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HOMOGENEOUS DISTRIBUTIONS IN D, !

S. Pilipovié¢?, D. Rakié?, N. Teofanov*

Abstract. We study the homogeneity property on a scale of subspaces

Dyq (R™), 1 < g < oo of the space of tempered distributions S,(R”). It is
shown that a homogeneous distributions belong to ’D;q (R™) if and only if

its degree of homogeneity belongs to (—oo, _E)’ 1< g < oo (if g = o0,
then ¢ = 0).
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1. Introduction

The study of homogeneous distributions is usually motivated by their use in
PDE, see for example [3, 5, 12] and the references given there. Another source of
interest in homogeneous distributions is asymptotic analysis [6, 8, 10]. Namely, if
f has a quasiasymptotic expansion (asymptotic separation of variable) given by
fa) = ZN=1 pi(Ngs, () +o(pn (X)), where p; are regularly varying function of
order 3,7 =1,...,N,such that 3; > 5 > --- > By, then gp; are homogeneous
distributions of degree §;, j = 1,...,N. Recall, distribution g, € D (R™) is
homogeneous of degree a € C(Rea > —1) if go(az) = a® go(x), a > 0. Note
that a distribution f € D’ (R™) is quasihomogeneous of degree o € C and type
p € R™\ {0} if f(aPz) = a® f(x), a > 0. Quasihomogeneous distributions and
their applications, e.g., quasihomogeneous fundamental solutions of PDE, can
be found in [4].

In the construction of fundamental solutions of PDE it is often of interest to
study different types of subspaces of the space of distributions D’ (R™). The scale
of spaces D/Lq (R™), 1 < ¢ < o0, is studied by many authors, see for example
[1,7,9, 11, 12].

In this paper we study homogeneity property within that scale of subspaces
and show the connection between integrability conditions on test functions and
the degree of homogeneity of corresponding distributions. We show that a homo-
geneous distribution of degree «, denoted by g, belongs to D/Lq (R"),1< ¢ <
if and only if o € (—o0,n/q); if ¢ = o0, then n/q = 0.
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2. Notions and notation

We denote by R™ (Nf) set of n—tuples (z1,...,2,), ; € R (z; € Ny), and
Z_ ={-1,-2,...}. By Q we denote an open subset of R”. For a multi-index
o € NI, we have |a| = g + -+ + o, 2 = 281 - 2% and f(¥)(z) = 0°f(z) =
0% 9
ot o
are taken over R" (or R), unless otherwise indicated. The surface of the unit
sphere S"7! = {z € R" : |z| = \/a? + -+ 22 = 1} is [S"7!| = 272 /1(2),
where T" is the Gamma function. The letter C' will denote a positive constant,
not necessarily the same every time when it occurs. The definition and basic
properties of spaces LP(R™) and L} (R™), 1 < p < oo, can be found in [2].

The space of distributions D/(Q) is the dual of the space of compactly sup-
ported infinitely differentiable functions C§°(€2) = D(€2) and the space of tem-
pered distributions &' (R") is the dual of the space of rapidly decreasing func-
tions S(R™); S;_ (R™) denotes the space of tempered distributions supported by
R} ={z e R"|z; >0, i=1,...,n}.

Let 1 < p < co. We denote by Dr»(R™) the space of functions ¢ € C>*(R")
such that ¢(®) € LP(R™), a € Np. The topology in Dr» is defined by the
sequence of norms

(), x = (x1,...,2,) € R™ Throughout the paper, the integrals

16 lmp=( D2 N6 1I2)" men;

lo|<m

D~ (R") is the closure of D(R") with respect to || - |[m.00 - Note that Dp»(R"),
1 < p < 0o and D (R™) are Frechét spaces and normal spaces of distributions.
We denote by D;,(R"), 1 < ¢ < oo, the dual of D (R™), where % +é =1 and
DlLl(R") is the dual of Dy (R"). Embedding D;,(R") < D'(R™) is strongly

continuous and for 1 < p; < p2 < o0 (and 1 = ;P5, g2 = ;F27) we have

CE(R™) < S(R™) < Drm (R™) < Dpos(R") <= Dy (R™) < Dpy (R?) <
Dy (R") = Diyy (R") = S'(R") — D'(R), ,
We will use the following structural theorem for f € D;,(R"),1 < ¢ < co.
Let f €D (R™). Then f € D;—ﬂ (R™),1 < g < o0, if and only if there exists
m € N, hy € D~ (R™) and F, € Ly(R™) such that

(1) J@) = Y ha(e) F(2), © € R™.

o] <m

If fe D/Lq (R™),1 < g < oo then a representation of f of the form (1) with
ha =1, || < m is proved in [9].

