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ON THE PSEUDO-LEBESGUE-STIELTJES INTEGRAL

Kataŕına Lendelová1

Abstract. The aim of this paper is to create a theory of pseudo-
Lebesgue-Stieltjes integral for pseudo-probability defined in [6]. We show
the relations between the pseudo-Lebesgue integral and pseudo-Lebesgue-
Stieltjes integral and some applications, too.
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1. Introduction

In many directions, use has been made of the pseudo-arithmetical operations
based on the generator g (increasing bijection with g(0) = 0). Hence, it is
interesting to study the integral with respect to the Pap g-calculus (see [2], [3],
[5], [7], [8], [9], [13]).

In this paper we create a theory of pseudo-Lebesgue-Stieltjes integral for
pseudo-probability defined in [6]. We show the relations between the pseudo-
Lebesgue integral and pseudo-Lebesgue-Stieltjes integral and some applications,
too.

The main motivation is the pseudo-probability theory. In [6] it was proved
the weak law of large numbers, of course, only for continuous random variables,
because the authors had no the general pseudo-Lebesgue-Stieltjes integral at
their disponsal.

2. Basic notion

In this section we recall the basic notions like pseudo-operations, the pseudo-
probability and pseudo-Lebesgue integral (see [2], [3], [5], [6], [7], [8], [9]), [13]).

Let g : R → R be an increasing bijection with g(0) = 0 and g(1) = 1. We
define

pseudo-addition: x⊕ y := g−1(g(x) + g(y)),

pseudo-substraction: x	 y := g−1(g(x)− g(y)),

pseudo-multiplication: x� y := g−1(g(x) · g(y)),

pseudo-absolute value: |x|⊕ := g−1(|g(x)|), for x, y ∈ R.
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Let (I,⊕,�) be a semiring, I be a subinterval of [−∞,+∞]. Let Ω be a
nonempty set and S be a σ-algebra of subsets of the set Ω. We define the
pseudo-probability P as the function P : S → I with the properties:

(i) P (∅) = 0 and P (Ω) = 1

(ii) P (
∞⋃

i=1

Ai) =
∞⊕

i=1

P (Ai) for pairwise disjoint sets Ai ∈ S, i ∈ N

The triple (Ω,S, P ) is the pseudo-probability space.
We can define the induced probability p as the function p = g ◦ P . Then

the triple (Ω,S, p) is the probability space.
Let (Ω,S, P ) be a pseudo-probability space and p be the induced probability.

Let f : Ω → R be a random variable. Then the pseudo-Lebesgue integral of
the function f can be expressed by the formula∫ ⊕

f dP = g−1

(∫
g ◦ f dp

)

3. The pseudo-Lebesgue -Stieltjes integral

Let ξ be an integrable random variable, F be its distribution function and
λF be the Lebesgue-Stieltjes measure corresponding to F .

In a general probability theory the mean value (expectation) of a Borel mea-
surable function f : R → R (f is a random variable in a probability space
(R,B(R), λF )) is called the Lebesgues-Stieltjes integral of the function f corre-
sponding to F . It is denote by∫

f dF ,

∫ ∞
−∞

f(x) dF (x),
∫

f dλF .

We have p ξ(A) = p (ξ−1(A)) = λF (A) for each A ∈ B(R) .
In this section we create a theory of the pseudo-Lebesgue-Stieltjes inte-

gral. We define the notions like the pseudo-distribution function, the pseudo-
Lebesgue-Stieltjes measure and the pseudo-Lebesgue-Stieltjes integral.

Definition 3.1. Let (Ω,S, P ) be a pseudo-probability space and ξ : Ω → R
be a random variable. Then the pseudo-distribution function Fg : R → R of a
random variable ξ is defined by the formula

Fg(x) = P (ξ < x) = P ({ω; ξ(ω) < x})

for each x ∈ R.
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Theorem 3.2. Let (Ω,S, P ) be a pseudo-probability space, F : R → R be
a distribution function of a random variable ξ. Then the pseudo-distribution
function Fg : R → R of random variable ξ can be expressed by the formula

Fg = g−1 ◦ F

Proof. Evidently, Fg(x) = P (ξ < x) = g−1(p(ξ < x)) = g−1(F (x)), for each
x ∈ R.

