Novi Sad J. Math. Vol. 37, No. 1, 2007, 27-32

A NOTE ABOUT FULL HILBERT MODULES OVER FRÉCHET LOCALLY C*-ALGEBRAS¹

Maria Joiţa²

Abstract. Let *A* and *B* be two Fréchet locally *C*^{*}-algebras, let *E* be a full Hilbert *A*-module, and let *F* be a Hilbert *B*-module. We show that a bijective linear map $\Phi : E \to F$ is a unitary operator from *E* to *F* if and only if there is a map $\varphi : A \to B$ with closed range such that $\Phi(\xi a) = \Phi(\xi) \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $a \in A$ and for all $\xi, \eta \in E$.

AMS Mathematics Subject Classification (2000): 46L08

Key words and phrases: full Hilbert modules; Fréchet locally C^* -algebras; unitary operators

1. Introduction and preliminaries

A locally C^* -algebra is a complete Hausdorff complex *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that a net $\{a_i\}_{i \in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i \in I}$ converges to 0 for each continuous C^* -seminorm p on A [3], [5]. The set of all continuous C^* -seminorms on A is denoted by S(A). A Fréchet locally C^* -algebra is a locally C^* -algebra whose topology is determined by a countable family of C^* -seminorms. Clearly, any C^* -algebra is a Fréchet locally C^* -algebra.

Given two locally C^* -algebras A and B, a morphism of locally C^* -algebras from A to B is a continuous *-morphism φ from A to B. An isomorphism of locally C^* -algebras from A to B is a bijective map $\varphi : A \to B$ such that φ and φ^{-1} are morphisms of locally C^* -algebras.

Hilbert modules over locally C^* -algebras are generalizations of Hilbert C^* -modules by allowing the inner product to take values in a locally C^* -algebra rather than in a C^* -algebra.

Definition 1.1. Let A be a locally C^* -algebra. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is \mathbb{C} -and A-linear in its second variable and satisfies the following relations:

1. $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;

 $^{^1{\}rm This}$ research was supported by grant CNCSIS (Romanian National Council for Research in High Education)-code A 1065/2006

²Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, Bucharest, Romania, e-mail: mjoita@fmi.unibuc.ro

2.
$$\langle \xi, \xi \rangle \geq 0$$
 for every $\xi \in E$;

3. $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the family of seminorms $\{\bar{p}\}_{p\in S(A)}$, where $\bar{p}(\xi) = \sqrt{p(\langle \xi, \xi \rangle)}$, $\xi \in E$ [5, Definition 4.1].

Let *E* be a Hilbert *A*-module. The *-ideal of *A* generated by $\{\langle \xi, \eta \rangle; \xi, \eta \in A\}$ is denoted by $\langle E, E \rangle$. We say that *E* is full if the close of the linear span $\langle E, E \rangle$ in *A* is the whole of *A*.

Let A and B be two Fréchet locally C^* -algebras, let E be a full Hilbert module over A, let F be a Hilbert module over B, and let $\Phi : E \to F$ be a bijective linear map such that there is a map $\varphi:A\to B$ with closed range such that $\Phi(\xi a) = \Phi(\xi) \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $a \in A$ and for all $\xi, \eta \in E$. We show in Proposition 2.2 that φ is an isomorphism of locally C^* -algebras if and only if F is full. As a consequence of this fact we obtain the following: if E is both a full Hilbert A-module and a full Hilbert B-module and there is a map $\varphi: A \to B$ with closed range such that $\xi a = \xi \varphi(a)$ and $\varphi\left(\langle \xi,\eta\rangle_A\right)=\langle \xi,\eta\rangle_B$ for all $a\in A$ and for all $\xi,\eta\in E$, then the topologies on E induced by the inner products $\langle \cdot, \cdot \rangle_A$, respectively $\langle \cdot, \cdot \rangle_B$, are equivalent. In Section 3, we extend the definition of unitary operators between Hilbert C^* modules over different C^* -algebras [1] in the context of Hilbert modules over locally C^* -algebras and we show that the unitary equivalence is an equivalence relation in the set of all full Hilbert modules over Fréchet locally C^* -algebras. Also we prove a necessary and sufficient condition for a linear map between two full Hilbert modules to be a unitary operator, Theorem 3.4.

2. Full Hilbert modules

Let A and B be two Fréchet locally C^* -algebras, let E be a full Hilbert A-module, and let F be a Hilbert B-module.

Remark 2.1. Let $a \in A$ such that $\xi a = 0$ for all $\xi \in E$. Then $\langle \eta, \xi \rangle a = 0$ for all $\xi, \eta \in E$, and since E is full, a = 0.