Let us show that the right-hand side of (1) defines a distribution in D’ , (R™),
1 < ¢ < 0. Note that, if h € Dy (R"™) and ¢ € Drr(R™) then h¢ € D (R™),
and the mapping ¢ — h¢, from Dr»(R") into itself, is continuous. By the
Holder inequality we have
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(Fol< D /IFa(x)ll(ha(x)aﬁ(af))("‘)ldw < D I Fallzall (had)® Il -

la|<m la|<m

This completes the assertion that any f of the form (1) belongs to Dj,(R™).
A distribution g, € D' (R") is homogeneous of degree « if and only if

(9a(2). 6(7)) = a™*" {ga(x), 6()), a > 0,6 € DR").

For example, distributions 2§ = 2® H(z) and 2% = (—x)* H(—z),z € R,

are homogeneous distributions of degree «, for o = —1,—2,—-3,..., where H is
the Heaviside function. Also, if we put % = |z|*,z € R, for a = —=2,—4,...
and % = |z|* sgn(z),z € R, for « = —1,—3,. .., then the distribution z¢ is ho-
mogeneous of degree a, « = —1,—2,—3,... The Dirac delta 4, is homogeneous
of degree —n in R™. Moreover, §(*) is homogeneous of degree —n — |, o € Ng.

Recall [3], for ¢ = 2*H(z),z € R,a > —(n+2), a # —1,-2,...,—(n+1)
and n € N,

1 LEAG)) oo
(x%,¢) = / x® (¢(x) — Z ¢ j'(O) :z:j) dx —|—/ x%¢(x) dx
0 =0 : 1

~__ V(0
+j§:;)j!(a+j+1)’ ¢ € D(R).

For the later use we recall the following structural theorem for homogeneous

distributions, [3, 5, 6].
Let ¢ € C§°(R™) and K € S (S"1). We define

Se(r) : .

L K(i N .
= (&) p(re)de, r >0

It is an element of C§°(R,).
Theorem 1. Let g, be a homogeneous distribution of degree o in R™. If o #
—n,—n—1,—n—2,... then
oo
@) (g 8) = 15" [ i)
0
Ifa=—-—n—m, withm=20,1,2,... then

3)  (gas ) = 5" / Tl dr 4+ (3 ard® (@), d()),

|k|=m

for some constants ag, |k| = m.
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Ifn=1and a # —1,-2,-3,... then there exist constants C, and Cy such that

(4) (gas ®) = (C1 25 + C2 2%, ¢(x)), ¢ € D(R),

and ifa=—-n,n=1,23,...

(5) (gas @) = (Crz™" + C20™ "V (), ¢(2)), ¢ € D(R).

3. Main results

Let go be a homogeneous distribution in D (R"). We know that it is a
tempered distribution and thus |{ga, ¢)| < co for any ¢ € S(R™). We start with
the one-dimensional case.

Theorem 2. Let g, # 0 be a homogeneous distribution on R of degree «,
aeR\(Z-). ,

(i) Let g€ [l,00). Then go € Dyq(R) if and only if a € (—o0, —%).

(i1) go € Dy (R) if and only if o € (—00,0).

Proof. (i) Step 1: Let a < —1, @« € R\ (Z_), and let g, # 0 be a homogeneous
distribution of degree a. We will show that it can be extended on Dr»(R),1 <
p < oo (and that this extension is continuous). Let ¢ € Dr»(R). By a suitable
partition of unity we have

&= d1+ da + @3,

where supp ¢; C (—oo,—1), supp ¢ C (—2,2), supp ¢3 C (1,00) and ¢5 €
C§°(R). By Theorem 1 we have

(Gar $1 + P2 + 03) = (Ga, $1) + (gas P2) + (9o, P3) =

(Crx§ + C2x%, 1) + (gas P2) + (Crz§ + Coz?, ¢3) < 0,

which implies that g, € D/Lq (R), a < —1,q € [1, 00).

Step 2: Let -1 < a< —é, q > 1, and let g, be a homogeneous distribution
of degree . For arbitrary ¢ € Dr»(R), 1 < p < oo and ay, as > 0, by the
Holder inequality, we have

0

(—2)* ¢(z) de + Cy / (—2)* ¢(x) dx

—as

—as

am )l = 1C1 [

— 00

oo

+Cy /a1 % ¢(x) dax 4+ Co / x® ¢(z) d|
0 a

1

< c[(/_az(—x)wdg;)é (/_ |¢(x)|Pd:E)%

— 00 — 00
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z€[—a2,0] z€[0,a1]

w([Tarrae) ([Tioras)’]

Since sup [$(@)| < C | ¢ [y and  sup [6(z)] < C || 6 . for arbitrary
z€[0,a1] z€[—a2,0]
m € N, we have

© s (6@ /fxam sup {¢<x>|}/0alxadx

% qg+1 maJrl

oy 3
i) Hele 16l (

a1 poatl
)+(
0 aqg+1
and therefore g, € D} ,(R), 1 < g < oo, for v € (1, —%).
Step 3: Assume that ¢ € (1,00), @ > f% and let g, be a homogeneous
distribution of degree a.

