ON NEIGHBORHOODS OF ANALYTIC FUNCTIONS DEFINED BY USING HADAMARD PRODUCT

Halit Orhan ${ }^{1}$

Abstract

We introduce the classes $S_{n}(\gamma, \beta, \alpha)$ and $\Re_{n}(\gamma, \beta, \alpha ; \mu)$ of functions defined by $f * S_{\alpha}(z)$ of $f(z)$ and $S_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}}$. By making use of the familiar concept of neighborhoods of analytic functions, we prove several inclusion relations associated with the (n, δ)-neighborhoods of certain subclasses of analytic functions of complex order, which are introduced by means of the Hadamard product.

AMS Mathematics Subject Classification (2000): 30C45
Key words and phrases: Analytic functions, Hadamard product, Inclusion relations, δ - neighborhood

1. Introduction

Let A denote the class of functions f of the form:

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

which are analytic in the open unit disk $\Delta:=\{z: z \in \mathrm{C}$ and $|z|<1\}$.
And let S denote a subclass of A consisting of analytic and univalent functions $f(z)$ in Δ. A function $f(z)$ from S is said to be starlike of order α if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote the class of all starlike functions of order α by $S^{*}(\alpha)$. Further, a function $f(z)$ from S is said to be convex of order α if and only if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \Delta)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote the class of all convex functions of order α by $K(\alpha)$. We note that $f(z) \in K(\alpha)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha)$. The classes $S^{*}(\alpha)$ and $K(\alpha)$ were first introduced by Robertson [16], and later were studied by Schild [19], MacGregor [11] and Pinchuk [15].

[^0]Now, the function

$$
S_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}} \quad(0 \leq \alpha<1)
$$

is the well-known extremal function for the class $S^{*}(\alpha)$. Setting

$$
C(\alpha, k)=\frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha) \quad(k \geq 2)
$$

$S_{\alpha}(z)$ can be written in the form:

$$
S_{\alpha}(z)=z+\sum_{k=n+1}^{\infty} C(\alpha, k) z^{k}
$$

and also $f * S_{\alpha}(z)$ can be written in the form:

$$
\begin{equation*}
f * S_{\alpha}(z)=z+\sum_{k=n+1}^{\infty} C(\alpha, k) a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Then we can see that $C(\alpha, k)$ is a decreasing function in α which satisfies

$$
\lim _{k \rightarrow \infty} C(\alpha, k)= \begin{cases}\infty, & \alpha<\frac{1}{2} \\ 0, & \alpha>\frac{1}{2} \\ 1, & \alpha=\frac{1}{2}\end{cases}
$$

The class $L_{\alpha}^{*}(\lambda, \beta)$ of functions defined by $f * S_{\alpha}(z)$ of $f(z)$ and $S_{\alpha}(z)=$ $\frac{z}{(1-z)^{2(1-\alpha)}}$ were studied by Aouf et al. [7]. Let $f * g(z)$ denote the convulation or Hadamard product of two functions $f(z)$ and $g(z)$, that is, $f(z)$ is given by $g(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, and $g(z)$ is given by $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, then

$$
f * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}
$$

Let $A(n)$ denote the subclass of S consisting of the functions f of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; k \in \mathrm{~N}-\{1\} ; n \in \mathrm{~N}:=\{1,2,3, \ldots\}\right) \tag{1.2}
\end{equation*}
$$

which are analytic in the open unit disk Δ.
Following the works of Goodman [8] and Ruscheweyh [17, we define the (n, δ)-neighborhood of a function $f \in A(n)$ by (see [14, [6], [5, [1] and [18]).

$$
\begin{equation*}
N_{n, \delta}(f):=\left\{g \in A(n): g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\} . \tag{1.3}
\end{equation*}
$$

In particular, for the identity function

$$
\begin{equation*}
e(z)=z \tag{1.4}
\end{equation*}
$$

we immediately have

$$
\begin{equation*}
N_{n, \delta}(e):=\left\{g \in A(n): g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|b_{k}\right| \leq \delta\right\} \tag{1.5}
\end{equation*}
$$

The above concept of (n, δ)-neighborhoods was extended and applied recently to families of analytically multivalent functions by Altıntas et al. 4] and families of meromorphically multivalent functions by Liu and Srivastava (10) and (9).

The main objective of the present paper is to investigate the (n, δ)-neighborhoods of several subclasses of the class $A(n)$ of normalized analytic functions in Δ with negative coefficients, which are introduced below by making use of the Hadamard product.

