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ON A CLASS OF QUASI-DISTRIBUTION
SEMIGROUPS
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Abstract. A class of [r]-semigroups, extending the class of smooth
distribution semigroups of Balabane and Emami-Rad, is introduced. Re-
lations with integrated semigroups of Arendt are given as well as a gener-
alization of deLaubenfels and Jazar’s result on relations between smooth
semispectral distributions and integrated semigroups.
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0. Introduction

The aim of this paper is to give the structural characterizations of the class of
[r]-semigroups, r ≥ 0, analyze the relations of [r]-semigroups with other known
classes of semigroups, and determine the functional calculus for the class of dense
[r]-semigroups. If r = 0 and A is dense, A is the generator of an [r]-semigroup
if and only if A is the generator of a smooth distribution semigroup of Balabane
and Emami-Rad ([6], [7]). We also introduce a class of {r}-semigroups, r ≥ 0,
closely linked with the class of smooth distribution semigroups of exponential
growth r (cf. [8]).

We give several characterizations of non-degenerate, polynomially bounded
integrated semigroups and their relations with quasi-distribution semigroups
and [r]-semigroups. In Section 4, quasi-distribution semigroups and [r]-semi-
groups are used in the analysis of smooth semispectral distributions and An,k

functional calculi of deLaubenfels and Jazar ([11]). In the last section we present
several examples of [r]-semigroups.

1. Preliminaries

Throughout this paper E denotes a complex Banach space and L(E) denotes
the space of all bounded linear operators from E into E. We will assume that
L(E) is equipped with the strong topology. For a linear operator A in E, its do-
main, range and null space are denoted by D(A), R(A) and N(A), respectively.
We will always assume that A is a closed operator.

Schwartz spaces of test functions on the real line R are denoted by D =
C∞0 and S. Their strong duals are D′ and S ′, respectively; D0, resp. D(0,∞),
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denotes the subspace of D which consists of the elements supported by [0,∞),
resp. (0,∞). Further on, D′(L(E)) = L(D, L(E)), is the space of continuous
linear functions from D into L(E), and we assume that it is equipped with the
strong topology. D′0(L(E)) is the subspace of D′(L(E)) containing the elements
supported by [0,∞).

Definition 1.1. [19] A quasi-distribution semigroup G is an element G ∈
D′(L(E)) satisfying

(QDSG1) G(ϕ ∗0 ψ) = G(ϕ)G(ψ), ϕ, ψ ∈ D, and

(QDSG2) N (G) :=
⋂

ϕ∈D0

N(G(ϕ)) = {0},

where ∗0 is the convolution f ∗0 g(t) :=
t∫
0

f(t − s)g(s)ds, t ∈ R. If the set

R(G) :=
⋃

ϕ∈D0

R(G(ϕ)) is dense in E, then G is called a dense (QDSG).

Conditions (QDSG1) and (QDSG2) imply that G ∈ D′0(L(E)), (cf. [16]
and [19]) and Definition 1.1 is equivalent to the definition of the distribution
semigroup G given on page 839 of [14]. The generator A of G is defined by
A := {(x, y) ∈ E × E : G(−ϕ′)x = G(ϕ)y, ϕ ∈ D0} and it is a closed linear
operator in E.

If ϕ ∈ D, let ϕ+(t) := ϕ(t)H(t), t ∈ R, where H(·) is the Heaviside function.
Denote D+ := {ϕ+ : ϕ ∈ D}. Further, if G is a (QDSG) then it can be regarded
as an element of L(D+, L(E)) (see [19]). If ϕ+ ∈ D+, then dk

dtkϕ+(t) means the
kth right derivative.

If f : [0,∞) 7→ E is a measurable function and if there exist M > 0 and
ω ∈ R such that ||f(t)|| ≤Meωt, a.e. t ≥ 0, then the Laplace transformation of

f is defined by f̂(λ) := L(f)λ =
∞∫
0

e−λtf(t)dt, Reλ > ω.

In the sequel, we shall also use ϕ, ψ, etc. to denote the elements in D+.

2. [r]-semigroups

We recall a result from [19]: Let r > 0. Then

(1)

∞∫
0

ert|ϕ(k)(t)|dt ≤ 1
r

∞∫
0

ert|ϕ(k+1)(t)|dt, ϕ ∈ D+, k ∈ N0.

Lemma 2.1. Let r ≥ 0 and k ∈ N0. Define

prk(ϕ) :=
k∑

i=0

∥∥∥erttiϕ(i)
∥∥∥

L1([0,∞))
;
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qrk(ϕ) :=
k∑

i=0

∥∥∥ti(ertϕ)(i)
∥∥∥

L1([0,∞))
, ϕ ∈ D+.

Then the inclusion mapping id : (D+, prk) → (D+, qrk) is a continuous map-
ping between normed spaces. (We will use notation || · ||1 for || · ||L1([0,∞)).)

