Novi SAD J. MATH.
VoL. 36, No. 2, 2006, 65-79

LESSONS LEARNED FROM THE IMPLEMENTATION
OF A WORKFLOW MANAGEMENT SYSTEM USING
MOBILE AGENTS

Zoran Budimac!, Dragoslav Pesovié¢!, Mirjana Ivanovié!, Natasa
9 9 9
Ibrajter!

Abstract. In [1, 8] we proposed a complete design of a workflow man-
agement system using mobile agents. The proposed solution was highly
distributed and almost without centralized control. Therefore, it had bet-
ter characteristics than other corresponding designs, including ones that
also use mobile agents as the infrastructure. In this paper we concen-
trate on the experience that we gained during the implementation of the
system. The highlights are: the changes in the original design that are
enforced by the choice of underlying mobile-agent system, distribution of
responsibilities among entities of the system, and possibility to use sta-
tionary service agents. We also discuss one “worker” and its architecture.

AMS Mathematics Subject Classification (2000): 68U99

Key words and phrases: distributed programming, workflow management,
mobile agents

1. Introduction

An infrastructure for implementation of workflow management system using
mobile agents was proposed in [1, 8]. Since that time, the basic parts of the
proposed infrastructure have been implemented. However, the proposal went
through a series of modifications, regarding certain design features, as well as the
choice of the mobile agent system used for implementation. The essence of the
proposed infrastructure was three-part architecture consisting of the abstract
class Task, as well as of the work-server and work-host classes.

Abstract class Task represented an abstract work in the proposed workflow
system. This class is a descendant of a class that represents a mobile agent in a
chosen mobile agent system. Objects of the class Task thus become mobile as
well. The class contained attributes containing work identification, deadlines,
owner of the work, etc. and methods for work externalization, internalization,
and presentation of user-interface. The class also contains an itinerary. The
itinerary is a list of triples of the following form: (node, condition, methods).
It represents a flow of work-agent through a network. A node represents an
address of a node where the work will transfer itself from the current node.
Only methods enlisted in the list methods are active on the current node. The

IInstitute of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg
D. Obradoviéa 4, 21000 Novi Sad, Serbia, e-mail: {zjb,dragoslav,mira,natasha}@im.ns.ac.yu

66 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

work-agent will transfer itself to the node when and if the condition (a logical
function) is fulfilled.

Every node contains one work-host that can be implemented as a stationary
agent. Its main role was to offer basic data about all work-agents that currently
reside on the node. The host-agent enables the user to choose one of the work-
agents. It establishes connection between the user and every residing work-agent
using appropriate work-agent attributes and invoking its methods.

Work-server represented a program that executes all the time on every node
in the workflow system. Its basic tasks were the following:

e “Listens the designated port, waits for incoming agents, internalizes them,
puts them into a list of agents on that host, and activates them.

e Informs the user about an arrival of a new work.

e For every work-agent periodically calls the function condition for the cur-
rent node.

e If the work-agent is too long on the same node, alerts the user directly or
using some existing service (e-mail, for example).

e At the end (before switching off the computer), externalizes all agents that
are currently under its supervision.

e At the beginning of its execution (after the computer is switched on),
internalizes all saved agents.” [1, §]

In the new design, duties of a work-server have been distributed over other
participants in the process.

The rest of the paper is organized as follows: second section gives a short
overview of mobile agent systems. Third section focuses on most important
changes in the original design. Fourth section describes one of stationary agents
offering additional service, while fifth section introduces one characteristic worker.
Sixth section concludes the paper.

2. The Choice of the Mobile Agent System

Many of the agent systems developed so far have been research prototypes,
and only a few of these have been employed outside of their own university or
research institute [3, 4, 13, 16, 21]. In the process of choosing the mobile agent
system intended to be used for the implementation of the workflow system, the
major research issues of the crucial significance for the development and applica-
tion of mobile-agent programming systems have been distinguished. Moreover,
several prominent mobile agent systems have been surveyed, indicating the vari-
ety of approaches that system designers have taken to address these issues. The
choice of programming model varies from script-based agents, useful for quickly
automating simple tasks, to object-oriented agents, which are better suited for
more complex applications.

