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DERIVATIONAL FORMULAS OF A SUBMANIFOLD
OF A GENERALIZED RIEMANNIAN SPACE

Svetislav M. Minčić1, Ljubica S. Velimirović2

Abstract. In the introduction is given basic information on a general-
ized Riemannian space, as a differentiable manifold endowed with asym-
metric basic tensor, and a subspace is defined (in local coordinates).

In §1., for a tensor whose certain indices are related to the space and
the others to the subspace, four kinds of covariant derivative are intro-
duced and, in this manner, also four connections.

Derivational formulas for tangents of the submanifold are expressed by
means of the unit normals (Theorem 1.1 and Theorem 1.2). It is proved
that by applying the third or the fourth kind of covariant derivative one
concludes that induced connection is symmetric (Theorem 1.2).

§2. is related to the induced connection of the normal bundle (eq.
(2.9)). In this case also are possible four kinds of covariant derivatives on
the obtained normal submanifold XN

N−M (eq. (2.10)). In Theorem 2.1.
is given the presentation of covariant derivative of the normals, using the
first and the second kind of covariant derivatives. Theorem 2.2. is related
to the properties of the coefficients of this connection.

In Theorem 2.3. is proved that, applying the third and the fourth kind
of covariant derivative at XN

N−M , we express the covariant derivative of
normals by means of tangents, and in this case the induced connection at
XN

N−M is unique (Γ̄
1

= Γ̄
2
).
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0. Introduction

A generalized Riemannian space GRN [2, 3, 9] is a differentiable manifold
equipped with the asymmetric basic tensor Gij(x1, ..., xN ) (the components)
where xi are the local coordinates. The symmetric, respectively antisymmetric
part of Gij are Hij and Kij .

For the lowering and rasing of indices in GRN one uses Hij , respectively
Hij , where

(0.1) (Hij) = (Hij)−1, (det(Hij) 6= 0).
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Cristoffel symbols at GRN are

(0.2a, b) Γi.jk =
1
2
(Gji,k −Gjk,i + Gik,j), Γi

jk = HipΓp.jk,

where, for example, Gji,k = ∂Gji/∂xk. Based on the asymmetry of Gij , it
follows that the Cristoffel symbols are also asymmetric with respect to j, k in
(2a, b).

By equations

(0.3) xi = xi(u1, ..., uM ) ≡ xi(uα), i = 1, .., N,

a submanifold XM is defined in local coordinates. If rank(Bi
α) = M (Bi

α =
∂xi/∂uα) and

(0.4) gαβ = Bi
αBj

βGij ,

XM becomes GRM ⊂ GRN , with induced basic tensor (0.4), which is gen-
erally also asymmetric. Note that in the present work Latin indices i, j, ... take
values 1, . . . , N and refer to the GRN , while the Greek ones take values 1, . . . , M
and refer to the GRM .

In the GRM are valid the relations similar to (0.1) and (0.2). The symmetric
part of gαβ is denoted with hαβ , and antisymmetric one with kαβ , where e.g.

(0.4′a, b) hαβ = Bi
αBj

βHij , (hαβ) = (hαβ)−1.

Cristoffel symbols Γ̃α.βγ , Γ̃α
βγ = hαπΓ̃π.βγ are expressed by gαβ analogously to

(0.2).
For the unit, mutually orthogonal vectors N i

A, which are orthogonal to the
GRM too, we have ([4]-[8], [10])

(0.5a) HijN
i
AN j

B = eAδA
B = hAB , eA ∈ {−1, 1},

(0.5b) HijN
i
ABj

α = 0,

where A, B, · · · ∈ {M + 1, . . . , N}.

1. Induced connection and derivational formulas on XM ⊂
GRN

1.1. As is known, the following relations between Cristoffel symbols of a gener-
alized Riemannian space and its subspace are valid:

(1.1) Γ̃α.βγ = Γi.jkBi
αBj

βBk
γ + HijB

i
αBj

β,γ ,

(1.2) Γ̃α
βγ = hπαΓ̃π.βγ = hπα(Γi.jkBi

πBj
βBk

γ + HijB
i
πBj

β,γ),
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i.e.

(1.2′) Γ̃α
βγ = hπαHpiB

p
π(Γi

jkBj
βBk

γ + Bi
β,γ).