First of all, a function $f(z) \in A(n)$ is said to be starlike of complex order $\gamma(\gamma \in \mathrm{C}-\{0\})$, that is, $f \in S_{n}^{*}(\gamma)$, if it also satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\right\}>0, z \in \Delta ; \gamma \in \mathrm{C}-\{0\} \tag{1.6}
\end{equation*}
$$

Furthermore, a function $f(z) \in A(n)$ is said to be convex of complex order $\gamma(\gamma \in \mathrm{C}-\{0\})$, that is, $f \in K_{n}(\gamma)$, if it also satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{\gamma} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, z \in \Delta ; \quad \gamma \in \mathrm{C}-\{0\} . \tag{1.7}
\end{equation*}
$$

The classes $S_{n}^{*}(\gamma)$ and $K_{n}(\gamma)$ stem essentially from the class of starlike and convex functions of complex order, which were considered earlier by Nasr and Aouf [13] and Wiatrowski [20], respectively, (see also [3] and [2]).

Finally, in terms of the Hadamard product $f * S_{\alpha}(z)$ defined by (1.1), let $S_{n}(\gamma, \beta, \alpha)$ denote the subclass of $A(n)$ consisting of the functions $f(z)$ which satisfy the inequality:

$$
\begin{gather*}
\left|\frac{1}{\gamma}\left\{\frac{z\left(f * S_{\alpha}(z)\right)^{\prime}}{f * S_{\alpha}(z)}-1\right\}\right|<\beta \tag{1.8}\\
z \in \Delta ; \gamma \in \mathrm{C}-\{0\} ; 0 \leq \alpha<1 ; 0<\beta \leq 1
\end{gather*}
$$

Let $\Re_{n}(\gamma, \beta, \alpha ; \mu)$ denote the subclass of $A(n)$ consisting of the functions $f(z)$ which satisfy the inequality:

$$
\begin{gather*}
\left|\frac{1}{\gamma}\left\{(1-\mu) \frac{f * S_{\alpha}(z)}{z}+\mu\left(f * S_{\alpha}(z)\right)^{\prime}-1\right\}\right|<\beta \tag{1.9}\\
z \in \Delta ; \gamma \in \mathrm{C}-\{0\} ; 0 \leq \alpha<1 ; 0<\beta \leq 1 ; 0 \leq \mu \leq 1
\end{gather*}
$$

2. A set of inclusion relations involving $N_{n, \delta}(e)$

In our investigation of the inclusion relations involving $N_{n, \delta}(e)$, we need the following Lemmas.

Lemma 1. Let the function $f \in A(n)$ be defined by (1.2). Then $f(z)$ is in the class $S_{n}(\gamma, \beta, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha)(\beta|\gamma|+k-1) a_{k} \leq \beta|\gamma|, k \geq 2 \tag{2.1}
\end{equation*}
$$

Proof. We suppose that $f \in S_{n}(\gamma, \beta, \alpha)$. Then, by recalling the condition (1.8), we readily get

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(f * S_{\alpha}(z)\right)^{\prime}}{f * S_{\alpha}(z)}-1\right)>-\beta|\gamma|, z \in \Delta \tag{2.2}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{-\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha)(k-1) a_{k} z^{k}}{z-\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha) a_{k} z^{k}}\right)>-\beta|\gamma|, z \in \Delta \tag{2.3}
\end{equation*}
$$

where we have made use of Definition (1.1) and Definition (1.2). Now, choose values of z on the real axis and let $z \rightarrow 1^{-}$through real values. Then Inequality (2.3) immediately yields the desired condition (2.1).

Conversely, by applying hypothesis (2.1) and letting $|z|=1$, we find that

$$
\begin{aligned}
& \left|\frac{z\left(f * S_{\alpha}(z)\right)^{\prime}}{f * S_{\alpha}(z)}-1\right|=\left|\frac{\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha)(k-1) a_{k} z^{k}}{z-\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha) a_{k} z^{k}}\right| \\
& \quad \leq \frac{\beta|\gamma|\left\{1-\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha) a_{k}\right\}}{1-\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha) a_{k}} \leq \beta|\gamma| .
\end{aligned}
$$

Hence, by the maximum modulus theorem we have $f \in S_{n}(\gamma, \beta, \alpha)$, which evidently completes the proof of Lemma 1.

Similarly, we can prove the following.

Lemma 2. Let the function $f \in A(n)$ be defined by (1.2). Then $f(z)$ is in the class $\Re(\gamma, \beta, \alpha ; \mu)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha)[\mu(k-1)+1] a_{k} \leq \beta|\gamma| \tag{2.5}
\end{equation*}
$$

Remark 1. When we take $\frac{1}{(k-1)!} \prod_{m=2}^{k}(m-2 \alpha)$ instead of $\binom{\lambda+n}{n}$ in Lemma 1 and Lemma 2, we get the corresponding results of Murugusundaramoorthyet al. 12 .

