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ON THE PSEUDO-LEBESGUE-STIELTJES INTEGRAL

Katarina Lendelova!

Abstract. The aim of this paper is to create a theory of pseudo-
Lebesgue-Stieltjes integral for pseudo-probability defined in [6]. We show
the relations between the pseudo-Lebesgue integral and pseudo-Lebesgue-
Stieltjes integral and some applications, too.
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1. Introduction

In many directions, use has been made of the pseudo-arithmetical operations
based on the generator g (increasing bijection with g(0) = 0). Hence, it is
interesting to study the integral with respect to the Pap g-calculus (see [2], [3],
[5], [71, 8], 9], [13]).

In this paper we create a theory of pseudo-Lebesgue-Stieltjes integral for
pseudo-probability defined in [6]. We show the relations between the pseudo-
Lebesgue integral and pseudo-Lebesgue-Stieltjes integral and some applications,
too.

The main motivation is the pseudo-probability theory. In [6] it was proved
the weak law of large numbers, of course, only for continuous random variables,
because the authors had no the general pseudo-Lebesgue-Stieltjes integral at
their disponsal.

2. Basic notion

In this section we recall the basic notions like pseudo-operations, the pseudo-
probability and pseudo-Lebesgue integral (see [2], [3], [5], [6], [7], [8], [9]), [13]).

Let g : R — R be an increasing bijection with g(0) = 0 and g(1) = 1. We
define

pseudo-addition: r®y =g Ygx)+ g9(y)),
pseudo-substraction: x &y := g~ (g(x) — g(v)),
pseudo-multiplication: = ®y := ¢~ *(g(z) - g(y)),

pseudo-absolute value:  |z|® := g=1(]g(x)]), for z,y € R.
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Let (I,®,®) be a semiring, I be a subinterval of [—oo,400]. Let © be a
nonempty set and & be a c-algebra of subsets of the set ). We define the
pseudo-probability P as the function P : S — I with the properties:

(i) P(0)=0and P(Q2) =1

(ii) P(U Ai) = @@ P(A;) for pairwise disjoint sets A; € S, 7 € N
i=1 i=1

The triple (2, S, P) is the pseudo-probability space.

We can define the induced probability p as the function p = go P. Then
the triple (2, S, p) is the probability space.

Let (2, S, P) be a pseudo-probability space and p be the induced probability.
Let f: Q — R be a random variable. Then the pseudo-Lebesgue integral of
the function f can be expressed by the formula

[ ater(frors)

3. The pseudo-Lebesgue -Stieltjes integral

Let £ be an integrable random variable, F' be its distribution function and
Ar be the Lebesgue-Stieltjes measure corresponding to F'.

In a general probability theory the mean value (expectation) of a Borel mea-
surable function f : R — R (f is a random variable in a probability space
(R,B(R), Ar)) is called the Lebesgues-Stieltjes integral of the function f corre-
sponding to F. It is denote by

/f dF,/o; f(z) dF(x),/f dAp.

We have p¢(A) =p(71(A)) = Ar(A) for each A € B(R) .

In this section we create a theory of the pseudo-Lebesgue-Stieltjes inte-
gral. We define the notions like the pseudo-distribution function, the pseudo-
Lebesgue-Stieltjes measure and the pseudo-Lebesgue-Stieltjes integral.

Definition 3.1. Let (2,8, P) be a pseudo-probability space and £ : & — R
be a random wvariable. Then the pseudo-distribution function Fy : R — R of a
random variable £ is defined by the formula

Fy(x) = P(§ <z) = P({w; {(w) < })

for each x € R.
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Theorem 3.2. Let (2,S,P) be a pseudo-probability space, F' : R — R be
a distribution function of a random variable £&. Then the pseudo-distribution
function Fy : R — R of random variable § can be expressed by the formula

Fy= g loF
Proof. Evidently, Fy(z) = P(§¢ < z) = ¢ '(p(€ < z)) = g~ (F(z)), for each

x €R.

Definition 3.3. Let F, : R — R be the pseudo-distribution function of a
random variable £ and F : R — R be its distribution function. Then the pseudo-
Lebesgues-Stieltjes measure A%, : B(R) — R is defined by the formula

A%:giloAF

where \p is the Lebesgue-Stieltjes measure corresponding to F'.

Theorem 3.4. Let F; : R — R be the pseudo-distribution function of a ran-
dom variable {. Then there exists exactly one pseudo-measure X, : B(R) — R
such that

Ap([a,b)) = Fy(b) © Fy(a)

for each a,b € R, a < b.

Proof.
1. Existence: Define X%, by Definition 3.3. Evidently, for each a,b € R, a < b
we obtain

Mg ([a,0))

9 '(Ar([a, b)) = g~ (F(b) — F(a)) =
97 (9(Fy(0)) = 9(Fy(a))) =
= Eq(b) © Fg(a)

2. Uniqueness: Let u, v be the pseudo-measures defined on B(R), such that
p=vondJ={[ab);a<b, abecR}

Since pu, v are the pseudo-measures and p = v on J, then go u, go v are the
measures and gopu =govon J. If gou(A) = gov(A) for each A € J, then
gop(A) =gov(A) for each A € B(R).