Proof. Clearly, prk and qrk are norms on D+. Let us show that there exists
C > 0 such that qrk(ϕ) ≤ Cprk(ϕ), ϕ ∈ D+. If r = 0 or k = 0, the proof is
trivial. So let us assume r > 0 and k ∈ N. Then

qrk(ϕ) =
k∑

i=0

∥∥∥ti(ertϕ)(i)
∥∥∥

1
=

k∑
i=0

∥∥∥∥∥∥ti
i∑

j=0

(
i

j

)
ri−jertϕ(j)

∥∥∥∥∥∥
1

≤
k∑

i=0

i∑
j=0

∥∥∥∥(
i

j

)
ri−jerttiϕ(j)

∥∥∥∥
1

≤ C1

k∑
i=0

i∑
j=0

∥∥∥erttiϕ(j)
∥∥∥

1
,

for a suitable constant C1 > 0 which is independent of ϕ ∈ D+. Let

ai,j :=
∥∥erttiϕ(j)

∥∥
1
, i, j = 0, 1, . . . , k.

Then (1) implies that for all i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , k − 1}, one has

ai,j ≤
i

r
ai−1,j +

1
r
ai,j+1.

Applying this inequality sufficiently many times, one obtains that if
i ∈ {0, 1, . . . , k} and j ∈ {0, 1, . . . , i}, then

∥∥erttiϕ(j)
∥∥

1
≤ Cijprk(ϕ), where Cij

is independent of ϕ ∈ D+. This ends the proof. 2

Let Trk and Drk be the completions of (D+, prk) and (D+, qrk), respectively.
Denote hλ(t) = e−λtH(t), t ∈ R. Then hλ(t) belongs to Trk and Drk for all
λ ∈ C with Reλ > r. Similarly as in Proposition II. 4 in [6], we have that Trk

and Drk are algebras for the convolution product ∗0.

Definition 2.1. Let r ≥ 0. A (QDSG) G is said to be an [r, k]-semigroup,
respectively an {r, k}-semigroup, if G can be extended to a continuous linear
mapping from Trk, respectively Drk, into L(E). It is said that G is an [r]-
semigroup, respectively an {r}-semigroup, if it is an [r, k]-semigroup, respec-
tively an {r, k}-semigroup, for some k ∈ N0. If R(G) = E, then we say that G
is a dense [r]-semigroup.

Lemma 2.1 implies that {r, k}-semigroups make a subclass of the class of
[r, k]-semigroups, r ≥ 0, k ∈ N0. We will show that, for every r > 0, there exists
a densely defined operator A which generates an [r, 1]-semigroup but it is not
the generator of an {r, k}-semigroup for any k ∈ N0.

If r = 0 and G is a dense [0, k]-semigroup for some k ∈ N, then the extension
of G onto Trk is a smooth distribution semigroup of order k (see [6], [7] and [2]).
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In this case, it is easily seen that the generator A of G in the sense of Definition
1.1 is just the generator of the corresponding smooth distribution semigroup of
order k in the sense of Balabane and Emami-Rad ([6], [7]). Smooth distribution
semigroups are related to integrated semigroups in [2]. The proof of Theorem
4.4 in [2] will be frequently used in this paper and we shall repeat it in our
context in Proposition 3.1.

Let us recall (cf. [19]) that a (QDSG) G is of order (r, k), r > 0, k ∈ N0, if
there exists C > 0 such that ‖G(ϕ)‖ ≤ C

∑k
i=0 ‖ertϕ(i)‖1, ϕ ∈ D+. Notice:

1. Let r > 0. Then it is clear that an element G ∈ D′(L(E)) is a (QDSG)
of order (r, 0) iff G is an [r, 0]-semigroup iff G is an {r, 0}-semigroup. By [19,
Theorem 4.13], A generates an [r, 0]-semigroup if and only if (r,∞) ⊂ ρ(A) and

sup
λ>r, n∈N0

∥∥∥∥ (λ− r)n+1

n!
dn

dλn
[R(λ : A)]

∥∥∥∥ <∞.

This remains true for r = 0 because A generates a [0, 0]-semigroup G if and only
if A+1 generates a [1, 0]-semigroup et·G. Hence, every Hille-Yosida operator (see
for instance [5], Definition 3.5.1, and [9]) is the generator of an [r, 0]-semigroup
for some r ≥ 0.

2. Suppose r > 0, ω ∈ (r, ∞), k ∈ N0 and G is an [r, k]-semigroup. By
induction and (1) one can prove that for all i ∈ N0 there exists C(i, r) such that

i∑
j=0

‖erttjϕ(j)‖1 ≤ C(i, r)‖ert(1 + ti)ϕ(i)‖1, ϕ ∈ D+.

Consequently, ‖G(ϕ)‖ ≤ C‖ewtϕ(k)‖1, ϕ ∈ D+ and G is of order (ω, k).

We refer to [11] for the definition of a smooth semispectral distribution of
degree n ∈ N0. The next proposition makes clear the structural properties of a
dense {r, k}-semigroup.

Proposition 2.1. Let r ≥ 0, k ∈ N0 and let D(A) be dense in E. The following
assertions are equivalent.

(a) A is the generator of an {r, k}-semigroup G.

(b) A − r is the generator of an exponentially bounded k-times integrated
semigroup (S(t))t≥0 satisfying ‖S(t)‖ = O(tk).

(c) (r,∞) ⊂ ρ(A) and there exists a constant M > 0 such that∥∥∥∥ dj

dλj

[
R(λ+ r : A)

λk

]∥∥∥∥ ≤M
(k + j)!
λk+j+1

, λ > 0, j ∈ N0.