Theorem 1. Let

$$
\begin{equation*}
\delta=: \frac{(n+1) \beta|\gamma|}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)} \quad(|\gamma|<1 ; \quad 0 \leq \alpha<1) \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{n}(\gamma, \beta, \alpha) \subset N_{n, \delta}(e) \tag{2.7}
\end{equation*}
$$

Proof. For a function $f \in S_{n}(\gamma, \beta, \alpha)$ of the form (1.2), Lemma 1 immediately yields

$$
(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha) \sum_{k=n+1}^{\infty} a_{k} \leq \beta|\gamma|
$$

so that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{\beta|\gamma|}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)} \tag{2.8}
\end{equation*}
$$

On the other hand, we also find from (2.1) and (2.8) that

$$
\begin{aligned}
& \prod_{m=2}^{n+1}(m-2 \alpha) \sum_{k=n+1}^{\infty} k a_{k} \leq \beta|\gamma|+(1-\beta|\gamma|) \prod_{m=2}^{n+1}(m-2 \alpha) \sum_{k=n+1}^{\infty} a_{k} \\
& \quad \leq \beta|\gamma|+(1-\beta|\gamma|) \prod_{m=2}^{n+1}(m-2 \alpha) \frac{\beta|\gamma|}{\prod_{m=2}^{n+1}(m-2 \alpha)(\beta|\gamma|+n)}
\end{aligned}
$$

$$
\leq \frac{(n+1) \beta|\gamma|}{n+\beta|\gamma|} \quad(|\gamma|<1)
$$

that is,

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leq \frac{(n+1) \beta|\gamma|}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)}:=\delta \tag{2.9}
\end{equation*}
$$

which, in view of definition (1.5), proves Theorem 1.
Similarly, by applying Lemma 2 instead of Lemma 1, we can prove the following.

Theorem 2. If

$$
\begin{equation*}
\delta=: \frac{(n+1) \beta|\gamma|}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)} \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\Re(\gamma, \beta, \alpha ; \mu) \subset N_{n, \delta}(e) \tag{2.11}
\end{equation*}
$$

Proof. Suppose that a function $f \in \Re(\gamma, \beta, \alpha ; \mu)$ is of the form (1.2). Then we find from the assertion (2.5) of Lemma 2 that

$$
\prod_{m=2}^{n+1}(m-2 \alpha)(\mu n+1) \sum_{k=n+1}^{\infty} a_{k} \leq \beta|\gamma|
$$

which yields the following coefficient inequality:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{\beta|\gamma|}{(\mu n+1) \prod_{m=2}^{n+1}(m-2 \alpha)} \tag{2.12}
\end{equation*}
$$

Making use of (2.5) in conjunction with (2.12), we also have

$$
\begin{align*}
& \mu \prod_{m=2}^{n+1}(m-2 \alpha) \sum_{k=n+1}^{\infty} k a_{k} \leq \beta|\gamma|+(\mu-1) \prod_{m=2}^{n+1}(m-2 \alpha) \sum_{k=n+1}^{\infty} a_{k} \\
& \quad \leq \beta|\gamma|+(\mu-1) \prod_{m=2}^{n+1}(m-2 \alpha) \frac{\beta|\gamma|}{(\mu n+1) \prod_{m=2}^{n+1}(m-2 \alpha)} \tag{2.13}
\end{align*}
$$

that is

$$
\sum_{k=n+1}^{\infty} k a_{k} \leq \frac{(n+1) \beta|\gamma|}{(\mu n+1) \prod_{m=2}^{n+1}(m-2 \alpha)}=: \delta,
$$

which, in light of the definition (1.5), completes the proof of Theorem 2.

3. Neighborhoods for the classes $S_{n}^{(\rho)}(\gamma, \beta, \alpha)$ and $\Re_{n}^{(\rho)}(\gamma, \beta, \alpha ; \mu)$

In this section we determine the neighborhood for each of the classes $S_{n}^{(\rho)}(\gamma, \beta, \alpha)$ and $\Re_{n}^{(\rho)}(\gamma, \beta, \alpha ; \mu)$, which we define as follows. A function $f \in$ $A(n)$ defined by (1.2) is said to be in the class $S_{n}^{(\rho)}(\gamma, \beta, \alpha)$ if there exists a function $g \in S_{n}(\gamma, \beta, \alpha)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\rho, z \in \Delta ; 0 \leq \rho<1 \tag{3.1}
\end{equation*}
$$

Analogously, a function $f \in A(n)$ defined by (1.2) is said to be in the class $\Re_{n}^{(\rho)}(\gamma, \beta, \alpha ; \mu)$ if there exists a function $g \in \Re_{n}(\gamma, \beta, \alpha ; \mu)$ such that inequality (3.1) holds true.