Hence for each A € B(R) we obtain

1w(A) =g (gou(A) =g (gov(A) =v(4)

Therefore, if p, v are the pseudo-measures defined on B(R), such that 4 = v on
J, then = v on B(R).

Theorem 3.5. Let (Q,S,P) be a pseudo-probability space. Then for each
A,BeS, BC A we have

P(A\B) = P(A) & P(B)
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Proof. Evidently, we obtain

P(A\B) =

Theorem 3.6. Let £ be a random variable and Fy be its pseudo-distribution
function. Then for each A € B(R) we have

P(E71(A)) = X (4)

Proof. By Theorem 3.5 we obtain

|
)

P& ([a,b)))

( 00, b)
P(E7H(—00,0)\E (=00, ) =
= P(&7'((~00,b))) © P(§H((—00,a))) =
= Fy(b)o Fy(a) =
Ap([a,D))

hence Theorem 3.4 is applicable.

Theorem 3.7. Let & be an integrable random variable, Fy be its pseudo-distri-
bution function and F' = g o Fy be its distribution function. Let f : R — R be a
Borel measurable function. Then the pseudo-Lebesgues-Stieltjes integral of the
function f corresponding to Fy can be expressed by the formula

/@deg:gl</gode>
Proof.

Function f is a random variable in the pseudo-probability space (R, B(R), A%).

1. Let f be a Borel measurable function defined by f = > «; - xa,, where A;
i=1
(i=1,---,n) are disjoint sets from S. Then, by Theorem 3.6 we obtain
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D
/ FaF, = @A) -

2. Let f be a nonnegative Borel measurable function and (f,,)5; be a sequence
of the simple Borel measurable functions, where f,, >0, f, ~ f.

Since f,, are the simple Borel measurable functions, then by the case 1 we
have

(1) /@fnng— 1</gofndF)

Hence, by limits theorems for pseudo-Lebesgue integral and by (1) can be ob-
tained

52 7]
/ f ng = lim fn ng =

n—oo

= nli_)rrgog_1</gofndF>:
= gl(nlir{:o/gofndF)
91(/g°de>

3. Let f be a Borel measurable function, f = f* — f~. Then, by property of
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pseudo-Lebesgue integral and the case 2 we obtain

[ rar, = [ grane [T ar, -
<o) ol [ )
(oo (Joor ) ol (foer o)) -
= gl</gOf+dF—/gode>_
= o (foesar)

Proposition 3.1. Let @ P, < o0, P, >0, P, € R and (x;)$° be a sequence of

real numbers such that zfz ;é j then z; # x;. Denote
T, <T

Then, Fy is non-decreasing and left-continuous function.

(o] (o]
Proof. Since @ P = g_l( d>go PZ-> < oo and g is an increasing bijection,

=1

then Z g o P; < oo. Hence by Proposition 4.11.2 in [12] can be obtained that

the functlon F(z) = Z g o P; is non-decreasing and left-continuous.

— @Pi_gl<2gopi)

T;<T r;<xT

Therefore

is a non-decreasing and left-continuous function.

Theorem 3.8. If the function F, is defined like in Proposition 3.1, then a
measurable function f is integrable by pseudo-Lebesgue-Stieltjes measure N if

o0
and only if @ (|f(z;)|® ® P;) < oo. It holds

i=1

o0

(&)
| @ aB@ = Pt o P

i=1

Proof. 7= Let f be integrable by the pseudo-Lebesgue-Stieltjes measure A\%.
Then, there exists the pseudo-Lebesgue-Stieltjes integral f® fdF, =g} ( Jgof dF).
Hence, g o f is integrable by the Lebesgue-Stieltjes measure \p.
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Moreover, since Fy is defined like in Proposition 3.1 and g is an increasing
bijection, then the function F' defined by

F(z) = Z go P
r;<xT

and the measurable function g o f satisfy the assumptions of Theorem 4.11.8 in
[12]. Hence

> (lgo f@l - (goP) < oo
and ) -
[o08dF =3 (9o @) (goP)).
Therefore )
P or) = o (Sa(ifeor)) -
= g‘1<zgog‘1(9(|f(xi)l®) -g(H))) =
i=1
= (S @) o)) -
= (X oo o Nl -ar)) -
= (X (ol o r)) <o) =
and

?«<" Tt is analogy to the proof ”=".

Remark 3.9. The pseudo-Lebesgue-Stieltjes integral f@ f(z) dFy(z) defined
in Theorem 3.8 can be expressed in the form

[ 1w are) =0 (S (e e 0o r)

i=1
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Proposition 3.2. Let f : R — R be a nonnegative function such that there
exists the pseudo-Lebesgue integral f® f dT < co. Then the function Fy defined

by
D

Fy(z) = / fdar
(—o0,z)

18 non-decreasing and left-continuous.

Proof. Since there exists the pseudo-Lebesgue integral [ @ f dT < ooand gisan

increasing bijection, then there exists the Lebesgue integral [go f dgo T < co.

Hence by Proposition 4.11.4 in [12] can be obtained that the function F(x) =
| gof dgoT is non-decreasing and left-continuous.