(d) r −A poses a smooth semispectral distribution of degree k.
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Proof. The proof in the case k = 0 is well known and it follows from the theory
of C0-semigroups. Suppose k ∈ N.
(a) ⇒ (b) One can easily conclude that A− r is the generator of e−rtG. Using
the same arguments as in Theorem 4.4 of [2] we obtain this part.
(b) ⇒ (a) A− r generates a quasi-distribution semigroup G1 given by

G1(ϕ) :=
∞∫
0

ϕ(k)(t)S(t)dt, ϕ ∈ D, cf. [19]. Hence, A is the generator of a

(QDSG) G := e−rtG1. Clearly, G is an {r, k}-semigroup.
(b) ⇔ (c) ⇔ (d) This follows immediately from [11, Theorem 3.6]. qed

Example 2.1. Let r ≥ 0, 1 < p < ∞, p 6= 2, k ∈ N, k ≥ n
∣∣∣ 1
p −

1
2

∣∣∣. Then
A := i∆ + r with the maximal distributional domain is the generator of an
{r, k + 2}-semigroup on Lp(Rn).

Let us recall that if ρ(A) 6= ∅, then n(A) = inf
{
k ∈ N0 : D(Ak) ⊂ D(Ak+1)

}
.

Lemma 1.5 in [15] and the next theorem imply the estimate n(A) ≤ 1, if A gen-
erates an [r]-semigroup.

Theorem 2.1. Let A be the generator of an [r, k]-semigroup, r ≥ 0, k ∈ N.
Then {λ ∈ C : Reλ > r} ⊂ ρ(A) and there exists M > 0 such that for all n ∈ N
and λ ∈ C with Reλ > r, the following holds

‖R(λ : A)n‖ ≤ Mn(n+ 1) · · · (n+ k − 1)|λ|k

(Reλ− r)n+k
.

Proof. We follow the proof of [6, Theorem III.8]. Clearly, if A is the generator
of an [r, k]-semigroup G then {λ ∈ C : Reλ > r} ⊂ ρ(A) and
R(λ : A) = G(hλ(t)), Reλ > r. Let k ∈ N and λ ∈ C, Reλ > r, be fixed. By
induction, we have hλ(t) ∗ . . . ∗ hλ(t)︸ ︷︷ ︸

n

= tn−1

(n−1)!hλ(t), t ∈ R. Hence,

||R(λ : A)n|| = ||G(
tn−1

(n− 1)!
hλ(t))|| ≤ C

(n− 1)!

k∑
i=0

∞∫
0

ertti|(tn−1e−λt)(i)(t)|dt

≤ C

(n− 1)!

k∑
i=0

∞∫
0

ertti|
i∑

j=0

(
i

j

)
(n− 1) . . . (n− j)tn−j−1|λ|i−je−Reλt|dt

≤ 2kC

(n− 1)!(Reλ− r)n

k∑
i=0

(n + k − 1)!(i + 1)
|λ|i

(Reλ− r)i

≤ M12
k(k + 1)2

n(n + 1) . . . (n + k − 1)

(Reλ− r)n

|λ|k

(Reλ− r)k
. 2
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Suppose that A generates an [r]-semigroup, r ≥ 0 and x ∈ E. Then Theorem
2.1 implies that the sequence (n||R(n : A)x||)n∈N, n>r is bounded and that
lim

λ→+∞
R(λ : A)x = 0. Now one can repeat literally the proof of [9, Proposition

1.1] to obtain the proof of the next proposition.

Proposition 2.2. Assume that E is reflexive. If A is the generator of an
[r]-semigroup, r ≥ 0, then A is densely defined.

3. Relations with integrated semigroups

Let D∞(A) :=
⋂

n≥0

D(An). In order to analyze relations of [r]-semigroups

and integrated semigroups, we need the following lemma. See [2] for the proof.

Lemma 3.1. Let k, m ∈ N and m ≥ k. The set
{
ϕ(k) : ϕ ∈ D(0,∞)

}
is dense

in L1((0,∞), (tk + tm)dt).

Proposition 3.1. Assume that D(A) = E, r ≥ 0 and k ∈ N0. If A is the
generator of an [r, k]-semigroup G, then A − r is the generator of a k-times
integrated semigroup (W (t))t≥0 satisfying ‖W (t)‖ = O(tk + t2k).

Proof. We give here the proof in the case k ∈ N. If k = 0, then it can be
derived similarly. We follow the proof of [2, Theorem 4.4] with appropriate
modifications. Since D(A) = E and ρ(A) 6= ∅, we have D∞(A) = E (cf. [3],
[15]). Since A − r is the generator of a (QDSG) G1 := e−rtG, an application
of [19, Corollary 3.9] gives that for all x ∈ D∞(A − r) = D∞(A) there exists

vx ∈ C([0,∞) : E) such that vx(0) = x and G1(ϕ)x =
∞∫
0

ϕ(t)vx(t)dt, ϕ ∈ D0.

