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SPACES WITH σ-WEAKLY HEREDITARILY
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Abstract. We prove that a space with a σ-weakly hereditarily closure-
preserving sn-network is sn-first countable. As an application of this
result, we prove that a Lindelöf space with a σ-weakly hereditarily closure-
preserving sn-network is sn-second countable. The above results answer
some questions posed by L. Yan.
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1. Introduction

In [6], S. Lin and L. Yan obtained the following results.

Theorem 1.1. (1) A k-space with a σ-weakly hereditarily closure-preserving
weak-base is g-first countable, where “k-” can not be omitted?

(2) A Lindelöf space with a σ-weakly hereditarily closure-preserving weak-
base is g-second countable.

Note that sn-networks are an important generalization of weak-bases, re-
cently the second author of [6] posed the following question in a private com-
munication with the author of this paper.

Question 1.2. (1) Is a k-space with a σ-weakly hereditarily closure-preserving
sn-network sn-first countable? Moreover, can “k-” be omitted here?

(2) Is a Lindelöf space with a σ-weakly hereditarily closure-preserving sn-
network sn-second countable?

In this paper we investigate the above Question 2. We prove that a space
with a σ-weakly hereditarily closure-preserving sn-network is sn-first countable.
As an application of this result, we prove that a Lindelöf space with a σ-weakly
hereditarily closure-preserving sn-network is sn-second countable. The above
results give some affirmative answers to Question 2.
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2. Notations and Definitions

Throughout this paper, all spaces are assumed to be regular and T1. N
and ω1 denote the set of all natural numbers and the first uncountable ordinal
respectively. {xn} denotes a sequence, where the n-th term is xn. Let X be
a space and P ⊂ X. The closure of P is denoted by P . A sequence {xn}
converging to x in X is eventually in P if {xn : n > k}⋃{x} ⊂ P for some
k ∈ N; is frequently in P if there is a subsequence {xnk

} of {xn} such that
{xnk

} is eventually in P . Let P be a family of subsets of X and x ∈ X. Then
(P)x denotes the subfamily {P ∈ P : x ∈ P} of P,

⋃P and
⋂P denote the

union
⋃{P : P ∈ P} and the intersection

⋂{P : P ∈ P} respectively.

Definition 2.1. [2]. Let P be a family of subsets of a space X.
(1) P is called closure-preserving if

⋃P ′ =
⋃{P : P ∈ P ′} for each P ′ ⊂ P.

(2) P is called hereditarily closure-preserving if any family {H(P ) : P ∈ P}
is closure-preserving, where each H(P ) ⊂ P ∈ P.

(3) P is called weakly hereditarily closure-preserving if any family {{xP } :
P ∈ P} is closure-preserving, where each xP ∈ P ∈ P.

It is clear that a hereditarily closure-preserving family is closure-preserving
and weakly hereditarily closure-preserving.

Definition 2.2. A subset P of a space X is called a sequential neighborhood
of x [3], if each sequence converging to x is eventually in P .

Remark 2.3. (1) P is a sequential neighborhood of x iff each sequence con-
verging to x is frequently in P .

(2) The intersection of finite sequential neighborhoods of x is a sequential
neighborhood of x.

Definition 2.4. Let P =
⋃{Px : x ∈ X} be a cover of a space X, where

Px ⊂ (P)x.
(1) P is called a network of X [1] if, whenever x ∈ U ⊂ X with U open in

X, there is P ∈ Px such that x ∈ P ⊂ U , where Px is called a network at x in
X.

(2) P is called a wcs∗-network of X [9] if, whenever the sequence S = {xn}
converges to x ∈ U with U open in X, there is P ∈ P such that P ⊂ U and for
each n ∈ N, xmn ∈ P for some mn > n.

(3) P is called a k-network of X [8] if, whenever K ⊂ U with K compact in
X and U open in X, there is a finite F ⊂ P such that K ⊂ ⋃F ⊂ U .

