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IMPROVEMENT OF CONVERGENCE CONDITION
OF THE SQUARE-ROOT INTERVAL METHOD FOR

MULTIPLE ZEROS1

Miodrag S. Petković2, Dušan M. Milošević3

Abstract. A new theorem concerned with the convergence of the
Ostrowski-like method for the simultaneous inclusion of multiple com-
plex zeros in circular complex arithmetic is established. Computationally
verifiable initial condition that guarantees the convergence of this parallel
inclusion method is significantly relaxed compared with the classical the-
orem stated in [Z. Angew. Math. Mech. 62 (1982), 627–630].
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1. Introduction

Iterative methods for the simultaneous inclusion of polynomial zeros, real-
ized in interval arithmetic, produce resulting real or complex intervals (disks or
rectangles) that contain the sought zeros. In this manner, information about
the upper error bounds of approximations to the zeros is provided. Besides,
there exists the ability to incorporate rounding errors without altering the fun-
damental structure of the interval method. An extensive study and history of
interval methods for solving algebraic equations may be found in the books [9]
and [10].

The purpose of this paper is to present the improved initial convergence
condition of the square-root inclusion method proposed in [8]. A similar problem
was considered in the recent paper [11], where the initial condition for the
convergence of the third-order Newton-like inclusion method, presented in [4],
is relaxed.

The presentation of the paper is organized as follows. Some basic definitions
and operations of circular complex interval arithmetic, necessary for the conver-
gence analysis and the construction of inclusion methods, are given in section
1. The derivation of the square-root inclusion method and the criterion for the
choice of a proper square root of a disk are presented in section 2. The conver-
gence analysis of the considered method under the relaxed initial condition is
given in section 3.
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The construction of the inclusion method and its convergence analysis, pre-
sented in this paper, need the basic properties of the so-called circular complex
arithmetic introduced by Gargantini and Henrici [4]. A circular closed region
(disk) Z := {z : |z − c| ≤ r} with center c := mid Z and radius r := rad Z we
denote by parametric notation Z := {c; r}. The following is valid:

α{c; r} = {αc; |α|r} (α ∈ C),
{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2}.

The inversion of a non-zero disk Z is defined by the Möbius transformation,

(1) Z−1 =
{ c̄

|c|2 − r2
;

r

|c|2 − r2

}
(|c| > r, i.e., 0 /∈ Z).

The addition, subtraction and inversion Z−1 are exact operations.
The set {z1z2 : z1 ∈ Z1, z2 ∈ Z2}, in general, is not a disk. In order to

remain within the realm of disks, Gargantini and Henrici [4] introduced the
multiplication by

Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2}.

Then the division is defined by

Z1 : Z2 = Z1 · Z−1
2 .

The square root of a disk {c; r} that does not contain the origin, where
c = |c|eiθ and |c| > r, is defined as the union of two disjoint disks (see [2]):
(2)
{c; r}1/2 :=

{√
|c|eiθ/2;

r√
|c|+

√
|c| − r

}⋃ {
−

√
|c|eiθ/2;

r√
|c|+

√
|c| − r

}
.

In this paper we will use the following obvious properties:

z ∈ {c; r} ⇐⇒ |z − c| ≤ r,(3)
{c1; r1} ∩ {c2; r2} = ∅ ⇐⇒ |c1 − c2| > r1 + r2.(4)

More details about circular arithmetic can be found in the books [1], [9] and
[10].

2. Ostrowski-like method

Let P be a monic polynomial of degree N ≥ 3

(5) P (z) =
n∏

j=1

(z − ζj)µj

with n (≤ N) distinct real or complex zeros ζ1, . . . , ζn of respective multiplicities
µ1, . . . , µn, where µ1 + · · ·+ µn = N and let

δ2(z) =
P ′(z)2 − P (z)P ′′(z)

P (z)2
.
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From the factorization of (5) we find

δ2(z) = − d2

dz2

(
log P (z)

)
=

n∑
j=1

µj

(z − ζj)2
=

µi

(z − ζi)2
+

n∑
j=1
j 6=i

µj

(z − ζj)2
.

Solving the last equation in ζi we obtain the following fixed-point relation

(6) ζi = z −
√

µi[
δ2(z)−

n∑
j=1
j 6=i

µj

(z − ζj)2

]1/2

∗

.