Integration by parts gives that for every fixed x ∈ D∞(A) :

G1(ϕ)x = (−1)k

∞∫
0

ϕ(k)(t)tkHx(t)dt, ϕ ∈ D0,

where Hx(t) := 1
tk

t∫
0

(t−s)k−1

(k−1)! vx(s)ds, t > 0. Let t > 0 be fixed. Since the

function vx is unique, the mapping x 7→ Hx(t) defines a linear operator from
D∞(A− r) to E. Let us show the continuity of this mapping. Let x∗ ∈ E∗ be
fixed. Then prescribed assumptions and Lemma 4.6 in [2] imply∣∣∣∣∞∫

0

ϕ(k)(t)tkx∗(Hx(t))dt
∣∣∣∣ = |x∗(G1(ϕ)x)| ≤ ‖x‖ ‖x∗‖ ‖G1(ϕ)‖

≤ C ‖x‖ ‖x∗‖
k∑

i=0

∥∥ertti(e−rtϕ)(i)
∥∥

1

≤ C1 ‖x‖ ‖x∗‖
k∑

i=0

i∑
j=0

∥∥tiϕ(j)
∥∥

1
≤ C2 ‖x‖ ‖x∗‖

k∑
i=0

i∑
j=0

∥∥tk+i−jϕ(k)
∥∥

1

≤ C3 ‖x‖ ‖x∗‖
∥∥(tk + t2k)ϕ(k)

∥∥
1

= C3 ‖x‖ ‖x∗‖
∥∥ϕ(k)

∥∥
L1((0,∞):(tk+t2k))

,
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for some absolute constants C, C1, C2 and C3. Hence, the functional

T : ϕ(k) 7→ (−1)k

∞∫
0

ϕ(k)(t)x∗(Hx(t))tkdt, ϕ ∈ D(0,∞),

can be extended to the whole space L1((0,∞) : (tk +t2k)dt) by virtue of Lemma
3.1. Moreover, ‖T‖ ≤ C3‖x‖ ‖x∗‖ and |x∗(Hx(t))| ≤ C3||x|| ||x∗||(1+tk), t > 0.
Let t > 0 be fixed again. Choose x∗ ∈ E∗ with (Hx(t), x∗) ∈ F , where
F = {(x, x∗) ∈ E ×E∗ : x∗(x) = ||x||2 = ||x∗||2}. Then one obtains ||Hx(t)|| ≤
C3||x||(1 + tk), t > 0. Thus, for fixed t > 0, x 7→ Hx(t) defines the bounded
linear operator from D∞(A− r) into E, with the norm ≤ C3(1 + tk). If t > 0,
then we define W (t) as a bounded extension of x 7→ tkHx(t) from D∞(A− r) to
E. Define W (0) := 0. Then (W (t))t≥0 is a strongly continuous operator family
with ‖W (t)‖ = O(tk + t2k). Since G1 = e−rtG, we have

G(e−rtϕ) = (−1)k
∞∫
0

ϕ(k)(t)W (t)dt, ϕ ∈ D0. Let λ ∈ C with Reλ > 0 be fixed.

Let (ϕn)n∈N be a sequence in D0 such that lim
n→∞

ϕ
(k)
n = h

(k)
λ , in the sense of

convergence in L1((0,∞) : (tk + t2k)dt). Since ||W (t)|| = O(tk + t2k), one
obtains

(−1)k

∞∫
0

ϕ(k)
n (t)W (t)dt→ λk

∞∫
0

e−λtW (t)dt, n→∞.

By the previous arguments, one has (for appropriate M > 0)

prk(e−rt(ϕn − hλ)) ≤M ||ϕ(k)
n − h

(k)
λ ||L1((0,∞): (tk+t2k)) → 0, n→∞.

As a consequence, one obtains lim
n→∞

e−rtϕn = hλ+r in Trk. This implies

R(λ : A− r)x = λk

∞∫
0

e−λtW (t)xdt, x ∈ E, Reλ > 0. 2

Proposition 3.2. Suppose m, m− k ∈ N0 and r > 0. Then:

(a) If A is the generator of a k-times integrated semigroup (S(t))t≥0 satisfying
‖S(t)‖ = O(ert(tk + tm)), then A is the generator of an [r,m]-semigroup.

(b) If A − r is the generator of a k-times integrated semigroup (W (t))t≥0

satisfying ‖W (t)‖ = O(tk + tm), then A is the generator of an [r,m]-
semigroup.

Proof. (a) Define G(ϕ) := (−1)k
∞∫
0

ϕ(k)(t)S(t)dt, ϕ ∈ D. Then G is a (QDSG)

with the generator A. Moreover, the definition of G(ϕ), ϕ ∈ D+ is clear, and
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one obtains the estimate

‖G(ϕ)‖ ≤ C(‖erttkϕ(k)‖1 + ‖erttmϕ(k)‖1), ϕ ∈ D+,

where C is independent of ϕ ∈ D+. Applying the same arguments as in the
proof of Lemma 2.1, we have that G is an [r,m]-semigroup.
(b) Similarly as in the first part, we have that A is the generator of a (QDSG)

G given by G(ϕ) := (−1)k
∞∫
0

(ertϕ)(k)W (t)dt, ϕ ∈ D. Additionally,

‖G(ϕ)‖ ≤ C(‖tk(ertϕ)(k)‖1 + ‖tm(ertϕ)(k)‖1), ϕ ∈ D+,

where C is independent of ϕ ∈ D+. Using Leibniz’s rule and the proof of Lemma
2.1 we obtain that G is an [r,m]-semigroup. This completes the proof. 2

Now we state the assertion which corresponds to Proposition 3.1 in the case
when A is not densely defined.