Definition 3.3. Let Fg : R → R be the pseudo-distribution function of a
random variable ξ and F : R → R be its distribution function. Then the pseudo-
Lebesgues-Stieltjes measure λg

F : B(R) → R is defined by the formula

λg
F = g−1 ◦ λF

where λF is the Lebesgue-Stieltjes measure corresponding to F .

Theorem 3.4. Let Fg : R → R be the pseudo-distribution function of a ran-
dom variable ξ. Then there exists exactly one pseudo-measure λg

F : B(R) → R
such that

λg
F ([ a, b)) = Fg(b)	 Fg(a)

for each a, b ∈ R, a < b.

Proof.
1. Existence: Define λg

F by Definition 3.3. Evidently, for each a, b ∈ R, a < b
we obtain

λg
F ([ a, b)) = g−1(λF ([a, b))) = g−1(F (b)− F (a)) =

= g−1
(
g(Fg(b))− g(Fg(a))

)
=

= Fg(b)	 Fg(a)

2. Uniqueness : Let µ, ν be the pseudo-measures defined on B(R), such that
µ = ν on J = {[a, b) ; a < b, a, b ∈ R}.

Since µ, ν are the pseudo-measures and µ = ν on J , then g ◦µ, g ◦ ν are the
measures and g ◦ µ = g ◦ ν on J . If g ◦ µ(A) = g ◦ ν(A) for each A ∈ J , then
g ◦ µ(A) = g ◦ ν(A) for each A ∈ B(R).

Hence for each A ∈ B(R) we obtain

µ(A) = g−1
(
g ◦ µ(A)

)
= g−1

(
g ◦ ν(A)

)
= ν(A)

Therefore, if µ, ν are the pseudo-measures defined on B(R), such that µ = ν on
J , then µ = ν on B(R).

Theorem 3.5. Let (Ω,S, P ) be a pseudo-probability space. Then for each
A,B ∈ S, B ⊂ A we have

P (A\B) = P (A)	 P (B)
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Proof. Evidently, we obtain

P (A\B) = g−1(p(A\B)) =
= g−1(p(A)− p(B)) =

= g−1
(
g(P (A))− g(P (B))

)
=

= P (A)	 P (B)

Theorem 3.6. Let ξ be a random variable and Fg be its pseudo-distribution
function. Then for each A ∈ B(R) we have

P (ξ−1(A)) = λg
F (A)

Proof. By Theorem 3.5 we obtain

P
(
ξ−1([ a, b))

)
= P

(
ξ−1((−∞, b)\(−∞, a))

)
=

= P
(
ξ−1((−∞, b))\ξ−1((−∞, a))

)
=

= P
(
ξ−1((−∞, b))

)
	 P

(
ξ−1((−∞, a))

)
=

= Fg(b)	 Fg(a) =
= λg

F ([ a, b))

hence Theorem 3.4 is applicable.

Theorem 3.7. Let ξ be an integrable random variable, Fg be its pseudo-distri-
bution function and F = g ◦ Fg be its distribution function. Let f : R → R be a
Borel measurable function. Then the pseudo-Lebesgues-Stieltjes integral of the
function f corresponding to Fg can be expressed by the formula

∫ ⊕
f dFg = g−1

(∫
g ◦ f dF

)

Proof.
Function f is a random variable in the pseudo-probability space (R, B(R), λg

F ).

1. Let f be a Borel measurable function defined by f =
n∑

i=1

αi · χAi , where Ai

(i = 1, · · · , n) are disjoint sets from S. Then, by Theorem 3.6 we obtain
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∫ ⊕
f dFg =

n⊕
i =1

(αi ⊗ λg
F (Ai)) =

= g−1
( n∑

i=1

g(αi ⊗ λg
F (Ai))

)
=

= g−1
( n∑

i=1

g(g−1(g(αi) · g(λg
F (Ai))))

)
=

= g−1
( n∑

i=1

(g(αi) · g(λg
F (Ai)))

)
=

= g−1
( n∑

i=1

(g(αi) · g(P (ξ−1(Ai))))
)

=

= g−1
( n∑

i=1

(g(αi) · p(ξ−1(Ai)))
)

=

= g−1
( n∑

i=1

(g(αi) · λF (Ai))
)

=

= g−1

(∫
g ◦ f dF

)
2. Let f be a nonnegative Borel measurable function and (fn)∞n=1 be a sequence
of the simple Borel measurable functions, where fn ≥ 0, fn ↗ f .