Supposing that the both connections, defined by the coefficients Γ and Γ̃
are asymmetric, one can define four kinds of covariant derivative for a tensor
defined at points of the subspace [4]-[6]. For example, for a tensor tiαjβ we have

(1.3) ∆
1
2
3
4

µtiαjβ ≡ tiαjβ |
1
2
3
4

µ = tiαjβ,µ + Γi
pm
mp

pm
mp

tpα
jβ Bm

µ − Γp
jm
mj

mj

jm

tiαpβBm
µ + Γ̃α

πµ
µπ

πµ
µπ

tiπjβ − Γ̃π
βµ
µβ

µβ

βµ

tiαjπ

and in this manner are defined four connections ∇
θ
, θ ∈ {1, . . . , 4} on the sub-

manifold XM ⊂ GRN . The obtained structures we shall denote by (XM ⊂
GRN , gαβ , ∇

θ
, θ ∈ {1, . . . , 4}).

1.2. We have to examine the presentation of covariant derivatives of tangent
vectors Bi

α = ∂xi/∂uα and of the unit normals N i
A, with the help of the same

magnitudes, so called derivational formulas of the subspace for the tangents
and normals.

Putting

(1.4) Bi
α|

θ

µ = Φ
θ

π
αµBi

π +
∑

P

Ω
θ

PαµN i
P , θ ∈ {1, . . . , 4},

we get

(1.5) Φ
θ

π
αµ = HijB

i
α|

θ

µBj
ρh

πρ.

Let us investigate, firstly, Φ
1
. Substituting in (1.5) with respect to (1.3), we

obtain
Φ
1

π
αµ = HijB

j
ρh

πρ(Bi
α,µ + Γi

pmBp
αBm

µ − Γ̃σ
αµBi

σ)

= HijB
j
ρh

πρ(Bi
α,µ + Γi

pmBp
αBm

µ )− hρσhπρΓ̃σ
αµ.

Further, we have

Φ
1

π
αµ = hπρ(HijB

i
α,µBj

ρ + Γj.pmBj
ρB

p
αBm

µ − Γ̃ρ.αµ).

Taking into consideration (1.1), it follows that Φ
1

π
αµ = 0. In the same way one

obtains Φ
2

π
αµ = 0. So,

(1.6) Φ
θ

π
αµ = 0, θ ∈ {1, 2}.

In order to determine Ω
θ

at (1.4), we shall compose this equation with HijN
j
Q,

and, by virtue of (0.5), we get

(1.7) HijB
i
α|

θ

µN j
Q =

∑

P

Ω
θ

PαµeP δP
Q = Ω

θ
QαµeQ, eQ ∈ {−1, 1}
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(no summing wrp Q), i.e.

(1.7′) Ω
θ

Pαµ = eP HijB
i
α|

θ

µN j
P ,

from where, substituting Bi
α|

θ

µ based on (1.3) and taking into consideration

(0.5b), one obtains

(1.8a, b) Ω
1
2

Pαµ = Ω
3
4

Pαµ = eP HijN
i
P (Bj

α,µ + Γj
pm
mp

Bp
αBm

µ ).

Based on (1.3),(1.4),(1.6), we have the following theorem.

Theorem 1.1. Derivational formulas for tangents of submanifold XM ⊂ GRN

possessing the structure (XM , gαβ,∇
θ

,θ∈{1,2}), are

(1.9) Bi
α|

θ

µ ≡ ∇
θ

µBi
α =

∑

P

Ω
θ

PαµN i
P , θ ∈ {1, 2},

where Ω
θ

are given at (1.8) .

1.3. Consider now the same structure, but for θ ∈ {3, 4} and find Φ
θ
. Based on

(1.5), (1.3), (1.1) we get

Φ
3

π
αµ = HijB

j
ρh

πρ(Bi
α,µ + Γi

pmBp
αBm

µ − Γ̃σ
µαBi

σ)

= HijB
j
ρh

πρ(Bi
α,µ + Γi

pmBp
αBm

µ )− hπρΓ̃ρ.µα = hπρ(Γ̃ρ.αµ − Γ̃ρ.µα) = T̃π
αµ.

In the same manner one finds Φ
4

π
αµ = −T̃π

αµ, i.e.

(1.10) Φ
3

π
αµ = −Φ

4

π
αµ = T̃π

αµ.