Lessons learned from the implementation of a workflow management . . . 67

Of the mobile agent systems considered, Telescript is undoubtedly the best
system for implementing mobile agents. It is one of the oldest systems de-
veloped, but certainly the most complete one. The Telescript system directly
addresses each of the issues specified. It has a language which has been de-
signed specifically for this purpose. The problem with Telescript is that it is
proprietary software and a closed standard. Moreover, the fact that program-
mers have to learn a new language also influences the overall acceptance of the
system.

The Java language is multi-purpose, but it has necessary capabilities for
writing mobile agents. Java is inferior to Telescript in the areas of support
for agent migration, communication between agents and interfacing access to
host computer resources. In the other areas however Java at least equals Tele-
script. Java’s advantage over Telescript is that it has an open specification. The
breakdown of a technically impressive system like Telescript indicates that pop-
ular general-purpose languages like Java are more likely to succeed than special
purpose ones like Telescript.

Java-based systems themselves (such as Mole, IBM Aglets, Odyssey, and
Concordia) have different features developed depending on which aspects the
designers have focused their research. Some of the systems provide good com-
munication infrastructure or agent naming and finding services, another are
focused on security problems, while the third are concerned with agent moni-
toring and control implementing an audit trail mechanism. It is therefore hard
to say which of these systems is the most satisfying.

Agent Tcl is a high-level scripting language that has many of Telescript’s
capabilities regarding agent migration and communication. Agent Tcl and Java
systems are not in direct competition, since they offer different capabilities.

The major difficulty preventing the widespread acceptance of the mobile
agent paradigm is the security problems it raises. By our opinion, no current
system solves these security problems satisfactorily, and thus mobile agent se-
curity remains an open research area.

So far, designers have paid little attention to the application level issues
such as the ease of agent programming, control and management of agents, dy-
namic discovery of resources, etc. The literature on the use of basic templates
is only just starting to appear. As larger and more complex systems of rov-
ing agents are deployed, programmers will need reliable control primitives for
starting, stopping and issuing commands to agents. The agent system itself will
have to incorporate robustness and fault tolerance mechanisms to allow such
applications to operate over unreliable computer networks.

For the implementation of workflow management system, the mobile agent
system Mole [7,13] has been chosen, instead of IBM Aglets [16]. The main
reasons for choosing Mole are:

e Its rich features for agent cooperation (i.e., group communication),

e Its own well-developed agent-server that can take over some of the duties
of our work-server.

68 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter
3. Overview of the Current Architecture

Mole is based on concepts of agents and places. Every place consists of one
engine and (possibly) several locations, thus allowing the existence of several
locations at one physical network node.

3.1. Changes in the Original Architecture

The functionality of Mole place allowed us to delegate some duties of work-
server to places. Duties of listening the designated port, waiting for incoming
agents, their internalization, insertion into a list of agents on that host, and
activation, as well as tasks of agent externalization (before switching off the
computer) and internalization (after the computer is switched on), are delegated
to Mole engine and locations.

The worker itself takes over the following duties that previously belonged to
the work-server:

e Notifying the user about its arrival,
e Alerting the user if it is too long on the same node,

e Checking conditions for leaving the place.

These three new duties of the worker contribute to the higher degree of au-
tonomous behavior of workers (high degree of worker autonomicity is intended
to be one of the main strengths of our design [1].) On the other hand, meth-
ods for externalization and internalization are general (i.e., independent on the
structure of the mobile worker) and therefore there is no need for them to be
worker’s methods. This functionality has been delegated to the work-server,
i.e., to the Mole place, as explained above. This way a worker is also of smaller
size than before.

Itinerary is represented by the more complex structure, to comply with more
complex flow patterns that could be needed by workflow applications. Instead
of the simple list of nodes that the worker should visit sequentially, it is now
possible to define an itinerary, which includes AND and OR splits, used for
enabling parallel works and alternative paths, as well as constructs that enable
the creation of loops (block activities or reversible control connectors), etc.
In the previous design proposal, complex workflows through the system were
achieved by means of additional, specialized mobile agents. However, building
complex paths into the itinerary itself, lessen the overall load of network with
mobile agents and consequently improve the performance of the whole system.