Let s € [%, o0), p € (1,00). We define a nonnegative test function ¢ € C*°(R)
such that

[(gas )l < €[ (

ag)
0

a+1

anrl fo%e)

1 s ( ) 16l ] < C16 ln

a—+1

ai

0 , <2
(6) ¢)(x) B { xS 1Inz y T Z 3’

It is easy to check that ¢ € Dr»(R), p € (1, 00) for any given s > %. By Theorem
1 with ¢ given by (6) we have

(9ar @) = (Cra§ + Caal, ¢(x))

31 < 1 1
2 X 3

™ g5 Inx

For given o > 7% we choose s =1+« € [%, 00), and obtain

o0

3
(Gas ) = Cl/2 x%(b(m)dﬂc—kCl/g o e dx = o0,
that is g ¢ D}, (R).

The function ¢ given by (6) belongs to Dy (R) when s € [0,00) and for
a > —1 we obtain that g, ¢ DlLl(]R).

(#4) Let go be a homogeneous distribution of degree «. If @ > 0, one can
prove that g, ¢ D} (R) by the same way as it is done in Step 3 of (i). On the
other hand, if @ < —1, then, using the same idea as in Step 1 of (i) we obtain
Jo € D1 (R).

Let @ € (—1,0) and for some fixed a > 0 we define the function
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Q(I):{ 1, |#/<a

0, |z|>a

We have

¥ =0(x)z*+ (1 —-0(x))z" = (/OI 0(t) t* dt)/ +(1—6(x))z“.

Since / O(t)t*dt and (1 — 0(x))x® belong to L>*(R), by (1) it follows that
0

x* € 'DILDO(R)‘ Thus, for a given homogeneous distribution g,, of degree o €
(=1,0), by Theorem 1 we have g, € D} (R).
It remains to observe that for « =0

0 (e’
o) =|C da +C d
(g0, &) = | 1/_m¢><x> 7+ / o) da| < o0
for arbitrary ¢ € Dp1(R). ]

In order to analyze the multidimensional case, we need the following lemma.

Lemma 1. Let1<p <oo. If $ € Dr»(R"), then T%S¢(T) € LP(Ry).

Proof. Let p € (1,00) and % + % = 1. We have

00 n—1

</000 |rnTTlS¢(T)|p dr)% = (/0 S K(z)o(ri) dﬁc‘pdr)%

|Sn71|p gn-1
o0 ,rn—l ) %
= K(d | $(rd) [P dr) " d
< Jos (¢) (/0 ‘Sn71|p|q’>(mc)| 7") %
% oo Tnfl %
< 9 o \Ip .
< (/an |K(2)] d:c) (/Sn71/0 |Sn_1|p|¢(r:1:)| drdx)

1 [ele] 1 1
<O— / Pl o(ri)|P didr)”
|Sn—1|q ( 0 [S™=1 Jgn-1 [¢(r2)| )

1 :
<C . / o(x)|Pdr) < oo,
|Sn—1|q( Rn' ()] )

where we used the generalized Minkowsky inequality and the Holder inequality.
The proof is similar if p = 1. O
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Theorem 3. Let g,, a € R, a# —n,—n—1,... be a homogeneous distribu-
tion of degree c, go, # 0. Then

(1) ga € Dpo(R") if and only if o € (=00, —7), 1 < ¢ < o0.

(i1) go € Dy (R™) if and only if a € (—o0,0).
Proof. (i) Step 1: Let o < —n, and let g, € D,LQ(R"),l < g < oo, be a
homogeneous distribution of degree . By Theorem 1 we have

(gar @) = 1S"H(re ™, Sy (r))

and from Lemma 1 and Step 1 (i) in Theorem 2 we obtain that g, € D} ,(R™),
1<qg<o0.

Step 2: Let —n < o < —2 and let g, € D, ,(R"),1 < ¢ < oo be a
homogeneous distribution of degree a. Let ¢ € Dr» (R™),p = ﬁ, and let a > 0
be an arbitrary constant. We have

(gos )] < 5™ / P18, () dr + |7 / ro =15, (1) dr

<1571 sw (150 |}/ petn=1 gy

) [T
a

<15 s (5,001} [ o

+|S"71|</OO podtn-l dr)a (/00 \7‘%1 Se ()P dr)%.