(_Oo)a:)

Therefore

is non-decreasing and left-continuous function.

Theorem 3.10. Let F, be a function defined in Proposition 3.2. Then a Borel
measurable function h : R — R is integrable by Ay, if and only if there exists the

pseudo-Lebesgue integral f]? h(z) ® f(z) do < co. It holds

/ ") A (@) = / Ch) © f@) do

R R

Proof. ”=" Let h be a Borel measurable function such that it is integrable
by the pseudo-Lebesgue-Sticltjes measure A%. Then, there exists the pseudo-
Lebesgue-Stieltjes integral f}? h(z) dFy(z) = g~ ( [ (g o h)(x) dF(z)). Hence,
g o h is integrable by the Lebesgue-Stieltjes measure Ap.

Moreover, since Fy is defined as in Proposition 3.2 and g is an increasing
bijection, then the function F', defined by

F(z) = / gofdgoT

(—o0.2)

and the Borel measurable function g o h satisfy the assumptions of Theorem
4.11.51in [12]. Hence there exists the Lebesgue integral

/(goh)(m)-(gof)(x) dgou
R
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and
[ on@) ar@) = [ gom)-(go i) dgou.
R R

Therefore, there exists the pseudo-Lebesgue integral

/Rea h(z) ® f(z) dz g ! </Rg(h(a:) ® f(z)) dgo x) _

s ([ o007 otnta)) atr(@) agow) =

_ 91<L<goh)(x).(gof><x> dgow)

and

[ an@ = o [ Gonw arw) =

= ( (goh)(z (gOf)(x)dgow)=

:/R ha) © f(z) d

7<«<" Tt is analogy to the proof "=".

4. Relation between the pseudo-Lebesgue and
pseudo-Lebesgue-Stieltjes integral

In the general probability theory there exists a relation between the Lebesgue
integral and the Lebesgue-Stieltjes integral. If £ is a random variable with a
distribution function F’ and f : R — R is a Borel measurable function, then the
function f o ¢ is a random variable and

[rocan=[far

if one of these integrals exists.

In this section we show that in the pseudo-probability there exists a rela-
tion between the pseudo-Lebesgue integral and the pseudo-Lebesgue-Stieltjes
integral, too.

Theorem 4.1. Let (2, S, P) be a pseudo-probability space and p be the induced
probability. Let & be a random variable with the pseudo-distribution function Fy,
F = go Fy be its distribution function and f : R — R be a Borel measurable
function. Then the function f o€ is a random variable and

/EefogdP:/@deg

if one of these integrals exists.
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Proof. For each A € B(R) we have that
(Fe&) (A=) es

hence f o is a random variable.

Since g : R — R is an increasing bijection with g(0) = 0, g(1) = 1 and
f R — R is a Borel measurable function, then go f : R — R is a Borel
measurable function. Hence

(2) [wonecdr=[gorar

By property (2) and Theorem 3.7 we obtain

/®f°fdp 9_1</90(f0£)dp)=g‘1</(90f)0£dp>=
91</90de) /@deg

5. Applications

It can see that Theorem 3.8, Theorem 8.10 and Theorem 4.1 can be used
to calculate the pseudo-dispersion ¢2@ in the same sense like their analogues in
the general probability theory.

Now we recall the notions like pseudo-mean value (expectation) E®, pseudo-
dispersion 0?® and L space, introduced in [4].

Let (2, S, P) be a pseudo-probability space. If a random variable £ : @ — R
is integrable, then the number

®
E%):/Q £ dP <

is called the pseudo-mean value (expectation) of the random variable &.
Let £ : Q — R be an integrable random variable in (2, S, P). If the random

variable (5 OE®(¢ ))263 is integrable, then we say that & has a pseudo-dispersion
o%® defined by the formula

0% () = B( (€0 B(9))™®)

Let (92,8, P) be a g-measure space (i.e. P is defined by the formula P =
g~ ! op, where p is the measure). We denote LY = L5 (£, S, P) the class of all
measurable real functions f for which f ® f is integrable. We write

L?—{f:QHR;/@fodP<oo}

The following theorems are the key to the calculation of the pseudo disper-
sion 02® of random variables.
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Proposition 5.1. For each ¢ € LY hold

(&)
0% (€) = / (x & B2(€))*® dF,(x).

R

Proof. If we denote f(x) = (x@E@(f))%B in Theorem 4.1, then, by the definition
of pseudo-dispersion and pseudo-mean value we obtain

(&)
() = [ (@0 EU©)* dFy(a),

R

Proposition 5.2. If £ is a discrete random variable from the L;e space with
the values x1,xa,... and their pseudo-probabilities Py, Ps, ..., then

722(6) = @D (s 0 E2©))** o P).

i=1

Proof. We obtain this result from Proposition 5.1 and Theorem 3.8.

Proposition 5.3. If ¢ is a continuous random variable with a density f (i.e.

52
Fy(z)= [ fdT), then

(—o0,z)

025 () = /@ ((gceE@(g))269 @f(:c)) dz.

R

Proof. We obtain this result from Proposition 5.1 and Theorem 3.10.
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