To strengthen security, workers are not allowed to access the system resources
including the screen. To present a user interface, worker should only create an
instance of the window class. The window will be shown on the screen by the
worker host, which interfaces between the user and the worker.

Lessons learned from the implementation of a workflow management . . . 69

3.2. Current Architecture

The current architecture is essentially a two-part architecture consisting of
work-agents (workers) and worker hosts. Duties of the work-server (present in
previous architecture) are delegated to the agent-server of the underlying mobile
agent system (in our case Mole), workers, and work-hosts.

Workers. As before, mobile agents are work-items that are passed to dif-
ferent users and autonomously take care of their current position and further
itinerary. They are called workers and contain work identification, work dead-
lines, work owner, and possibly other important information.

Every worker must follow the itinerary, which is now the directed graph of
triples of the following form: (node, condition, methods). A node represents
the address of the current network location, where only methods enlisted in the
list methods are available to the user on that node. Worker will transfer itself
to the next node when and if the condition (a logical function) is met. It is the
responsibility of the worker itself to check condition periodically or at any other
appropriate moment.

Concrete workers are descendants of the abstract Worker and contain at-
tributes that describe the work and methods that can be used to process the
work (Fig. 1).

Workers behavior is almost entirely defined with its itinerary. Most of the
abstract worker’s methods are for setting and getting of worker’s attributes. For
illustration, we shortly introduce just some of other attributes.

e arrive (abstract) is called immediately after arrival at every node. Can be
redefined in concrete workers.

e depart (abstract) is called immediately before departure from every node.
Can be redefined in concrete workers.

e getHost returns the pointer to worker-host

e getHostInterface returns the pointer to worker-host’s user interface.

Agent-server. Mobile agent system Mole, being the basis of our workflow
system, takes care of all the agent-related activities of workers. For instance,
Mole engines, residing on every node in the system, have the following tasks:

e Listen the designated port, waits for incoming agents, internalizes them,
puts them into a list of agents on that host, and activates them.

e At the end (before switching off the computer), externalizes all agents that
are currently under its supervision.

e At the beginning of its execution (after the computer is switched on),
internalizes all saved agents.

Although these are characteristics of the particular mobile agent system,
they are present in most of other mobile agent systems as well. If some of

70 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

mole
UserAgent «abstract»
.
wfms .
Q Worker «abstract» ltinerary
workid tint
workDeadline tint + addElement(Ticket 1) 1 void
ownerld tint + insertElementAt(Ticket 1, int i) : void
+ elementAtf(int index) : Ticket
Py 1 + size() tint
* + getCurrentNode() : Ticket
+ getNexiNode() : Ticket
N - + getPos() sint
sefftinerary(ttinerary it) void + hasMoreElerments() : boolean
+ getitinerary() Itinerary
~ setWorkid(int n) void)
+ getWorkid() int
sefWorkDeadiine(intn) :vold]
+ getWorkDeadiine() sint -n
~ setOwnerd(int n) : void :
+ getOwnerld() tint — Ticket
getMigiLock) synchObject + degnoten é‘;;g'ﬁ""”ome
getHost() : WorkerHost + desciiption Sting
getHostinterface() : Frame
arive() : void + setDescription(Sting desc) :qu
depart() : void + getDescription() : Sting
+ setDestination(LocationName In) : void
+ getDestination() : LocationName
+ setDestinationName(String loc) : void
+ getDestinationName() : Sfring
+ setCondition(Conditional c) 1 void
+ getCondition() : Conditional
+ setMethodList(String[] mli) : void
‘r + getMethoalLisf() : Sfringl]
[[| ?
MyWorker1 MyWorker2 MyWorker3 .
(__Conditional «interface»
[|
L+ condifion() : boolean
MyWorker1.Cond1 MyWorker2.Cond1 MyWorker3.Cond1 ! I.A ! ?
1 '
S
1
+ condition() : boolean + condition() : boolean + condition() : boolean 1 : :
1
: : -
1 1 MyWorker3.Cond2 L
1 1 i
: : R P
: : + condition() : boolean : :
i i [
H 1

Figure 1: The class Worker

Lessons learned from the implementation of a workflow management . . . 71

these characteristics are not present in some other mobile agents system used
for workflow management system, then they should be implemented as separate
stationary services.