Theorem 3. If $g \in S_{n}(\gamma, \beta, \alpha)$ and

$$
\begin{equation*}
\rho=1-\frac{\delta(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)}{(n+1)\left[(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)-\beta|\gamma|\right]} \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset S_{n}^{(\rho)}(\gamma, \beta, \alpha) \tag{3.3}
\end{equation*}
$$

Proof. Suppose that $f \in N_{n, \delta}(g)$. We then find from (1.3) that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta \tag{3.4}
\end{equation*}
$$

which readily implies the coefficient inequality:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right| \leq \frac{\delta}{n+1}(n \in \mathrm{~N}) \tag{3.5}
\end{equation*}
$$

Next, since $g \in S_{n}(\gamma, \beta, \alpha)$, we have [$c f$. Equation (2.8)]

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} b_{k} \leq \frac{\beta|\gamma|}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)} \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{gather*}
\left|\frac{f(z)}{g(z)}-1\right|<\frac{\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right|}{1-\sum_{k=n+1}^{\infty} b_{k}} \\
\leq \frac{\delta}{n+1} \cdot \frac{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)}{(\beta|\gamma|+n) \prod_{m=2}^{n+1}(m-2 \alpha)-\beta|\gamma|} \tag{3.7}\\
=1-\rho
\end{gather*}
$$

provided that ρ is given precisely by (3.2). Thus, by definition, $f \in S_{n}^{(\rho)}(\gamma, \beta, \alpha)$ for ρ given by (3.2), which evidently completes our proof of Theorem 3.

Our proof of Theorem 4 below is much similar to that of Theorem 3.
Theorem 4. If $g \in \Re_{n}(\gamma, \beta, \alpha ; \mu)$ and

$$
\begin{equation*}
\rho=1-\frac{\delta(\mu n+1) \prod_{m=2}^{n+1}(m-2 \alpha)}{(n+1)\left[(\mu n+1) \prod_{m=2}^{n+1}(m-2 \alpha)-\beta|\gamma|\right]} \tag{3.8}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \Re_{n}^{(\rho)}(\gamma, \beta, \alpha ; \mu) \tag{3.9}
\end{equation*}
$$

References

[1] Ahuja, O. P., Nunokawa, M., Neighborhoods of analytic functions defined by Ruscheweyh derivatives. Math. Japon. 51 (2003), 487-492.
[2] Altıntaş, O., Srivastava, H. M., Some majorization problems associated with $p-$ valently starlike and convex functions of complex order. East Asian Math. J. 17 (2001), 175-183.
[3] Altıntaş, O., Özkan ,Ö., Srivastava, H. M., Majorization by starlike functions of complex order. Complex Variables Theory Appl. 46 (2001), 207-218.
[4] Altıntaş, O., Özkan ,Ö., Srivastava, H. M., Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47 (2004), 1667-1672.
[5] Altıntaş, O., Owa, S., Neighborhoods of certain analytic functions with negative coefficients. Internat J. Math. and Math. Sci. 19 (1996), 797-800.
[6] Altıntaş, O., Özkan ,Ö., Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients. Applied Math. Letters 13 (2000), 63-67.
[7] Aouf, M. K., Hossen, H. M., Lashin, A. Y., A class of univalent functions defined by using Hadamard product. Math. Bech. 55 (2003), 83-96.
[8] Goodman, A. W., Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8 (1975), 598-601.
[9] Liu, J. L., Srivastava, H. M., Sublasses of meromorphically multivalent functions associated with a certain linear operator. Math. Comput. Modelling 39 (2004), 35-44.
[10] Liu, J. L., Srivastava, H. M., Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. Comput. Modelling 39 (2004), 21-34.
[11] MacGregor, T. H., The radius of covexity for starlike functions of order $1 / 2$. Proc. Mer. Math. Soc. 14 (1963), 71-76.
[12] Murugusundaramoorthy, G., Srivastava, H. M., Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math. 5(2) (2004), Article 24, 1-8.
[13] Nasr, M. A., Auf, M. K., Starlike functions of complex order. J. Natur. Sci. Math. 25 (1985), 1-12.
[14] Orhan, H. and Kamali, M., Neighborhoods of a class of analytic functions with negative coefficients. Acta Math. Acad. Paedag. Nyíregy. 20 (2), (2004)
[15] Pinchuk, B., On starlike and convex functions of order α. Duke Math. J. 35 (1968), 21-34.
[16] Robertson, M. S., On the theory of univalent functions. Ann. Math. 37 (1936), 374-408.
[17] Ruscheweyh, S., Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521-527.
[18] Silverman, H., Neighborhoods of classes of analytic functions. Far East J. Math. Sci. 3 (1995), 165-169.
[19] Schild, S., On starlike functions of order α. Amer. J. Math. 87 (1965), 65-70.
[20] Wiatrowski, P., On the coefficients of some family of holomorphic functions. Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod. (2) 39 (1970), 75-85.

Received by the editors June 22, 2005

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science and Art, Atatürk University 25240 Erzurum, Turkey, e-mail: horhan@atauni.edu.tr