It is assumed that only one complex value (of two) of the square root has to
be taken in the last formula, which is indicated by the symbol ∗. This value is
chosen in such a way that the right-hand side reduces to ζi.

Let In := {1, . . . , n} be the index set and suppose that n disjoint disks
Z1, . . . , Zn such that ζj ∈ Zj (j ∈ In) have been found. Let us put z = zi =
midZi in (6). Since ζj ∈ Zj (j ∈ In), according to the inclusion isotonicity
property we obtain

(7) ζi ∈ zi −
√

µi[
δ2(zi)−

n∑
j=1
j 6=i

µj

( 1
zi − Zj

)2
]1/2

∗

(i ∈ In).

Remark 1. We write
( 1

zi − Zj

)2

rather than
1

(zi − Zj)2
since rad

( 1
Z

)2

≤

rad
1

Z2
(0 /∈ Z), see [6].

Let Z
(0)
1 , ..., Z

(0)
n be initial disjoint disks containing the zeros ζ1, ..., ζn, that

is, ζi ∈ Z
(0)
i for all i ∈ In. The relation (7) suggests the following method for

the simultaneous inclusion of all multiple zeros of P :

(8) Z
(m+1)
i = z

(m)
i −

√
µi[

δ2(z
(m)
i )−

n∑
j=1
j 6=i

µj

(
1

z
(m)
i − Z

(m)
j

)2]1/2

∗

,

(i ∈ In; m = 0, 1, . . .). Assuming that the denominator does not contain the
number 0, according to (3) there follows that the square root of a disk gives
two disks. Since these disks are disjoint, only one of them gives a circular outer
approximation that contains the exact zero ζi. The choice of this “proper” disk
is indicated by the symbol ∗. The criterion for the choice of a proper disk is
similar to that considered in [2] and reads:
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Let [
δ2(z

(m)
i )−

n∑
j=1
j 6=i

µj

(
1

z
(m)
i − Z

(m)
j

)2]1/2

∗
= D

(m)
1,i

⋃
D

(m)
2,i ,

where D
(m)
1,i and D

(m)
2,i are determined according to (2). Among the disks D

(m)
1,i

and D
(m)
2,i one has to choose that disk whose center minimizes∣∣P ′(z(m)

i )/(µiP (z(m)
i ))−midD

(m)
k,i

∣∣ (k = 1, 2).

For the iteration index m let us introduce the abbreviations

r(m) = max
1≤i≤n

r
(m)
i , µ = min

1≤j≤n
µj

ρ(m) = min
1≤i,j≤n

i6=j

{|z(m)
i − z

(m)
j | − r

(m)
j },

z
(m)
i = midZ

(m)
i , r

(m)
i = radZ

(m)
i .

For simplicity, we will omit sometimes the iteration index.

Remark 2. The iterative method (8) was proposed by M. Petković in [8]. It
was proved that the order of convergence is equal four under the initial condition

(9) ρ(0) > 3(N − µ)r(0).

The main goal of this paper is to improve this condition, that is, to find a
multiplier significantly smaller than 3(N − µ).

Remark 3. Omitting the sum in the iterative formula (8) we obtain the Os-
trowski iterative formula

z(m+1) = z(m) −
√

µi[
δ2(z(m))

]1/2

∗

with the cubic convergence, extensively studied by Ostrowski [5]. For this rea-
son, the inclusion method (8) is referred to as Ostrowski-like method.

3. Convergence analysis

In this section we give the convergence analysis of the interval method (8).
In the sequel we will always assume that N ≥ 3.

Lemma 1. Let the inequality

(10) ρ > 2
√

N − µ r

hold. Then



Improvement of convergence condition of the square-root ... 105

(i)
n∑

j=1
j 6=i

µj

∣∣∣(zi − ζj)−2 − (zi − zj)−2
∣∣∣ ≤ 2(N − µ)r

ρ3
;

(ii)
∣∣∣δ2(zi)−

n∑
j=1
j 6=i

µj

(zi − zj)2

∣∣∣ >
4µ

5r2
.

Proof. Of (i): Since

|zi − ζj | ≥ |zi − zj | − |zj − ζj | ≥ |zi − zj | − rj ≥ ρ,

we conclude that

(11)
1

|zi − ζj |
≤ 1

ρ
and

1
|zi − zj |

≤ 1
ρ
.