Composing the equation HijB
i
αBj

ρ = hαρ with hπρ, one gets

Hijh
πρBi

αBj
ρ = hαρh

πρ = δπ
α,

wherefrom, applying ∇
3

µ :

Hijh
πρ(Bi

α|
3
µBj

ρ + Bi
αBj

ρ|
3
µ) = 0,

that is

(1.11) Φ
3

π
αµ + Φ̂

3

π
αµ = 0,

where Φ
3

is given at (1.5), and

Φ̂
3

π
αµ = Hijh

πρBi
αBj

ρ|
3
µ.
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Since
Hijh

πρBj
ρ|
3
µ = (Hijh

πρBj
ρ)|

3
µ = Bπ

i|
3
µ,

by virtue of (1.3) the previous equation gives

Φ̂
3

π
αµ = Bi

αBj
i|
3
µ = Bi

α(Bπ
i,µ − Γp

miB
π
p Bm

µ + Γ̃π
σµBσ

i )

= Bi
α(Bπ

i,µ − Γp
miB

π
p Bm

µ ) + Bi
αHijh

σρBj
ρΓ̃

π
σµ

= Bi
α(Bπ

i,µ − Γp
miB

π
p Bm

µ ) + Γ̃π
αµ

=
(1.2′)

Bi
αBπ

i,µ − Γp
miB

i
αBπ

p Bm
µ + hρπHpiB

p
ρBj

αBk
µΓi

jk + hρπHpiB
p
ρBi

α,µ

= Bi
α(Hpih

ρπBp
ρ),µ − Γp

miB
i
αBπ

p Bm
µ + Bπ

i Bj
αBk

µΓi
jk + Hpih

ρπBp
ρBi

α,µ

where =
(1.2′)

indicates ”= based on (1.2′)” .

The first and the last addend give

(Bi
αHpih

ρπBp
ρ),µ = (hρπhρα),µ = δπ

α,µ = 0,

and by corresponding changes of dummy indices at the rest ones, we finally
obtain

(1.12) Φ̂
3

π
αµ = T i

jkBπ
i Bj

αBk
µ =

(1.2′)
T̃π

αµ =
(1.10)

Φ
3

π
αµ.

Taking into account (1.10)− (1.12), we obtain

(1.13) Φ
3

π
αµ = −Φ

4

π
αµ = T̃π

αµ = 0.

So, we have proved the following theorem.

Theorem 1.2. Derivational formulas for tangents of a submanifold XM ⊂
GRN , possessing the structure (XM , gαβ ,∇

θ
, θ ∈ {3, 4}), are

(1.14) Bi
α|

θ

µ ≡ ∇
θ µ

Bi
α =

∑

P

Ω
θ Pαµ

N i
P , θ ∈ {3, 4},

where Ω
θ

are given at (1.8), and induced connection Γ̃α
βγ in this case is symmetric

(T̃ = 0) .

1.4. For the covariant derivative of the normals on XM , based on (1.3), we have

(1.15) N i
A|

1
2

µ = N i
A|

3
4

µ = N i
A,µ + Γi

pm
mp

Np
ABm

µ ,

provided that one supposes that the indices A,B, · · · ∈ {M + 1, . . . , N} have
not a tensor character [7, 8, 4]. Starting from the presentation

(1.16) ∇
θ

µN i
A ≡ N i

A|
θ

µ = Λ
θ

π
AµBi

π +
∑

P

Ψ
θ

PAµN i
P
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one obtains, the known result [7, 8, 4] for derivational formulas of normals

(1.17) N i
A|

θ

µ = −eAΩ
θ

AρµhρπBi
π +

∑

P

Ψ
θ

PAµN i
P , Ψ

θ
AAµ = 0, θ ∈ {1, 2}

where Ω
θ

is given at (1.8), and for Ψ
θ

we have

(1.18) Ψ
θ

PAµ = eP HijN
i
P N j

A|
θ

µ,

where N j
A|

θ

µ is given by virtue of (1.15).

So, the next theorem is valid:

Theorem 1.3. [7, 8, 4] Derivational formulas for normals of submanifold XM ⊂
GRN with structure (XM , gαβ ,∇

θ
, θ ∈ {1, 2}) are given at (1.17), where Ψ

θ
have

the values (1.18).

2. Induced connection on the normal bundle
(normal subspace)

2.1. The set of normals of the submanifold XM ⊂ GRN make a normal
bundle for XM , and we note it XN

N−M . One can introduce a metric tensor on
XN

N−M [10, 11, 1]

(2.1) gAB = GijN
i
AN j

B ,

which is asymmetric in a general case.
The symmetric part is

(2.2) hAB = HijN
i
AN j

B =
(0.5a)

eAδA
B = hBA =

{
ea, A=B,

0, otherwise.
, eA ∈ {−1, 1}.

If

(2.3) (hAB) = (hAB)−1,

we have

(2.4) hAB = eAδA
B = hAB = hAB .