Worker-host. Every node in the network contains a worker-host that is
implemented as a stationary system agent, having special privileges for the
access to host system resources. Worker host represents the interface component
between the (operating) system, workers and users. Every worker host has a user
interface, which enables the interaction with the user of the workflow system.

Every worker is automatically placed in the list of workers residing on the
current node, and the corresponding icon appears on the user interface of the
host. If the icon of the worker is selected, the list of all methods available at
the current node is presented to the user, allowing him to invoke any of them.

During its visit on the node, worker itself will periodically check if the con-
dition for the transition to the next node in its itinerary is fulfilled. When this
condition is met, the worker reports its departure to the host, resulting in the
corresponding icon being removed from the user interface. The worker is then
transferred to the next node specified in its itinerary. When the itinerary is
exhausted, worker’s journey is complete, and the worker is removed from the
system.

Worker-host has four methods that workers can invoke (Fig. 2). They are
all used for bookkeeping of workers by worker-hosts:

e arrival will be called by workers when they arrive at the node. Host will
first check it and then add the worker to its list of active workers.

e departure will be called by worker just before they leave the node.

e workCompletion is similar to the above, but called when the worker has
finished its work (and it will be destroyed).

e migrationFailure will be called when worker cannot migrate to the next
node in its itinerary.

WorkerHost
Worker +----—-=---= 3 e arival(AgentName an)

e departure(AgentName an)
o migrationFailure(AgentName an)
o workCompletion(AgentName an)

Figure 2: The worker invokes host methods

Workers and work-hosts are the only software components that are really
necessary for the workflow system. However, if the system is to be user-friendlier
and more flexible, additional tools and specialized agents need to be included.

72 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

4. An Example of a Stationary Service Agent

To increase efficiency of the whole system, workers should be of minimal pos-
sible size. Therefore, “standard” and additional features of the whole system
must be implemented as separate stationary agents. These agents can lower the
degree of worker autonomicity, because now workers partly depend on external
services that may be not available all the time. To diminish the bad conse-
quences of external functionalities, the additional services are widely spread
over the whole workflow network. Of stationary services our system currently
has services for e-mail, FTP, and database access. We shortly describe a service
for electronic mail as an illustration of a stationary service.

O Multipart
J
Part
g %etContemType()
etBodyPart(int)
MgetContentType() MgetCount()
Tge::ﬁ:degswle() ®addBodyPart(bodyPart, int)
SgetAllHeaders() removeBodyPart(int)
getDataHandler() ®putByteStraem(OutputStraem)
BgetinputStream() v
BgetContent() -
MsetDataHandler(DataHandler)
MsetContent(Object, String)
SsetHeader(String)

Message ~ \\
D)
BgetFrom() MimePart BodyPart
BgetRecipients() IN—
MgetSubject() BgetContentID()
MgetSentDate() SgetContentMD5() MimeMultipart
%etFlags() ®getEncoding() £
etFrom(Address) BsetContentMD5(Strnig) .
MsetRecipients(Address][]) 7 7\ ::suethubLypz(Strmg)
SsetSubject(String) p & Reatehicacest)
setSentDate(Date) ,/ |
Msend() / |
5 e |
L ,/'/ i
\ / |
[Mimem | | MimeBodyPart |
I 1

Figure 3: Major classes and interfaces of JavaMail API

The service is implemented as a combination of Mole system agent and
JavaMail API [14, 15]. The latter one is pretty complicated (see Figure 3 for a
reduced diagram of JavaMail APT).