Since fn are the simple Borel measurable functions, then by the case 1 we
have

(1)
∫ ⊕

fn dFg = g−1

(∫
g ◦ fn dF

)
Hence, by limits theorems for pseudo-Lebesgue integral and by (1) can be ob-
tained ∫ ⊕

f dFg = lim
n→∞

∫ ⊕
fn dFg =

= lim
n→∞

g−1

(∫
g ◦ fn dF

)
=

= g−1

(
lim

n→∞

∫
g ◦ fn dF

)
=

= g−1

(∫
g ◦ f dF

)
3. Let f be a Borel measurable function, f = f+ − f−. Then, by property of
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pseudo-Lebesgue integral and the case 2 we obtain∫ ⊕
f dFg =

∫ ⊕
f+ dFg 	

∫ ⊕
f− dFg =

= g−1

(
g

(∫ ⊕
f+ dFg

)
− g

(∫ ⊕
f− dFg

))
=

= g−1

(
g

(
g−1

(∫
g ◦ f+ dF

))
− g

(
g−1

(∫
g ◦ f− dF

))
=

= g−1

(∫
g ◦ f+ dF −

∫
g ◦ f− dF

)
=

= g−1

(∫
g ◦ f dF

)

Proposition 3.1. Let
∞⊕

i=1

Pi < ∞, Pi ≥ 0, Pi ∈ R and (xi)∞1 be a sequence of

real numbers such that if i 6= j then xi 6= xj. Denote

Fg(x) =
⊕
xi<x

Pi

Then, Fg is non-decreasing and left-continuous function.

Proof. Since
∞⊕

i=1

Pi = g−1

( ∞∑
i=1

g ◦ Pi

)
< ∞ and g is an increasing bijection,

then
∞∑

i=1

g ◦ Pi < ∞. Hence by Proposition 4.11.2 in [12] can be obtained that

the function F (x) =
∑

xi<x
g ◦ Pi is non-decreasing and left-continuous.

Therefore

Fg(x) =
⊕
xi<x

Pi = g−1

( ∑
xi<x

g ◦ Pi

)
is a non-decreasing and left-continuous function.

Theorem 3.8. If the function Fg is defined like in Proposition 3.1, then a
measurable function f is integrable by pseudo-Lebesgue-Stieltjes measure λg

F if

and only if
∞⊕

i=1

(|f(xi)|⊕ � Pi) < ∞. It holds

∫ ⊕
f(x) dFg(x) =

∞⊕
i=1

(f(xi)� Pi).

Proof. ”⇒” Let f be integrable by the pseudo-Lebesgue-Stieltjes measure λg
F .

Then, there exists the pseudo-Lebesgue-Stieltjes integral
∫ ⊕

f dFg = g−1
( ∫

g ◦ f dF
)
.

Hence, g ◦ f is integrable by the Lebesgue-Stieltjes measure λF .
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Moreover, since Fg is defined like in Proposition 3.1 and g is an increasing
bijection, then the function F defined by

F (x) =
∑
xi<x

g ◦ Pi

and the measurable function g ◦ f satisfy the assumptions of Theorem 4.11.3 in
[12]. Hence

∞∑
i=1

(
|(g ◦ f)(xi)| · (g ◦ Pi)

)
< ∞

and ∫
g ◦ f dF =

∞∑
i=1

(
(g ◦ f)(xi) · (g ◦ Pi)

)
.

Therefore
∞⊕

i=1

(|f(xi)|⊕ � Pi) = g−1

( ∞∑
i=1

g
(
|f(xi)|⊕ � Pi

))
=

= g−1

( ∞∑
i=1

g ◦ g−1
(
g(|f(xi)|⊕) · g(Pi)

))
=

= g−1

( ∞∑
i=1

(
g(|f(xi)|⊕) · g(Pi)

))
=

= g−1

( ∞∑
i=1

(
g ◦ g−1(|(g ◦ f)(xi)|) · g(Pi)

))
=

= g−1

( ∞∑
i=1

(
|(g ◦ f)(xi)| · (g ◦ Pi)

))
< g−1(∞) = ∞

and ∫ ⊕
f(x) dFg(x) = g−1

(∫
(g ◦ f)(x) dF (x)

)
=

= g−1

( ∞∑
i=1

(
(g ◦ f)(xi) · (g ◦ Pi)

))
=

=
∞⊕

i=1

(f(xi)� Pi).