2.2. For a vector vi one says that it belongs to XN
N−M , if it is defined at the

points of XM and is a linear combination of the normals, i.e.

(2.5) vi = vP N i
P (i ∈ {1, . . . , N}, P = M + 1. . . . , N, a summation on P)
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One can define absolute differential δvi along XM in two manners

δ
1
2

vi = dvi + Γi
jk
kj

vjdxk,

from where

(2.6) δ
1
2

vi = N i
P dvP + (N i

P,µ + Γi
jk
kj

N j
P Bk

µ)vP duµ.

Composing the equation (2.6) with

(2.7) NA
i = Hijh

ABN j
B ,

we obtain the projection of δ
θ
vi on XN

N−M :

(2.8), δ
1
2

vA = dvA + Γ̄
1
2

A
PµvP duµ,

where

(2.9) Γ̄
1
2

A
Pµ = NA

i (N i
P,µ + Γi

jk
kj

N j
P Bk

µ)

are coefficients of induced connection of the normal bundle (submanifold,
subspace) XN

N−M .
For a tensor on XM , whose some indices are related to GRN and the others

to XN
N−M , four kinds of covariant derivative are possible. For example,

(2.10)

∇̄
1
2
3
4

µtiAjB ≡ tiAjB⊥
1
2
3
4

µ

= tiAjB,µ + Γi
pm
mp
pm

mp

tpA
jBBm

µ − Γp
jm
mj

mj

jm

tiApBBm
µ + Γ̄

1
2
1
2

A
PµtiPjB − Γ̄

1
2
2
1

P
BµtiAjP .

In this way, 4 connections ∇̄
θ
, θ ∈ {1, . . . , 4} on the submanifold XN

N−M ⊂ GRN

are defined. We shall denote the obtained structures (XN
N−M ⊂ GRN , gAB , ∇̄

θ
, θ ∈

{1, . . . , 4}).
Derivatives of the type (1.3) and (2.10) are van der Waeden-Bortoloti

derivatives. Combining these two cases, we can observe also a derivative of a
tensor containing simultaneously indices of all three types, e.g. tiαA

jβB .

2.3. Consider now the explanation of ∇̄
θ

µN i
A. Analogously to (1.16) we have

(2.11) ∇̄
θ

µN i
A ≡ N i

A⊥
θ

µ = Λ̄
θ

π
AµBi

π +
∑

P

Ψ̄
θ

PAµN i
P ,
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from where, composing with HijB
j
ν , one gets

(2.12) HijB
j
νN i

A⊥
θ

µ = Λ̄
θ

π
Aµhπν .

In order to determine Λ̄
θ
, consider the relation HijN

i
ABj

ν = 0 and apply the

derivative ∇̄
θ

µ ≡⊥
θ

µ, which in the case of Bj
ν is reduced to ∇

θ
µ. So,

Hij(N i
A⊥

θ
µBj

ν + N i
ABj

ν |
θ

µ) = 0,

wherefrom, in relation to (2.12) and (1.7′): Λ̄
θ

π
Aµhπν + eAΩ

θ
Aνµ = 0,

(2.13) Λ̄
θ

π
Aµ = −eAΩ

θ
Aρµhπρ, θ ∈ {1, . . . , 4}.

In order to determine Ψ̄
θ

in (2.11), we are composing with HijN
j
Q, and obtaining

(2.14) HijN
i
A⊥

θ
µN j

Q =
∑

P

Ψ̄
θ

PAµeP δP
Q = eQΨ̄

θ
QAµ.

With respect to (2.10), (2.2), (2.9) the previous relation yields

eQΨ̄
1

QAµ = HijN
j
Q(N i

A,µ + Γi
pmNp

ABm
µ − Γ̄

1

P
AµN i

P )

=
(2.2)

HijN
j
Q(N i

A,µ + Γi
pmNp

ABm
µ )− hPQΓ̄

1

P
Aµ

=
(2.9)

HijN
j
Q(N i

A,µ + Γi
pmNp

ABm
µ )− hPQNP

i (N i
A,µ + Γi

jkN j
ABk

µ)

= (N i
A,µ + Γi

pmNp
ABm

µ )(HijN
j
Q − hPQNP

i ) = 0,

because

(2.15) hPQNP
i = HijN

j
Q.

So, Ψ̄
1

QAµ = 0. In the same manner one proves that Ψ̄
2

QAµ = 0, and, based on

(2.11) and (2.13), we have proved the following theorem.