Message class is an abstract class that defines a set of attributes and content
for a mail message. Attributes specify addressing information and define the
structure of the content (DataHandler object), including the content type. The
Part interface defines attributes that are required to define and format data
content carried by the Message object. The Message class adds From, To,
Subject, Reply-to and other attributes necessary for message routing. JavaMail
API supports multipart Message objects, where each Bodypart defines its own
set of attributes.

The stationary agent is implemented as the wrapper for JavaMail API. It
inherits Mole system agent and implements only one method encapsulating func-
tionality that is most needed by a worker. Nevertheless, our agent imports the

Lessons learned from the implementation of a workflow management . . . 73

complete JavaMail APT as its part. By inheriting Mole system agent, our service
becomes able to easily communicate with workers (mobile agents).

In order to send mail, the worker only has to pass the following arguments
to the agent method: type of message (text/plain, html, file), recipient address,
subject, name of the file containing the message, and optionally name of the
attachment file (Fig. 4). The method first sets the required system values,
creates the session and then creates the message. The message is filled with
content and sent. If something goes wrong, exception will be generated.

.

L

Mail

Mail recipient

Figure 4: Worker sending a mail

4.1. Alternative solutions

Our solution has one obvious disadvantage — the network is populated with
stationary agents offering services that might not be needed at all. Instead of
making separate stationary agents for additional services, we could build these
services into:

e Some mobile agents,
e Worker hosts,

e Java beans library that could reside on some nodes.

The first two alternatives are not appropriate because of the need to keep the
sizes of workers and hosts minimal. The third alternative deserves additional
analysis and investigation. However, until experimental results prove that this
solution might be significantly more efficient, our solution is conceptually the
best one — the system is uniform and consists solely of agents, without any
additional facilities and tools.

74 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

5. Example Scenario

The application of the proposed system will be illustrated by the example of
the worker used to assist in writing a joint paper. The first node in the worker’s
itinerary can be the node of the mentor, who is supposed to specify directions
for paper writing and load the file containing the preliminary version of the
paper. The worker can then move to the node of the other author presenting
the directions and offering the method for paper extracting. When the other
author have concluded the paper, he can analogously enter the reply message
and load the new version of the paper. The worker can move back to the node
of the mentor presenting the reply message and offering the possibility of paper
extracting (Fig. 5).

Mentor node o Author node
directions and
L7 paper file > .
L7 \A
Insert directions and | Show directions and
load paper file ' save paper file
Show directions and | Insert directions and
save paper file h load paper file
AN A
>~ _ directions and
paper file

——> control flow

-—---> data flow

Figure 5: Current architecture of ‘joint-paper’ worker

After the worker is activated and arrives at the first (‘mentor’s) node, the
user will be notified about the arrival of the new worker. He/she will call the
available method for that node and will be presented by the following user
interface (Fig. 6).

After the worker concludes that all conditions for that node are fulfilled
(i.e., the message has been entered and the document has been attached), it
will transfer itself to the next node in its itinerary. After the user on that node
calls one of the two methods of the worker, he/she will be presented with the
user-interface (Fig. 7).

When the user is ready to submit the second version of the paper, he/she

Lessons learned from the implementation of a workflow management . . . 75

E;Scienlilic Paper E
Enter the instruction message:
=
[
Loaded file:
|< none =

LoadFiIel Dane | Cancel

Eggﬁcienliﬁc Paper E
Enter the instruction message:
Uputstva za prepravijanje rada! =]
=l
Loaded file
IPaper doc

Load File Daoneg | Cancel |

Figure 6: The window for entering writing directions and attaching the first

paper version

EiScientific Paper [x]

Thig is the instruction message

Uputstvo za prepravijanje radal

Contained file

=

il

|Paperdoc

Save File |

Done | Cancel

Figure 7: The window that shows the writing directions and offers the document

for extraction

76 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

will call the second worker’s method to do so. Worker will continue its travel
according to its itinerary.