”⇐” It is analogy to the proof ”⇒”.

Remark 3.9. The pseudo-Lebesgue-Stieltjes integral
∫ ⊕

f(x) dFg(x) defined
in Theorem 3.8 can be expressed in the form∫ ⊕

f(x) dFg(x) = g−1

( ∞∑
i=1

(
(g ◦ f)(xi) · (g ◦ Pi)

))
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Proposition 3.2. Let f : R → R be a nonnegative function such that there
exists the pseudo-Lebesgue integral

∫ ⊕
f dT < ∞. Then the function Fg defined

by

Fg(x) =

⊕∫
(−∞,x)

f dT

is non-decreasing and left-continuous.

Proof. Since there exists the pseudo-Lebesgue integral
∫ ⊕

f dT < ∞ and g is an
increasing bijection, then there exists the Lebesgue integral

∫
g ◦ f dg ◦ T < ∞.

Hence by Proposition 4.11.4 in [12] can be obtained that the function F (x) =∫
(−∞,x)

g ◦ f dg ◦ T is non-decreasing and left-continuous.

Therefore

Fg(x) =

⊕∫
(−∞,x)

f dT = g−1

( ∫
(−∞,x)

g ◦ f dg ◦ T

)

is non-decreasing and left-continuous function.

Theorem 3.10. Let Fg be a function defined in Proposition 3.2. Then a Borel
measurable function h : R → R is integrable by λg

F if and only if there exists the
pseudo-Lebesgue integral

∫ ⊕
R

h(x)� f(x) dx < ∞. It holds∫ ⊕
R

h(x) dFg(x) =
∫ ⊕

R

h(x)� f(x) dx

Proof. ”⇒” Let h be a Borel measurable function such that it is integrable
by the pseudo-Lebesgue-Stieltjes measure λg

F . Then, there exists the pseudo-
Lebesgue-Stieltjes integral

∫ ⊕
R

h(x) dFg(x) = g−1
( ∫

R
(g ◦ h)(x) dF (x)

)
. Hence,

g ◦ h is integrable by the Lebesgue-Stieltjes measure λF .
Moreover, since Fg is defined as in Proposition 3.2 and g is an increasing

bijection, then the function F , defined by

F (x) =
∫

(−∞,x)

g ◦ f dg ◦ T

and the Borel measurable function g ◦ h satisfy the assumptions of Theorem
4.11.5 in [12]. Hence there exists the Lebesgue integral∫

R

(g ◦ h)(x) · (g ◦ f)(x) dg ◦ x
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and ∫
R

(g ◦ h)(x) dF (x) =
∫

R

(g ◦ h)(x) · (g ◦ f)(x) dg ◦ x.

Therefore, there exists the pseudo-Lebesgue integral∫ ⊕
R

h(x)� f(x) dx = g−1

(∫
R

g(h(x)� f(x)) dg ◦ x

)
=

= g−1

(∫
R

g ◦ g−1
(
g(h(x)) · g(f(x))

)
dg ◦ x

)
=

= g−1

(∫
R

(g ◦ h)(x) · (g ◦ f)(x) dg ◦ x

)
and ∫ ⊕

R

h(x) dFg(x) = g−1

(∫
R

(g ◦ h)(x) dF (x)
)

=

= g−1

(∫
R

(g ◦ h)(x) · (g ◦ f)(x) dg ◦ x

)
=

=
∫ ⊕

R

h(x)� f(x) dx.

”⇐” It is analogy to the proof ”⇒”.