Theorem 2.1.Derivational formulas for normals of a submanifold XM ⊂ GRN ,
considered in a structure (XN

N−M , gAB , ∇̄
θ
, θ ∈ {1, 2}) are

(2.16) N i
A⊥

θ
µ ≡ ∇̄

θ
µN i

A = −eAΩ
θ

AρµhπρBi
π, θ ∈ {1, 2},

where Ω
θ

are given at (1.8).

2.4. In order to investigate N i
A⊥

θ
µ for θ ∈ {3, 4}, we shall firstly consider

properties of the coefficients Γ̄
1
, Γ̄

2
. For the Kronecker symbols, being constants,

we have

(2.17) δA
B⊥

θ
µ = δAB⊥

θ
µ = δAB

⊥
θ

µ = 0,∀θ ∈ {1, . . . , 4}.



Derivational formulas of a submanifold of a generalized Riemannian space 99

From here and because of (2.2), (2.4), we obtain

(2.18) hAB⊥
θ

µ = hAB
⊥
θ

µ = 0, ∀θ ∈ {1, . . . , 4}.

On the other hand, from (2.10) one gets

δAB
⊥
1

µ = 0 + Γ̄
1

A
PµδPB + Γ̄

1

B
PµδAP = Γ̄

1

A
Bµ + Γ̄

1

B
Aµ =

(2.17)
0.

The analogous is valid for Γ̄
2
, and we have

(2.19) Γ̄
ω

A
Bµ = −Γ̄

ω

B
Aµ, ∀ω ∈ {1, 2},

i.e. an antisymmetry is in force with respect to A,B. Further, we have

δA
B⊥

3
µ =

(2.10)
Γ̄
1

A
Bµ − Γ̄

2

A
Bµ =

(2.17)
0,

and the result is analogous by applying ∇̄
4
, so

(2.20) Γ̄
1

A
Bµ = Γ̄

2

A
Bµ for∇̄

θ
, θ ∈ {3, 4}.

Based on (2.19) and (2.20), we conclude that applying ∇̄
1

and ∇̄
3

or ∇̄
1

and ∇̄
4

or

∇̄
2

and ∇̄
3

or ∇̄
2

and ∇̄
4

one obtains

(2.21) Γ̄
1

A
Bµ = −Γ̄

2

B
Aµ.

From the above, we state the following theorem

Theorem 2.2. The coefficients Γ̄
1
, Γ̄

2
(2.9) of induced connection in the normal

submanifold XN
N−M ⊂ GRN have the properties:

a) the property (2.19) in the structures (XN
N−M , gAB , ∇̄

θ
, θ ∈ {1, 2}),

b) the property (2.20) in the structures (XN
N−M , gAB , ∇̄

θ
, θ ∈ {3, 4}),

c) the property (2.21) in the structures (XN
N−M , gAB , ∇̄

θ
, ∇̄

ω
, (θ, ω) ∈ {(1, 3),

(1, 4), (2, 3), (2, 4)}).

2.5. Let us investigate now Ψ̄
θ

for θ ∈ {3, 4} at (2.11). In relation to (2.9) is

(2.22) hPQ(Γ̄
1

p
Aµ − Γ̄

2

p
Aµ) = hPQNP

i T i
jkN j

ABk
µ = HijT

i
pmN j

QNp
ABm

µ ,

and based on (2.14), (2.9) and (2.15):

eQΨ̄
3

QAµ = HijN
j
Q(N i

A,µ + Γi
pmNp

ABm
µ )− hPQNP

i (N i
A,µ + Γi

mpN
p
ABm

µ )

=
(2.15)

HijT
i
pmN j

QNp
ABm

µ =
(2.22)

hPQ(Γ̄
1

p
Aµ − Γ̄

2

p
Aµ).
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An analogous equation is valid for Ψ̄
4

too.

Taking into account (2.20), we conclude that, from the previous equation

(2.23) Ψ
θ

QAµ = 0,∀θ ∈ {3, 4},

and, by virtue of (2.11) and (2.13) we have the following theorem.

Theorem 2.3. In the structure (XN
N−M , gAB , ∇̄

θ
, θ ∈ {3, 4}) derivational for-

mulas for normals of submanifold XM ⊂ GRN are

(2.24) N i
A⊥

θ
µ ≡ ∇̄

θ
µN i

A = −eAΩ
θ

AρµhπρBi
π, θ{3, 4},

and then in XN
N−M there exists a unique connection (2.9) with the coefficients

Γ̄
1

= Γ̄
2

= Γ̄.
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