In the advanced version of this worker, the first node in the worker’s itinerary
can be the node of the mentor, which is supposed to specify directions for paper
writing. The worker can then move to nodes of other authors presenting the
directions and potentially offering a method for paper editing. The worker can
move over the nodes of authors sequentially, or it can visit these nodes in parallel
(Fig. 8 and 9). Moreover, this part of itinerary can also be set as iterative, i.e.
the worker can repetitively circulate between mentor and other author nodes
(carrying the current version of the paper) until the final version of the paper
is created. Finally, when the paper is completed, the worker can send an e-mail
to the conference organizer or reviewers of the paper using the service of the
stationary mail agent.

Mentor node

Insert directions and | corrections needed Evaluate paper paper finished Send il
load paper file pap " cnd e-mat
R
v \
Show directions and ,| Show directions and b o ,| Show directions and
enable paper editing enable paper editing enable paper editing
Author-1 node Author-2 node Author-n node

Figure 8: Sequential routing

The presented scenario has been implemented and tested within the depart-
ment and it proved how naturally various workflow control patterns can be
realized in our system by making use of social abilities of agents, which are
the key feature used for execution of activities in parallel, as well as for their
coordination and synchronization. In order to achieve the flow of work, agents
split the work in logical parts, cooperate together and synchronize themselves.

6. Interoperability

To facilitate cooperation between different workflow management systems,
the Workflow Management Coalition has defined several standards for work-
flow terminology, interoperability and connectivity between workflow products.
The workflow reference model [20] describes a generic architecture for workflow
management systems, distinguishing the functional components of a workflow
system and recognizing the major interfaces between them. There are 5 inter-
faces identified (as shown on Fig. 10.), each of which is a potential point of
integration between the workflow enactment service and other infrastructure or
application components.

Lessons learned from the implementation of a workflow management . . . 77

Mentor node

Insert directions and | corrections needed | Combine parts and paper finished Send i
- | -
load paper file evaluate paper end e-mai!
I IYYY
Show directions and | |
enable paper editing
Author-1 node
Show directions and
enable paper editing
Author-2 node
N Show directions and
enable paper editing
Author-n node
Figure 9: Parallel routing
Process Definition
Tools
A
1
A 4
Workflow APl and Interchange formats
. Other Workflow
Workflow Enactment Service Enactment Service(s)
Administration 5 4
& Monitorin < > < >
Tools 9 b d \éVor}(ﬂow b 4 Workflow
ngine(s) Engine(s)
A A
2 3
A4 A4
Workflow Invoked
Client Applications Applications

Figure 10: Workflow Reference Model (bidirectional arrows denote interfaces)

78 Z. Budimac, D. Pesovi¢, M. Ivanovié, N. Ibrajter

A mobile agent system is used for implementation of: workflow enactment
services, workflow administration and monitoring tools, and workflow client
applications. Moreover, agents are used as a uniform interface to invoked ap-
plications and other workflow enactment services.

The ongoing research is directed towards Interface 1. The specification of
this interface includes the basic workflow meta-model, which describes the com-
mon set of entities contained within a process definition, their relationships and
attributes. Furthermore, XML Process Definition Language is proposed allow-
ing for the definition and exchange of process definitions using the entities and
attributes defined within the meta-model.

The conformance to the proposed meta-model is achieved by adapting the
structure of individual components of our system, namely workers and worker
hosts, to comply with the meta-model specification. Moreover, an import/export
layer is provided to support the mapping of XPDL definition to/from the inter-
nal worker representation.

7. Conclusion

During implementation of the original design, we adopted two-part architec-
ture, instead of the original three-part architecture. What earlier were the duties
of work-server, now are duties of work-host, worker itself and agent server of
underlying mobile agent system. Agent-server has to exist at every node where
the mobile agent will possibly reside and its functionality is directly used by
the workflow management system. Other duties of work-server are delegated
to workers, in order to increase their autonomous behavior. Apart from duties
that are strictly related to concrete work, workers now also notify hosts and
users about their arrival, departure, and about possible breaking of deadlines.
To increase the safety of the whole system, workers are forbidden to directly
access any system resources including the screen. Complex paths through the
network are now built into the worker’s itinerary.