Using (10) and (11) we estimate

n∑
j=1
j 6=i

µj

∣∣∣(zi − ζj)−2 − (zi − zj)−2
∣∣∣ =

n∑
j=1
j 6=i

µj |(zi − zj)2 − (zi − ζj)2|
|zi − ζj |2|zi − zj |2

=
n∑

j=1
j 6=i

µj |ζj − zj |(|zi − zj + zi − ζj |)
|zi − ζj |2|zi − zj |2

≤ r
n∑

j=1
j 6=i

µj(|zi − zj |+ |zi − ζj |)
|zi − ζj |2|zi − zj |2

≤ r

n∑
j=1
j 6=i

µj

(
1

|zi − ζj |2|zi − zj |
+

1
|zi − ζj ||zi − zj |2

)
≤ 2(N − µ)r

ρ3
.

Of (ii): Using the inequality (10) and the assertion (i) of Lemma 1 we obtain∣∣∣∣δ2(zi)−
n∑

j=1
j 6=i

µj

(zi − zj)2

∣∣∣∣ ≥ µi

|zi − ζi|2
−

n∑
j=1
j 6=i

µj

∣∣∣(zi − ζj)−2 − (zi − zj)−2
∣∣∣

≥ µ

r2
− 2(N − µ)r

ρ3
>

µ

r2

(
1− 1

4µ
√

N − µ

)
>

4µ

5r2
. �

Now we state the convergence theorem of the Ostrowski-like method (8)
under the relaxed initial condition of the form (10).

Theorem 1. Let be given the initial disjoint disks Z
(0)
1 , . . . , Z

(0)
n containing the

zeros ζ1, . . . , ζn of the polynomial P and let the interval sequences
{
Z

(m)
i

}
(i ∈

In) be defined by the iterative formula (8). Then, under the condition

(12) ρ(0) > 2
√

N − µ r(0),

for each i ∈ In and m = 0, 1, . . . we have
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1◦ ζi ∈ Z
(m)
i ;

2◦ r(m+1) <
8(N − µ)

(
r(m)

)4

5µ
(
ρ(0) − 5

3
r(0)

)3 .

Proof. Of (i): We will prove the assertion 1◦ by induction. Suppose that
ζi ∈ Z

(m)
i for i ∈ In and m ≥ 1. Then

z
(m)
i −

√
µi[

δ2(z
(m)
i )−

n∑
j=1
j 6=i

µj(
z
(m)
i − ζj

)2

]1/2

∗

≡ ζi,

where the symbol ∗ denotes the (complex) value of the square root equal to
√

µi/
(
z
(m)
i − ζi

)
. Since

n∑
j=1
j 6=i

µj

(
1

z
(m)
i − ζj

)2

∈
n∑

j=1
j 6=i

µj

(
1

z
(m)
i − Z

(m)
j

)2

,

from (8) one obtains ζi ∈ Z
(m+1)
i . Since ζi ∈ Z

(0)
i , the assertion 1◦ follows by

mathematical induction.
Let us prove now that the interval method (8) has the order of convergence

equal to four (assertion 2◦). We use induction and start with m = 0. For
simplicity, all indices are omitted and all quantities in the first iteration are
denoted by .̂

We use the following inclusion derived in [7]

(13)
( 1

zi − Zj

)k

⊂
{ 1

(zi − zj)k
;

kr

ρk+1

}
(k = 1, 2, . . . ).

According to the inclusion (13) (for k = 2) we obtain

(14)
n∑

j=1
j 6=i

µj

( 1
zi − Zj

)2

⊂
{ n∑

j=1
j 6=i

µj

(zi − zj)2
;
2(N − µ)r

ρ3

}
=: {ci; η}.

Let ui = δ2(zi)− ci. Then, using (1), (2) and (14), from (8) we obtain

r̂i = rad Ẑi ≤ rad
( √

µi

{ui; η}1/2

)
≤ √

µi rad
(

1
{ui; η}

)1/2

=
√

µi rad
{

ūi

|ui|2 − η2
;

η

|ui|2 − η2

}1/2

=
√

µi η

(|ui|2 − η2)1/2
(
|ui|1/2 + (|ui| − η)1/2

) .(15)
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Here we have used the inequality rad
1

Z1/2
≤ rad

( 1
Z

)1/2

(0 /∈ Z) proved in [6].