Theorem 3.1. Suppose that A generates an [r, k]-semigroup G, r ≥ 0, k ∈
N0. Then the part of A − r in D(A) generates a k-times integrated semigroup
(S(t))t≥0 in D(A) which satisfies ||S(t)|| = O(tk + t2k).

Proof. Define H(ϕ)x := G(ϕ)x, ϕ ∈ D, x ∈ D(A). It can be easily seen that H
is an [r, k]-semigroup in D(A) and that its generator is the part of A in D(A).
Since G is an [r, k]-semigroup, it follows n(A) ≤ 1 and D(A) ⊂ D(A2). Thus,
the generator of H is densely defined in D(A) because its domain
{x ∈ D(A) : Ax ∈ D(A)} contains D(A2). Now the claim follows by an appli-
cation of Proposition 3.1. 2

Let us state now the assertion which naturally corresponds to Theorem 2.1.
It will be proved here with the help of integrated semigroups. We also refer to
the proof of Theorem III. 9 in [6] where more complicated arguments are used.

Theorem 3.2. Let A be a closed linear operator with {λ ∈ C : Reλ > r} ⊂
ρ(A), for some r ≥ 0. If

‖R(λ : A)‖ ≤M
|λ|k

(Reλ− r)k+1
, Reλ > r,

for some k ∈ N0 and M > 0, then A is the generator of a (k+2)-times integrated
semigroup (S(t))t≥0 with the growth rate O(erttk+2) as well as A is the generator
of an [r, k + 2]-semigroup. Moreover, if r > 0, then ||S(t)|| = O(erttk+1).

Proof. Let a > r be an arbitrary real number. Define

S(t) :=
1

2πi

a+i∞∫
a−i∞

eλtλ−k−2R(λ : A)dλ, t ≥ 0.
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Then (S(t))t≥0 is a strongly continuous operator family with

(2) ‖S(t)‖ ≤ Meat

2a(a− r)k+1
, t ≥ 0.

Using the same arguments as in [20, Theorem 1.12], we have that (S(t))t≥0 is a
(k+ 2)-times integrated semigroup generated by A. Let t > 0 be fixed. Cauchy
formula implies

S(t) =
1

2πi

r+ 1
t +i∞∫

r+ 1
t−i∞

eλtλ−k−2R(λ : A)dλ.

Putting a = r + 1
t in (2), we obtain ‖S(t)‖ = O( erttk+2

rt+1 ). Then, with

G(ϕ)x := (−1)k

∞∫
0

ϕ(k+2)(t)S(t)xdt, x ∈ E, ϕ ∈ D,

is defined an [r, k + 2]−semigroup G generated by A. 2

Let r ≥ 0. Then Theorem 2.1 and Theorem 3.2 imply that A is the generator
of an [r]-semigroup iff there exist k ∈ N and M > 0 such that
{λ ∈ C : Reλ > r} ⊂ ρ(A) and ‖R(λ : A)‖ ≤ M |λ|k

(Reλ−r)k+1 , Reλ > r . Note that
{r}-semigroups can be described in the similar manner. In this sense, we also
refer to Proposition 1 and Proposition 2 of [8].

4. Relations with functional calculi

Throughout this section, we investigate relations between [r]-semigroups and
functional calculi of deLaubenfels and Jazar. We need the following definition.

Definition 4.1. [11] Denote by A the space of all Laplace transforms of func-
tions in the Schwartz space S, supplied with the following family of seminorms
‖g‖j,k := ‖tjϕ(k)(t)‖L1([0,∞)), j, k ∈ N0, g = L(ϕ) ∈ A. A smooth semispectral
distribution for A is a continuous algebra homomorphism
f : A → L(E), such that

(i) {λ ∈ C : Reλ < 0} ⊂ ρ(A), with f
(

1
λ−·

)
= R(λ : A) whenever Reλ < 0;

(ii) f
(
g

( ·
n

))
x→ x, n→∞; for all x ∈ E and g ∈ A such that g(0) = 1.

Let D(A) be dense in E and let A be the generator of a global k-times
integrated semigroup with the growth order O(tk(1 + tn)), for some n, k ∈ N0.
Then −A admits a smooth semispectral distribution, see [11, Theorem 3.2].

We give the result which generalizes [11, Theorem 3.2] so that a global k-
times integrated semigroup that is O(tk +tm), for some k, m ∈ N with m ≥ k, is
described in terms of a quasi-distribution semigroup and a smooth semispectral
distribution.
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Theorem 4.1. Suppose that D(A) is dense in E and m, k ∈ N, m ≥ k. Then
the following assertions are equivalent.

(a) A is the generator of a (QDSG) G satisfying, for some C > 0,

‖G(ϕ)‖ ≤ C‖(tk + tm)ϕ(k)‖1, ϕ ∈ D.

(b) A is the generator of a k-times integrated semigroup (S(t))t≥0 with
‖S(t)‖ = O(tk + tm).