Proposition 2.2. Let A, B, E and F be as above, let Φ be a bijective linear map from E onto F and let φ be a map from A to B with closed range such that $\Phi(\xi a) = \Phi(\xi) \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all a in A and for all ξ and η in E. Then F is full if and only if φ is an isomorphism of locally C^* -algebras.

Proof. First we suppose that F is full. Let $a_1, a_2 \in A$ and $\alpha_1, \alpha_2 \in \mathbb{C}$. It is not difficult to check that

$$\Phi\left(\xi\right)\left(\varphi\left(\alpha_{1}a_{1}+\alpha_{2}a_{2}\right)-\alpha_{1}\varphi\left(a_{1}\right)-\alpha_{2}\varphi\left(a_{2}\right)\right)=0$$

and

$$\Phi\left(\xi\right)\left(\varphi\left(a_{1}a_{2}\right)-\varphi\left(a_{1}\right)\varphi\left(a_{2}\right)\right)=0$$

for all $\xi \in E$. Since Φ is surjective, from these relations and Remark 2.1 we deduce that φ is a morphism of algebras.

For each $\xi, \eta \in E$, we have

$$\varphi\left(\langle \xi,\eta\rangle^*\right) = \varphi\left(\langle \eta,\xi\rangle\right) = \langle\Phi\left(\eta\right),\Phi\left(\xi\right)\rangle = \left(\langle\Phi\left(\xi\right),\Phi\left(\eta\right)\rangle\right)^* = \left(\varphi\left(\langle\xi,\eta\rangle\right)\right)^*.$$

Let $a \in A$. Then

$$\begin{split} \left\langle \Phi\left(\xi\right)\left(\varphi\left(a^{*}\right)-\varphi\left(a\right)^{*}\right),\Phi\left(\xi\right)\left(\varphi\left(a^{*}\right)-\varphi\left(a\right)^{*}\right)\right\rangle \right\rangle \\ &= \varphi\left(a^{*}\right)^{*}\varphi\left(\left\langle\xi,\xi\right\rangle\right)\varphi\left(a^{*}\right)-\varphi\left(a^{*}\right)^{*}\varphi\left(\left\langle\xi,\xi\right\rangle\right)\varphi\left(a\right)^{*} \\ &-\varphi\left(a\right)\varphi\left(\left\langle\xi,\xi\right\rangle\right)\varphi\left(a^{*}\right)+\varphi\left(a\right)\varphi\left(\left\langle\xi,\xi\right\rangle\right)\varphi\left(a^{*}\right)^{*} \\ &= \left(\varphi\left(\left\langle\xi a^{*},\xi\right\rangle\right)\varphi\left(a^{*}\right)\right)^{*}-\left(\varphi\left(a\right)\varphi\left(\left\langle\xi,\xi\right\rangle\right)\varphi\left(a^{*}\right)\right)^{*} \\ &-\varphi\left(\left\langle\xi a^{*},\xi a^{*}\right\rangle\right)+\left(\varphi\left(a\right)\varphi\left(\left\langle\xi,\xi a^{*}\right\rangle\right)\right)^{*} \\ &= \left(\varphi\left(\left\langle\xi a^{*},\xi a^{*}\right\rangle\right)+\left(\varphi\left(\left\langle\xi a^{*},\xi a^{*}\right\rangle\right)\right)^{*} \\ &-\varphi\left(\left\langle\xi a^{*},\xi a^{*}\right\rangle\right)+\left(\varphi\left(\left\langle\xi a^{*},\xi a^{*}\right\rangle\right)\right)^{*} \\ &= 0 \end{split}$$

for all $\xi \in E$. This implies that $\Phi(\xi) (\varphi(a^*) - \varphi(a)^*) = 0$ for all $\xi \in E$. Since Φ is surjective, from this fact and Remark 2.1, we conclude that $\varphi(a^*) = \varphi(a)^*$. Therefore φ is a *-morphism. Moreover, by Theorem 3.3 [3], φ is continuous.

Let $a \in A$ such that $\varphi(a) = 0$. Then $\Phi(\xi a) = 0$ for all $\xi \in E$, and since Φ is a linear injective map from E to F, $\xi a = 0$ for all $\xi \in E$. From this fact and Remark 2.1 we conclude that a = 0. Therefore φ is injective.

From

$$\langle \Phi(E), \Phi(E) \rangle = \varphi(\langle E, E \rangle)$$

and taking into account that: Φ is surjective; φ is a continuous *-morphism with closed range; E and F are full; we conclude that $\varphi(A) = B$, so φ is surjective. Thus we showed that φ is a bijective *-morphism from A and B, and since A and B are Fréchet locally C^* -algebras, φ is an isomorphism of locally C^* -algebras (Corollary 3.4, [3]).