Although workers are now almost fully autonomous they may need additional
services to finish their work. Those services cannot be implemented directly
into the workers, to keep them as small as possible. Therefore, those services
are implemented separately, as stationary agents. By placing those services at
a sufficient number of nodes in the network, the autonomy of workers is not
seriously diminished.

The experience of using the system is positive. As planned, it is robust,
highly distributed, and useful. The work on the system continues with imple-
mentation of more specialized agents and utilities for user-friendly administra-
tion of agents.

References
[1] Budimac, Z., Ivanovié, M., Popovié, A., Workflow Management System Using

Mobile Agents. In: Proc. of ADBIS ‘99, Lecture Notes in Computer Science
1691, Springer Verlag, Berlin, (Maribor, Slovenia) (1999), 169 - 178.

Lessons learned from the implementation of a workflow management . . . 79

[2] Debenham, J., Constructing an intelligent multi-agent workflow system. Proc. of
AT’98, Brisbane, Australia (1998) 119-126,

[3] General Magic: Introduction to Odyssey API, Homepage of General Magic.

[4] Gray, R.S., Agent Tcl: A Flexible and Secure Mobile Agent System. Ph.D. thesis,
Dartmouth College, Hanover, NH, USA, 1997.

[5] Ibrajter N., Agent Services in a Network Environment, Master Thesis, University
of Novi Sad, Novi Sad, 2004, pp. 141.

[6] Meng, J., Helal, S., Su, S., An ad-hoc workflow system architecture based on
mobile agents and rule-based reasoning. Proc. of Int. Conf. on parallel, and dis-
tributed computing techniques and applications, Las Vegas, 2000.

[7] Pesovi¢, D., The Analisys and the Application of a Mobile Agent System. Diploma
Thesis, Faculty of Science, University of Novi Sad, Novi Sad, 1999, pp. 74.

[8] Pesovié¢ D., The Implementation of a Workflow Management System Using Mobile
Agents. Master Thesis, University of Novi Sad, Novi Sad, 2002, pp. 162.

[9] Pesovi¢ D., Joint-Paper Worker. Proceedings of XVI Conference on Applied
Mathematics ” Prim 2002”7, Zlatibor, Yugoslavia, May 29 — June 2, 2002., 143-152.

[10] Pesovi¢, D., Budimac, Z., An advanced joint-paper worker, CCS journal, 4th
issue (2003), 44-46.

[11] Pesovié¢, D., Budimac, Z., A Comparative Analysis of Several Mobile Agent Sys-
tems. Novi Sad J. Math. Vol. 30 No. 2 (2000), 95-111.

[12] Stormer, H., A flexible agent-based workflow system. Workshop on ,,Agent-based
approaches to B2B” 2001.

[13] Strasser, M., Baumann, J., Hohl, F., Mole — a Java Based Mobile Agent System.
Home-page of Stuttgart University, Stuttgart, Germany, 1996.

[14] Sun Microsystems Inc.: JavaMail ~API Design Specification,
http://java.sun.com/products/javamail, 1998.

[15] Sun Microsystems Inc.: JavaMail Guide for Service Providers,
http://java.sun.com/beans/glagow /jaf. html, 1998.

[16] Venners, B., Under the Hood: The Architecture of Aglets. Java World, 1997.,
www.javaworld.com/javaworld /jw-04-1997 /jw-04-hood.html.

[17] Versteeg, S., Languages for Mobile Agents,
http://www.cs.mu.oz.au/~scv/thesis.html, 1997

[18] Waardenburg M., van Emmerik M., Workflow Management in an Internet Envi-

ronment, http://www.axxerion.com, 2005.

[19] Workflow Management Coalition, Workflow Process Definition Interface — XML
Process Definition Language, Homepage of Workflow Management Coalition,
2002.

[20] Workflow Management Coalition, Workflow Reference Model, Homepage of
Workflow Management Coalition, 2002.

[21] Wheeler, T., Voyager Architecture Best Practices, Homepage of Recursion Soft-
ware, 2005.

Received by the editors June 6, 2006