(c) −A admits a smooth semispectral distribution f such that for some C > 0:

‖f(ϕ̂)‖ ≤ C‖(tk + tm)ϕ(k)‖1, ϕ ∈ D. (Recall, ϕ̂ = L(ϕ).)

Proof. (a) ⇔ (b) This follows similarly as in [2, Theorem 4.4]. Note only that
one must use Lemma 3.1 to prove the denseness argument which appears in the
proofs of Theorem 4.4 in [2] and Proposition 3.1. With this observation, one
can repeat literally the proof of Theorem 4.4 in [2].

(b) ⇒ (c) It follows from the proof of Theorem 3.2 in [11].
(c) ⇒ (a) Define G(ϕ) := f(ϕ̂), ϕ ∈ D. Since f is a continuous algebra

homomorphism, we have G ∈ D′0(L(E)). Moreover,

G(ϕ ∗0 ψ) = f(ϕ̂ ∗0 ψ) = f(ϕ̂ψ̂) = f(ϕ̂)f(ψ̂) = G(ϕ)G(ψ), ϕ, ψ ∈ D,

and (QDSG1) holds. In order to prove (QDSG2), let x ∈ E and f(ϕ̂)x = 0,
ϕ ∈ D0. Let (ϕn)n≥0 be a D0-sequence such that lim

n→∞
ϕ̂n = 1

λ−· in A, for some

fixed λ ∈ C with Reλ < 0. Consequently, lim
n→∞

f(ϕ̂n)x = (λ + A)−1x = 0 and

x = 0. Thus, (QDSG2) holds and G is a (QDSG) with

‖G(ϕ)‖ ≤ C‖(tk + tm)ϕ(k)‖1, ϕ ∈ D.

Let us show that A is the generator of G. Suppose (x, y) ∈ B, where B is the
generator of G. Then one has G(−ϕ′)x = G(ϕ)y, ϕ ∈ D0. Let (ψn)n≥0 be a
D0-sequence with lim

n→∞
ψ̂n = 1

(−1−·)2 in A. This implies lim
n→∞

zψ̂n = z
(−1−z)2 in

A. Now we obtain lim
n→∞

f(ψ̂n)y = (−1 +A)−2y and, by the definition of G,

(−1 +A)−2y = lim
n→∞

f(−ψ̂′n)x = lim
n→∞

f(−zψ̂n)x = f
(
− z

(−1−z)2

)
x

= f
(

1
−1−z + 1

(−1−z)2

)
x = (−1 +A)−1x+ (−1 +A)−2x.

This implies (x, y) ∈ A and B ⊂ A. Assume now (x, y) ∈ A. By the partial
integration, we have

(3) (Lϕ)(z) =
1

(1 + z)n
L

((
1 +

d

dt

)n

ϕ

)
(z), n ∈ N0, ϕ ∈ D0.
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Let x = R(1 : A)v, for some v ∈ E. Applying (3), we have

f(ϕ̂)v = f

(
1

1 + z
(ϕ̂+ ϕ̂′)

)
= −f(ϕ̂+ ϕ̂′)(−1 +A)−1v = f(ϕ̂+ ϕ̂′)x, and

f(ϕ̂)v = f(ϕ̂)x+f(ϕ̂′)x, ϕ ∈ D0. Then x−Ax = v implies f(−ϕ̂′)x = f(ϕ̂)Ax,
ϕ ∈ D0. Hence, (x, y) ∈ B. The proof is now complete. 2

Remark 4.1. Suppose that −A admits a smooth semispectral distribution f .
Then A is densely defined. To prove this, let G be defined as above. By the proof
of (c) ⇒ (a), we obtain that G is a (QDSG) generated by A. Let ϕ ∈ D0 satisfy
∞∫
0

ϕ(x)dx = 1. Define ϕn := nϕ(n·), for all n ∈ N. Then ϕ̂(0) = 1 and (ii) of

Definition 4.1 implies lim
n→∞

G(ϕn)x = x, for all x ∈ E. Since R(G) ⊂ D(A), it

implies D(A) = E.

As an immediate consequence we have:

Theorem 4.2. Let A be a closed, densely defined operator in E and let r > 0.
Then the following statements are equivalent.

(a) A is the generator of an [r]-semigroup.

(b) r −A admits a smooth semispectral distribution f such that

‖f(ϕ̂)‖ ≤ C‖(tk + tm)ϕ(k)‖1, ϕ ∈ D,

for some k, m ∈ N with m ≥ k, and a suitable C > 0.

(c) A is the generator of a k-times integrated semigroup (S(t))t≥0 satisfying
‖S(t)‖ = O(ert(tk + tm)), for some k, m ∈ N with m ≥ k.

(d) A− r is the generator of a k-times integrated semigroup (W (t))t≥0 satis-
fying ‖W (t)‖ = O(tk + tm), for some k, m ∈ N with m ≥ k.