By virtue of Lemma 1 and the inequality (12) we estimate

η =
2(N − µ)r

ρ3
<

1
4
√

N − µ
· 1
r2

<
µ

5r2

and
|ui| − η >

4µ

5r2
− µ

5r2
=

3µ

5r2
.

Using the last two inequalities and Lemma 1 (ii), we obtain from (15)

r̂i <

2
√

µ(N − µ)r4

ρ3

µ3/2

((4
5

)2

−
(1

5

)2
)1/2(√

4
5

+

√
3
5

) <
8
5

N − µ

µ

r4

ρ3

and, using (12),

(16) r̂ <
1
7
r.

According to a geometric construction and the fact that the disks Z
(m)
i and

Z
(m+1)
i must have at least one common point (the zero ζi), the following relation

can be derived (see [3]):

(17) ρ(m+1) ≥ ρ(m) − r(m) − 3r(m+1).

Using the inequalities (16) and (17) (for m = 0), we find

ρ(1) ≥ ρ(0) − r(0) − 3r(1) > 2
√

N − µ r(0) − r(0) − 3
7
r(0)

> 7r(1)
(
2
√

N − µ− 1− 3
7

)
,

wherefrom it follows

(18) ρ(1) > 2
√

N − µ r(1).

This is the condition (10) for the index m = 1, which means that all assertions
of Lemma 1 are valid for m = 1.

Using the definition of ρ and (18), for arbitrary pair of indices i, j ∈ In (i 6= j)
we have

(19) |z(1)
i − z

(1)
j | ≥ ρ(1) > 2

√
N − µ r(1) ≥ 2r(1) ≥ r

(1)
i + r

(1)
j .

Therefore, in regard to (4), the disks Z
(1)
1 , . . . , Z

(1)
n , produced by (8), are disjoint.

Applying mathematical induction with the argumentation used for the deriva-
tion of (16), (18) and (19) (which makes the part of the proof with respect to
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m = 1), we prove that the disks Z
(m)
1 , . . . , Z

(m)
n are disjoint for each m =

0, 1, . . . , and the following relations are true:

r(m+1) <
8(N − µ)

(
r(m)

)4

5µ
(
ρ(m)

)3 ,(20)

r(m+1) <
1
7
r(m),(21)

ρ(m) > 2
√

N − µ r(m).(22)

In addition, we note that the last inequality (22) means that the assertions of
Lemma 1 hold for each m = 0, 1, 2, . . . . Finally, from (21) we conclude that the
sequence {r(m)}monotonically converges to 0, in other words, the Ostrowski-like
inclusion method (8) is convergent under the initial condition (12).

Setting ω = 1/7 we find

(23) 1 + 4(ω + ω2 + · · ·ωm)− ωm < 1 +
4ω

1− ω
=

5
3
.

By the successive application of (17) and (21) we obtain

ρ(m) > ρ(m−1) − r(m−1) − 3ωr(m−1) = ρ(m−1) − r(m−1)(1 + 3ω)
> ρ(m−2) − r(m−2) − 3ωr(m−2) − ωr(m−2)(1 + 3ω)
= ρ(m−2) − r(m−2)

(
1 + 4ω + 4ω2 − ω2

)
...
> ρ(0) − r(0)

(
1 + 4ω + 4ω2 + · · ·+ 4ωm − ωm)

> ρ(0) − 5
3
r(0),

where we used (23). According to the last inequality and (20) we find

r(m+1) <
8(N − µ)

(
r(m)

)4

5µ
(
ρ(0) − 5

3
r(0)

)3 .

Therefore, the assertion 2◦ of Theorem 1 holds. The last relation shows that
the order of convergence of the inclusion method (8) is four. �

We conclude this paper with the remark that the initial condition (12) is
significantly weakened compared to (9), see Remark 2. The ratio R(N,µ) =
3(N−µ)/(2

√
N − µ ) = 1.5

√
N − µ of multipliers appearing in (9) and (12), for

µ = 1, 2, 3 and N ≥ 4, is given in Fig. 1.
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Fig. 1 Ratio of multipliers
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