4. Relation between the pseudo-Lebesgue and
pseudo-Lebesgue-Stieltjes integral

In the general probability theory there exists a relation between the Lebesgue
integral and the Lebesgue-Stieltjes integral. If ξ is a random variable with a
distribution function F and f : R → R is a Borel measurable function, then the
function f ◦ ξ is a random variable and∫

f ◦ ξ dp =
∫

f dF

if one of these integrals exists.
In this section we show that in the pseudo-probability there exists a rela-

tion between the pseudo-Lebesgue integral and the pseudo-Lebesgue-Stieltjes
integral, too.

Theorem 4.1. Let (Ω,S, P ) be a pseudo-probability space and p be the induced
probability. Let ξ be a random variable with the pseudo-distribution function Fg,
F = g ◦ Fg be its distribution function and f : R → R be a Borel measurable
function. Then the function f ◦ ξ is a random variable and∫ ⊕

f ◦ ξ dP =
∫ ⊕

f dFg

if one of these integrals exists.
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Proof. For each A ∈ B(R) we have that(
f ◦ ξ

)−1(A) = ξ−1
(
f−1(A)

)
∈ S

hence f ◦ ξ is a random variable.
Since g : R → R is an increasing bijection with g(0) = 0, g(1) = 1 and

f : R → R is a Borel measurable function, then g ◦ f : R → R is a Borel
measurable function. Hence

(2)
∫

(g ◦ f) ◦ ξ dp =
∫

g ◦ f dF

By property (2) and Theorem 3.7 we obtain∫ ⊕
f ◦ ξ dP = g−1

(∫
g ◦ (f ◦ ξ) dp

)
= g−1

(∫
(g ◦ f) ◦ ξ dp

)
=

= g−1

(∫
g ◦ f dF

)
=
∫ ⊕

f dFg

5. Applications

It can see that Theorem 3.8, Theorem 3.10 and Theorem 4.1 can be used
to calculate the pseudo-dispersion σ2⊕ in the same sense like their analogues in
the general probability theory.

Now we recall the notions like pseudo-mean value (expectation) E⊕, pseudo-
dispersion σ2⊕ and L⊕2 space, introduced in [4].

Let (Ω,S, P ) be a pseudo-probability space. If a random variable ξ : Ω → R
is integrable, then the number

E⊕(ξ) =
∫ ⊕

Ω

ξ dP < ∞

is called the pseudo-mean value (expectation) of the random variable ξ.
Let ξ : Ω → R be an integrable random variable in (Ω,S, P ). If the random

variable
(
ξ	E⊕(ξ)

)2⊕ is integrable, then we say that ξ has a pseudo-dispersion
σ2⊕ defined by the formula

σ2⊕(ξ) = E⊕
((

ξ 	 E⊕(ξ)
)2⊕)

Let (Ω,S, P ) be a g-measure space (i.e. P is defined by the formula P =
g−1 ◦ p, where p is the measure). We denote L⊕2 = L⊕2 (Ω,S, P ) the class of all
measurable real functions f for which f � f is integrable. We write

L⊕2 =
{

f : Ω → R;
∫ ⊕

f � f dP < ∞
}

The following theorems are the key to the calculation of the pseudo disper-
sion σ2⊕ of random variables.
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Proposition 5.1. For each ξ ∈ L⊕2 hold

σ2⊕(ξ) =
∫ ⊕

R

(
x	 E⊕(ξ)

)2⊕
dFg(x),

Proof. If we denote f(x) =
(
x	E⊕(ξ)

)2⊕ in Theorem 4.1, then, by the definition
of pseudo-dispersion and pseudo-mean value we obtain

σ2⊕(ξ) =
∫ ⊕

R

(
x	 E⊕(ξ)

)2⊕
dFg(x).

Proposition 5.2. If ξ is a discrete random variable from the L⊕2 space with
the values x1, x2, . . . and their pseudo-probabilities P1, P2, . . ., then

σ2⊕(ξ) =
∞⊕

i=1

((
xi 	 E⊕(ξ)

)2⊕ � Pi

)
.

Proof. We obtain this result from Proposition 5.1 and Theorem 3.8.

Proposition 5.3. If ξ is a continuous random variable with a density f (i.e.

Fg(x) =
⊕∫

(−∞,x)

f dT ), then

σ2⊕(ξ) =
∫ ⊕

R

((
x	 E⊕(ξ)

)2⊕ � f(x)
)

dx.

Proof. We obtain this result from Proposition 5.1 and Theorem 3.10.
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