Conversely, suppose that φ is an isomorphism of locally C^* -algebras. Since E is full, φ is an isomorphism of locally C^* -algebras and $\langle \Phi(E), \Phi(E) \rangle = \varphi(\langle E, E \rangle)$, the closed ideal of B generated by $\langle \Phi(E), \Phi(E) \rangle$ is the whole of B. From this fact and taking into account that Φ is surjective, we conclude that F is full. \Box

Remark 2.3. If in Proposition 2.2, A and B are C^* -algebras, F = E and $\Phi = id_E$ (id_E denotes the identity map on E), then we obtain [4, Theorem 2.2].

29

Corollary 2.4. Let *E* be a full Hilbert *A*-module, let *F* be a full Hilbert *B*-module, and let $\Phi : E \to F$ be a bijective linear map. If there is a map $\varphi : A \to B$ with closed range such that $\Phi(\xi a) = \Phi(\xi) \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $a \in A$ and for all $\xi, \eta \in E$, then Φ is an isomorphism of locally convex spaces.

Proof. By Proposition 2.2, φ is an isomorphism of locally C^* -algebras.

Let $q \in S(B)$. Since φ is a continuous morphism of locally C^* -algebras, there is $p_q \in S(A)$ such that

$$q\left(\varphi\left(a\right)\right) \le p_q\left(a\right)$$

for all $a \in A$. Then

$$\overline{q}\left(\Phi\left(\xi\right)\right)^{2} = q\left(\left\langle\Phi\left(\xi\right), \Phi\left(\xi\right)\right\rangle\right) = q\left(\varphi\left(\left\langle\xi, \xi\right\rangle\right)\right) \le p_{q}\left(\left\langle\xi, \xi\right\rangle\right) = \overline{p_{q}}\left(\xi\right)^{2}$$

for all $\xi \in E$. Therefore Φ is continuous.

Let $p \in S(A)$. Since φ is an isomorphism of locally C^* -algebras, there is $q_p \in S(B)$ such that

$$p\left(\varphi^{-1}\left(b\right)\right) \le q_p\left(b\right)$$

for all $b \in B$. Then

$$\overline{p} \left(\Phi^{-1} (\eta) \right)^{2} = p \left(\left\langle \Phi^{-1} (\eta), \Phi^{-1} (\eta) \right\rangle \right)$$

$$= p \left(\varphi^{-1} \left(\varphi \left(\left\langle \Phi^{-1} (\eta), \Phi^{-1} (\eta) \right\rangle \right) \right) \right)$$

$$= p \left(\varphi^{-1} \left(\left\langle \eta, \eta \right\rangle \right) \right) \leq q_{p} \left(\left\langle \eta, \eta \right\rangle \right) = \overline{q_{p}} \left(\eta \right)^{2}$$

for all $\eta \in F$, and so Φ^{-1} is continuous too.

Corollary 2.5. Let *E* be both a full Hilbert *A*-module and a full Hilbert *B*-module. If there is a map $\varphi : A \to B$ with closed range such that $\xi a = \xi \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle_A) = \langle \xi, \eta \rangle_B$ for all $a \in A$ and for all $\xi, \eta \in E$, where $\langle \cdot, \cdot \rangle_A$ denotes the *A* valued inner product on *E* and $\langle \cdot, \cdot \rangle_B$ denotes the *B* valued inner product on *E* induced by the inner products $\langle \cdot, \cdot \rangle_A$, respectively $\langle \cdot, \cdot \rangle_B$, are equivalent.

Proof. Putting F = E and $\Phi = \operatorname{id}_E$ in Corollary 2.2, we conclude that id_E is an isomorphism of locally convex spaces.

3. Unitary operators

Let A and B be two Fréchet locally C^* -algebras, let E be a Hilbert A-module, and let F be a Hilbert B-module.

We extend the definition of unitary operators between Hilbert C^* -modules over different C^* -algebras introduced by Bakic and Guljas [1] in the context of Hilbert modules over locally C^* -algebras.

Definition 3.1. Let $\Phi : E \to F$ be a linear map. We say that Φ is a unitary operator from E to F if Φ is surjective and there is an injective morphism of locally C^* -algebras $\varphi : A \to B$ with closed range such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$.

Remark 3.2. If E and F are Hilbert modules over A and U is a unitary operator in $L_A(E, F)$, the set of all adjointable module maps from E to F (that is, $UU^* = id_F$ and $U^*U = id_E$), then U is a unitary operator in the sense of Definition 3.1.

Remark 3.3. If $\Phi : E \to F$ is a unitary operator, then Φ is a continuous bijective linear map from E to F.

Theorem 3.4. Let E be a full Hilbert A-module, let F be a full Hilbert Bmodule and let $\Phi : E \to F$ be a linear map. Then the following assertions are equivalent:

- 1. Φ is a unitary operator;
- 2. Φ is bijective and there is a map $\varphi : A \to B$ with closed range such that $\Phi(\xi a) = \Phi(\xi) \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $a \in A$ and for all $\xi, \eta \in E$.