Proof. Proposition 3.1 implies that (d) is a consequence of (a). The implica-
tion (d) ⇒ (c) follows from the rescaling result for integrated semigroups, see
[5, Proposition 3.2.6]. The implication (c) ⇒ (a) follows by an application of
Proposition 3.2. The equivalence of (b) and (d) follows from Theorem 4.1. 2

Recall [11], if n, k ∈ N, then

W 1,n([0,∞)) := {F ∈ Cn−1([0,∞)) : F (j) ∈ L1([0,∞)) for j = 0, 1, . . . , n}, and

An,k = {g = L(F ) : (1 + t)kF (t) ∈W 1,n([0,∞))}.
It is topologized by the norm

‖f‖An,k
=

n∑
j=0

1
j!
‖(1 + t)kF (j)(t)‖L1([0,∞)), f = L(F ) ∈ An,k.
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In the next proposition, An,k functional calculus is taken in the sense of [11,
Definition 1.1].

Proposition 4.1. Let A be the generator of an [r, k]-semigroup, r ≥ 0, k ∈ N.
Then the following holds:

(a) A is the generator of an R(r + 1 : A)k+2-regularized semigroup (C(t))t≥0

satisfying ‖C(t)‖ = O(ert(1 + tk+1)).

(b) r−A admits an Ak+2,n functional calculus for all n ∈ N with n ≥ k+1.

Proof. (a) By Theorem 2.1, we have {z ∈ C : Rez > 0} ⊂ ρ(A− r) and

‖(z − (A− r))−1‖ = ‖R(z + r : A)‖ ≤ C
|z + r|k

(Rez)k+1
≤ C1

(1 + |z|)k

(Rez)k+1
,

for some constants C, C1 > 0 independent of z with Rez > 0. Applying [11,
Theorem 2.7] we have that A−r is the generator of anR(r+1 : A)k+2-regularized
semigroup (T (t))t≥0 with the growth order O(1+tk+1). Put C(t) = ertT (t), t ≥
0. Then (C(t))t≥0 is an R(r + 1 : A)k+2-regularized semigroup generated by A
and ||C(t)|| = O(ert(1 + tk+1)).
(b) Similar estimates for the resolvent of A−r and [11, Theorem 2.7] imply this
part. 2

Finally, we give several examples of [r]-semigroups.

Example 4.1. [4] Let 1 < p < ∞. Denote by Jp the Riemann-Liouville
semigroup on Lp((0, 1));

(Jp(z)f)(x) :=
1

Γ(z)

x∫
0

(x− y)z−1f(y)dy, f ∈ Lp((0, 1)), x ∈ (0, 1), Rez > 0.

Denote by Ap the generator of Jp. It is proved in [4] that the operator iAp

generates a C0-group (Tp(t))t∈R on Lp((0, 1)) which satisfies
‖Tp (t)‖ = O((1 + t2)e|t|

π
2 ), t ∈ R. Proposition 3.2 implies that with

Gp(ϕ) :=
∞∫
0

ϕ(t)Tp(t)dt, ϕ ∈ D,

is defined a dense [π
2 , 2]-semigroup Gp on Lp((0, 1)) generated by iAp. Evidently,

−iAp also generates a dense [π
2 , 2]-semigroup on Lp((0, 1)).

Example 4.2. [12] Let 1 ≤ p < ∞ and m : R → (0,∞) be a measurable
function such that

(4) (sup
s∈R

m(s− t)
m(s)

)
1
p ≤M(1 + tk), t ≥ 0,

for some k ∈ N and M > 0. Let r > 0 be fixed. A simple observation (as in
[12]) gives that
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(Tp(t)f)(x) := ertf(x+ t), x ∈ R, t ≥ 0, f ∈ Lp(R, m(x)dx),

defines a C0-semigroup (Tp(t))t≥0 on Lp(R, m(x)dx) satisfying

‖Tp(t)‖ = ert(sup
s∈R

m(s−t)
m(s) )

1
p = O(ert(1 + tk)).

Thus, with Gp(ϕ) :=
∞∫
0

ϕ(t)Tp(t)dt, ϕ ∈ D, is defined a dense [r, k]-semigroup

Gp on Lp(R, m(x)dx). Ifm is a positive polynomial, then (4) is satisfied for some
k ∈ N and M > 0.

Let us show now that the class of [r]-semigroups does not coincide with the
class of {r}-semigroups, if r > 0.

Example 4.3. [5] Let r > 0 be fixed and

E := {f ∈ C([0,∞)) : lim
x→∞

f(x)
x+1 = 0},

‖f‖ := sup
x≥0

|f(x)|
x+1 , f ∈ E,

(T (t)f)(x) := f(x+ t), f ∈ E, t ≥ 0, x ≥ 0.

Then (T (t))t≥0 is a C0-semigroup on E, and ‖T (t)‖ = t+1, t ≥ 0, see Example
5.4.5 of [5]. Its generator A is just the operator d

dx with the maximal domain.
Accordingly, with

G(ϕ) :=

∞∫
0

ϕ(t)ertT (t)dt, ϕ ∈ D,

is defined a dense [r, 1]-semigroup G on E generated by A + r. Suppose that
G is an {r, k}-semigroup for some k ∈ N. Then the use of Proposition 2.1
gives that A generates a k-times integrated semigroup (S(t))t≥0 on E satisfying

‖S(t)‖ ≤Mtk, t ≥ 0, for some M > 0. Since S(t) =
t∫
0

(t−s)k−1

(k−1)! T (s)ds, t ≥ 0, it

follows

sup
x≥0

∣∣∣∣∣ t∫
0

(t−s)k−1

(k−1)! f(x+s)ds

∣∣∣∣∣
x+1 ≤Mtksup

x≥0

|f(x)|
x+1 , f ∈ E, t ≥ 0.

