zt − xn)〉 ≤ t

2
‖zt − xn‖2 +

1
2t

fn(t).

Let n →∞ in (2.22) and noting (2.21) yields

(2.23) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ t

2
M,

where M > 0 is a constant such that M ≥ ‖zt−xn‖2 for all t ∈ (0, 1) and n ≥ 1.
Letting t → 0 from (2.23) we have

lim sup
t→0

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0, δ1) we
get

(2.24) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ ε

2
.

On the other hand, since zt → q as t → 0, from Lemma 1, there exists δ2 > 0
such that, for t ∈ (0, δ2) we have

|〈u− q, J(xn − q)〉 − 〈zt − u, J(zt − xn)〉|
≤ |〈u− q, J(xn − q)〉 − 〈u− q, J(xn − zt)〉|

+|〈u− q, J(xn − zt)〉 − 〈zt − u, J(zt − xn)〉|
≤ |〈u− q, J(xn − q)− J(xn − zt)〉|+ |〈zt − q, J(xn − zt)〉|
≤ ‖u− q‖‖J(xn − q)− J(xn − zt)‖+ ‖zt − q‖‖xn − zt‖ < ε

2 .

Choosing δ = min{δ1, δ2}, ∀t ∈ (0, δ), we have

〈u−Q(u), J(xn −Q(u))〉 ≤ 〈zt − u, J(zt − xn)〉+
ε

2
.
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That is,

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ lim sup
n→∞

〈zt − u, J(zt − xn)〉+
ε

2
.

It follows from (2.24) that

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ ε.

Since ε is chosen arbitrarily, we have

(2.25) lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0.

Finally, we show that xn → Q(u) strongly and this concludes the proof. Indeed,
using Lemma 2 again we obtain

‖xn+1 −Q(u)‖2 = ‖(1− αn)(yn −Q(u)) + αn(u−Q(u))‖2
≤ (1− αn)2‖yn −Q(u)‖2 + 2αn〈u−Q(u), J(xn+1 −Q(u))〉
≤ (1− αn)‖xn −Q(u)‖2 + 2αn〈u−Q(u), J(xn+1 −Q(u))〉.

Now we apply Lemma 3 and use (2.25) to see that ‖xn −Q(u)‖ → 0. 2

As a corollary of Theorem 1, we have the following.

Corollary 1. Assume that E is a uniformly smooth Banach space and A is
an m-accretive operator in E such that A(0) 6= ∅. Given a point u ∈ C and
given sequences {αn}∞n=0 in (0,1) {βn}∞n=0 in [0,1], suppose {αn}∞n=0, {βn}∞n=0,
and {rn}∞n=0 satisfy the conditions:
(i)

∑∞
n=0 αn = ∞, αn → 0;

(ii) rn ≥ ε for all n and (1− βn) ∈ [0, a), for some a ∈ (0, 1);
(iii)

∑∞
n=0 |αn+1−αn| < ∞,

∑∞
n=0 |βn+1−βn| < ∞ and

∑∞
n=0 |rn−rn−1| < ∞.

Let {xn}∞n=1 be the composite process defined by (1.4). Then, {xn}∞n=1 converges
strongly to a zero point of A.

Proof. By taking γn = 1 in Theorem 1, we can obtain the desired conclusion.
2

Theorem 2. Suppose that X is reflexive and has a weakly continuous duality
map Jϕ with gauge ϕ. Suppose that A is an m-accretive operator in X such that
C = D(A) is convex and {αn}, {βn}, {γn}, {rn} are as in Theorem 1. Then,
{xn}∞n=1 converges strongly to a zero point of A.

Proof. We only include the differences. From the assumptions we obtain

‖xn+1 − Jrnxn‖ = ‖xn+1 − yn‖+ ‖yn − Jrnxn‖
≤ αn‖u− Jrnyn‖+ ‖yn − Jrnzn‖+ ‖Jrnzn − Jrnxn‖
≤ αn‖u− Jrnyn‖+ (γn − βn(2− γn))‖Jrnxn − xn‖.
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That is,

(2.26) ‖xn+1 − Jrnxn‖ → 0.

We next prove that

(2.27) lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u)〉 ≤ 0.

By Lemma 6, we have the sunny nonexpansive retraction Q : C → Fix(T ).
Take a subsequence {xnk

} of {xn} such that

(2.28) lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u)〉 = lim
k→∞

〈u−Q(u), Jϕ(xnk
−Q(u)〉.

Since X is reflexive, we may further assume that xnk
⇀ x̃. Moreover, since

‖xn+1 − Jrn‖ → 0,

we obtain
Jrnk−1xnk−1 ⇀ x̃.

Taking the limit as k →∞ in the relation

[Jrnk−1xnk−1, Arnk−1xnk−1] ∈ A,

we get [x̃, 0] ∈ A. That is, x̃ ∈ F. Hence by (2.28) and (1.5) we have

lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u))〉 = 〈u−Q(u), Jϕ(x̃−Q(u))〉 ≤ 0.

That is (2.27) holds. Finally to prove that xn → p.

Φ(‖yn − p‖) = Φ(‖βn(xn − p) + (1− βn)(Jrnxn − p)‖)
≤ Φ(‖βn‖xn − p‖+ (1− βn)‖Jrnxn − p‖)
≤ Φ(‖xn − p‖),

that is,
Φ(‖yn − p‖) ≤ Φ(‖xn − p‖).

Therefore, we obtain

Φ(‖xn+1 − p‖) = Φ(‖αn(u− p) + (1− αn)(yn − p)‖)
≤ Φ((1− αn)‖yn − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉
≤ (1− αn)Φ(‖yn − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉
≤ (1− αn)Φ(‖xn − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉.

An application of Lemma 3 yields that Φ(‖xn − p‖) → 0; that is ‖xn − p‖ → 0.
This completes the proof. 2
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