Proof. $1 \Rightarrow 2$. If Φ is a unitary operator, then Φ is bijective and there is an injective morphism of locally C^* -algebras $\varphi : A \to B$ with closed range such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$. Let $\xi \in E$ and $a \in A$. Then

$$\begin{array}{l} \langle \Phi\left(\xi a\right) - \Phi\left(\xi\right)\varphi\left(a\right), \Phi\left(\xi a\right) - \Phi\left(\xi\right)\varphi\left(a\right) \rangle \\ = & \varphi\left(\langle\xi a, \xi a\rangle\right) - \varphi\left(\langle\xi a, \xi\rangle\right)\varphi\left(a\right) - \varphi\left(a^{*}\right)\varphi\left(\langle\xi, \xi a\rangle\right) \\ & +\varphi\left(a^{*}\right)\varphi\left(\langle\xi, \xi a\rangle\right)\varphi\left(a\right) \\ = & 0 \end{array}$$

and so $\Phi(\xi a) = \Phi(\xi) \varphi(a)$. 2. $\Rightarrow 1$. It follows from Proposition 2.2.

Remark 3.5. Let *E* be both a full Hilbert *A*-module and a full Hilbert *B*-module. Then id_E is a unitary operator if and only if there is a map $\varphi : A \to B$ with closed range such that $\xi a = \xi \varphi(a)$ and $\varphi(\langle \xi, \eta \rangle_A) = \langle \xi, \eta \rangle_B$ for all $a \in A$ and for all $\xi, \eta \in E$.

Corollary 3.6. Let *E* be a full Hilbert module over a Fréchet locally *C*^{*}algebra *A*, let *F* be a full Hilbert module over a Fréchet locally *C*^{*}-algebra *B* and let $\Phi : E \to F$ be a linear map. Then Φ is a unitary operator from *E* to *F* if and only if there is an isomorphism of locally *C*^{*}-algebras $\varphi : A \to B$ such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$. We say that two Hilbert modules E and F are unitarily equivalent if there is a unitary operator from E to F.

Proposition 3.7. Unitary equivalence in the set of full Hilbert modules over Fréchet locally C^{*}-algebras is an equivalence relation.

Proof. Let E be a full Hilbert module over a Fréchet locally C^* -algebra A. By Corollary 3.6, id_E is a unitary operator from E to E. Therefore the relation is reflexive.

To show that the relation is symmetric, let A and B be two Fréchet locally C^* -algebras, let E be a full Hilbert A-module and let F be a full Hilbert B-module. If Φ is a unitary operator from E to F, then Φ is an isomorphism of locally convex spaces and there is an isomorphism of locally C^* -algebras $\varphi : A \to B$ such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$. It is not difficult to check that Φ^{-1} is a unitary operator from F to E.

Let A, B and C be three Fréchet locally C^* -algebras and let E be a full Hilbert A-module, let F be a full Hilbert B-module, and let G be a full Hilbert C-module. If Φ is a unitary operator from E to F and Ψ is a unitary operator from F to G, then there is an isomorphism of locally C^* -algebras $\varphi : A \to B$ such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$, and there is an isomorphism of locally C^* -algebras $\psi : B \to C$ such that $\psi(\langle x, y \rangle) = \langle \Psi(x), \Psi(y) \rangle$ for all $x, y \in F$. Clearly, $\Psi \circ \Phi$ is an isomorphism of locally convex spaces from E to Gand $\psi \circ \varphi$ is an isomorphism of locally C^* -algebras such that $(\psi \circ \varphi)(\langle \xi, \eta \rangle) =$ $\langle (\Psi \circ \Phi)(\xi), (\Psi \circ \Phi)(\eta) \rangle$ for all $\xi, \eta \in E$. This shows that $\Psi \circ \Phi$ is a unitary operator from E to F and so the relation is transitive. \Box

References

- Bakic, D., Guljas, B., On a class of module maps of Hilbert C^{*}-modules. Math. Commun. 7 (2002), 2, 177-192.
- [2] Fragoulopoulou, M., Automatic continuity of *-morphisms between nonnormed topological *-algebras. Pacific J. Math. 147 (1991) 1, 57-70.
- [3] Inoue, A., Locally C*-algebra. Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971), 197-235.
- [4] Moslehian, M. S., On full Hilbert C^* -modules. Bull. Malays. Math. Sci. Soc. (2) 24 (2001) 1, 45-47.
- [5] Phillips, N. C., Inverse limits of $C^{\ast}\mbox{-algebras},$ J. Operator Theory 19 (1988) 1, 159-195.

Received by the editors November 23, 2005