By Lemma 1 we know that Sy(r) € Dr»(Ry) and P Se(r) € LP(R4). Also,
for every m € Ny there exists C' > 0 such that sup,.¢(g,q){|56(r)|} < C[[Ssllm,p-
Therefore

)

TR Sy (r)| dr

7Aonrn

(g O)1 < CIS" 11 Sl (

a+n
son L
)q
a

~ n—1
<C(1Ss llmp + 11777 S llp ) < oo,

raq-&-n

— n—1
HS U Sl (

ag+n

that is g, € D/Lq (R"), 1 < g < o0, for a € (—n,—g).
Step 3: Let o > ,g and let g, € D/Lq (R™), 1 < ¢ < oo, be a homogeneous
distribution of degree a. We define the test function ¢(z) € D(R™) as follows:
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0 , lxl <2
|z[ >3,

7) o) = {

|z|s In|x|

where s € [}, 00). Since

fewra= [ e [

we have that ¢ € LP(R"), 1 < p < oo. Moreover, in a similar way we prove that
¢ € Dr»(R"). On the other hand, for the given a € [—7,00) take s € [T, 00)
such that

1 » < 1
(< | dr
3

rslnr r1n? r

o0
1
[(gas 9)| = C + K(ﬂC)/ rotr=l_— drdi = oo,
sn-1 3

rslnr
and therefore g, ¢ D7 ,(R"), a € [—4,00), 1 < g <oo.
When s € [0,00), the test function ¢, given by (7) belongs to Dp (R") and
we conclude that g, ¢ D, (R"), a € (—n,00).
(#4) Let go be a homogeneous distribution of degree @ € R. By a slight

modification of the proof of (i) we conclude that g, € Dj.(R"), when a €
(=00, —n). The test function

0o 2
o={ 2 s

|$‘5 I

o(z) € C®°(R™), belongs to D1 (R™) when s € (n,00). Furthermore, (gq, ¢) =
00, when « € (0,00), so that g4 ¢ Dy (R™).
Let « € (—n,0). We have

(9o, @) = (9a 0, @) + (90 (1 = 0),9),
where 0(z) € D(R") is given by

B N P
e(x)‘{o L el >3,

We first observe (g, 0, ¢). Put

F,(z) = F,(r, ) ::/0 (9o 0)(t,3) dt,r € [0,00),4 € S" ' 2 = ri.

It is easy to see that F, € L°°(R™). Furthermore we have

0 oy DO OFadn | OF.om,
or 77T dxy Or  Oxs Or Ox, Or

9o O0(z) =
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F, Fo, . . Fo, . .
= O ) (8) + G (b )eald) o+ 5 o)
Ox;
where the terms i vi(#), i =1,2,...,n do not depend on r. Moreover,

.
0i(2) € Dp=(RY), i=1,2,...,n.

Now, by the representation (1) we have that g.0 € D (R").

It remains to show that (g, (1 — ), ¢) < co. Let ¢ € D1 (R™). We have

(ga (1 = 0),0) = (ga, ¢ (1 — 0)) = |S" 1| /Ooo re TS sy (r) dr

- |sn—1/000 rﬂ+n—1‘5n{1|( [ K@ o)) di) dr

:C'—i—/ T°‘+"_lS¢(r)dr=C+/ "t Sy (r) dr.
3 3

By Lemma 1 we have r"~1 Sy(r) € L'(Ry), and therefore, since a € (—n,0),

the last integral is convergent. We conclude that g, € D} . (R") for a € (—n,0).
O

Corollary 1. (i) Let g, be a homogeneous distribution of degree « = —n, n €
N. Then go € D;(R), 1 < g < 0.
(i) Let go be a homogeneous distribution of degree « = —n —m, m € N.

Then go € Dy, (R™), 1 < g < co.

Proof. (i) Let n € N. A homogeneous distribution g, of degree & = —n has the
representation

(gas B) = (Crz™™ + 026"V (2), ¢(2)), ¢ € D(R).

By the suitable partition of unity we have

&= b1+ da + d3,

where suppp1 C (—oo, —1), supppa C (=2,2), supppsz C (1,00) and ¢o €
Cs°(R). Now,

<ga7¢1 + ¢2 + ¢3> = <ga7¢1> + <ga7¢2> + <gou¢3>

= (Cra™" + Co6" D (@), $1(2)) + (gas d2) + (Cra™" + C26" "D (2), ¢3())

=(C12™", ¢1) + (ga, P2) + (C1z™", ¢3).
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Since —n < —% we have that [(z7", ¢1)| < oo and [(27", ¢3)| < oo, and since

¢ is compactly supported |(gq, ¢2)| < c0.

The proof of g, € D/Lq (R™), « = —n—m, m € N is now a simple modification
of the one-dimensional case. O
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