Choose f(·) =
√
· to obtain

t∫
0

(t−s)k−1

(k−1)!

√
sds ≤ sup

x≥0

∣∣∣∣∣ t∫
0

(t−s)k−1

(k−1)!

√
x+sds

∣∣∣∣∣
x+1 ≤Mtk/2, t ≥ 0.

This is a contradiction. Moreover, for every k ∈ N0 the operator A generates a
k-times integrated semigroup (S(t))t≥0 on E such that ||S(t)|| = O(tk + tk+1).
Note that there does not exist α ∈ [0, k + 1) such that ‖S(t)‖ = O(tk + tα + 1).
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Example 4.4. Suppose that A generates a k-times integrated semigroup
(S(t))t≥0 on E. If there exists a > 0 such that ‖Ax‖ ≤ a ‖x‖, x ∈ D(A),
then A generates an [a, k + 1]-semigroup. Since

A
t∫
0

S(s)xds = S(t)x− tk

k!x, t ≥ 0, x ∈ E,

we obtain

‖S(t)x‖ ≤ tk

k! ‖x‖+ a
t∫
0

‖S(s)x‖ ds, t ≥ 0, x ∈ E.

Gronwall’s inequality implies

‖S(t)x‖ ≤ tk

k! ‖x‖+ aeat
t∫
0

e−as sk

k! ‖x‖ ds, t ≥ 0, x ∈ E.

This gives ‖S(t)‖ = O(eat(tk + tk+1)) and now one may apply Proposition 3.2
to obtain that A generates an [a, k + 1]-semigroup.

Next we show that for every r > 0 and k ∈ N there exists a dense [r, k]-
semigroup that is not an [r, k − 1]-semigroup.

Example 4.5. Example 4.5. Let r > 0 and T ∈ L(E) satisfy T k+1 = 0, for
some k ∈ N. Define

T (t) := ert
k∑

i=0

T iti

i!
, t ≥ 0.

Then (T (t))t≥0 is a C0−semigroup generated by T + r. Moreover,
||T (t)|| = O(ert(1 + tk)), and T + r generates a dense [r, k]-semigroup.

Choose now E := Rk+1 with the sup-norm, and

T (x1, x2, . . . , xk+1) := (x2, . . . , xk+1, 0), xi ∈ R, i = 1, 2, . . . , k + 1.

Then T k+1 = 0 and T + r generates a dense [r, k]-semigroup G. Suppose
that G is an [r, k−1]-semigroup. Then Proposition 3.1 implies that T generates
a (k − 1)-times integrated semigroup (S(t))t≥0 satisfying ||S(t)|| = O(tk−1 +
t2k−2). If k = 1, it means that T generates a bounded C0-semigroup. Then the
contradiction is obvious since ||e−rtT (t)|| = 1 + t + . . . + tk

k! , t ≥ 0. If k > 1,
then

S(t)(x1, x2, . . . , xk+1) =

t∫
0

(t− s)k−2

(k − 2)!
e−rsT (s)(x1, x2, . . . , xk+1)ds.

Direct computation shows that ||S(t)|| = tk−1

(k−1)! + . . . + t2k−1

(2k−1)! , t ≥ 0. This is
in contradiction with ||S(t)|| = O(tk−1 + t2k−2).
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At the end, we note that many other examples of dense [r]-semigroups, r ≥ 0,
can be derived through the analysis of Petrovsky correct parabolic systems of
differential equations given in [21]. In this sense, Theorem 2.2 (a), Corollary 2.3
and Example 2.4 of [21], can be used for the construction of [r]-semigroups.
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dinger equation in Lp(Rn).” J. Math. Anal. Appl. 70 (1979), 61-71.

[7] Balabane, M., Emami-Rad, H., Pseudo-differential parabolic systems in Lp(Rn),
Contribution to Non-Linear P.D.E. Research notes in Mathematics, Pitman, New
York 89 (1983), 16-30.

[8] Balabane, M., Emami-Rad, H., Lp estimates for Schrödinger evolution equations.
Trans. AMS, 292 (1985), 357-373.

[9] Da Prato, G., Sinestrari, E., Differential operators with nondense domain. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 285-344.

[10] deLaubenfels, R., Existence Families, Functional Calculi and Evolution Equa-
tions. Lecture Notes in Mathematics 1570, Springer, 1994.

[11] deLaubenfels, R., Jazar, M., Functional calculi, regularized semigroups and inte-
grated semigroups. Studia Math. 132 (1999), 151-172.

[12] deLaubenfels, R., Huang, Z., Wang, S., Wang, Y., Laplace transforms of poly-
nomially bounded vector-valued functions and semigroups of operators. Israel J.
Math. 98 (1997), 189-207.

[13] Kellermann, H., Hieber, M., Integrated semigroups. J. Funct. Anal. 84 (1989),
160-180.

[14] Kunstmann, P. C., Distribution semigroups and abstract Cauchy problems.
Trans. AMS 351 (1999), 837-856.



152 M. Kostić
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