Definition 2.5. X is called to be an ℵ0-space [7], if X has a countable k-
network.

Definition 2.6. Let P =
⋃{Px : x ∈ X} be a cover of a space X, where

Px ⊂ (P)x. P is called an sn-network of X [10], if Px satisfies the following
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condition (1),(2) and (3) for each x ∈ X, where Px is called an sn-network at
x in X.

(1) Px is a network at x in X.
(2) If P1, P2 ∈ Px, then there is P ∈ Px such that P ⊂ P1

⋂
P2.

(3) Each element of Px is a sequential neighborhood of x.

Definition 2.7. [4]. (1) X is called sn-first countable if X has a countable
sn-network at x in X for each x ∈ X.

(2) X is called sn-second countable if X has a countable sn-network.

3. The Main Results

Theorem 3.1. If a space X has a σ-weakly hereditarily closure-preserving sn-
network, then X is sn-first countable.

Proof. Let X have a σ-weakly hereditarily closure-preserving sn-network P =⋃{Pn : n ∈ N}, where each Pn is weakly hereditarily closure-preserving. We
may assume each Pn ⊂ Pn+1. For each x ∈ X and each n ∈ N, put Px,n =
{P ∈ Pn : P is a sequential neighborhood of x} and put Px,n =

⋂Px,n, then
Px,n+1 ⊂ Px,n as Px,n ⊂ Px,n+1. Put Px = {Px,n : n ∈ N}, then Px is countable.
It suffices to prove that Px is an sn-network at x in X.

Claim 1. Px is a network at x in X.
Let x ∈ U with U open in X. Since P is a sn-network, there is P ∈ Pn for

some n ∈ N such that P ⊂ U , where P is a sequential neighborhood of x, so
P ∈ Px,n. Thus x ∈ Px,n ⊂ P ⊂ U . This proves that Px is a network at x in
X.

Claim 2. If P1, P2 ∈ Px, then P ⊂ P1

⋂
P2 for some P ∈ Px.

It is clear because Px,n+1 ⊂ Px,n for each n ∈ N.
Claim 3. Px,n is a sequential neighborhood of x for each n ∈ N.
Let {xn} be a sequence converging to x. By Remark 2.3(1), we only need

to prove that {xn} is frequently in Px,n. If xn = x ∈ Px,n for infinitely many
n ∈ N, then {xn} is frequently in Px,n. If xn 6= x for all but finitely many n ∈ N,
we may assume xn 6= x for all n ∈ N, then Px,n is finite. Indeed, suppose Px,n is
infinite. Then there is a infinite subfamily {Pk : k ∈ N} of Px,n, where Pk 6= Pl

if k 6= l. Since {xn} converges to x and each Pk is a sequential neighborhood
of x, there is a subsequence {xnk

} of {xn} such that xnk
∈ Pk for each k ∈ N.

Note that Px,n is weakly hereditarily closure-preserving and {xnk
} converges

to x, so x ∈ {xnk
: k ∈ N} = {xnk

: k ∈ N}. This is a contradiction. So Px,n

is finite. By Remark 2.3(2), Px,n is a sequential neighborhood of x, so {xn} is
frequently in Px,n.

By the above three claims, Px is an sn-network at x in X.

It is known that a space is sn-second countable iff it is an sn-first countable,
ℵ0-space [5, Theorem 2.1] and a space is an ℵ0-space iff X has a countable
wcs∗-network [9, Proposition C]. We have the following result.
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Lemma 3.2. A space X is sn-second countable iff X is an sn-first countable
space with a countable wcs∗-network.

Recall a space X is ℵ1-compact if each closed discrete subspace of X is
countable.

Theorem 3.3. Let a space X have a σ-weakly hereditarily closure-preserving
sn-network. If X is ℵ1-compact, then X is sn-second countable.

Proof. Suppose X is an ℵ1-compact space with a σ-weakly hereditarily closure-
preserving sn-network P =

⋃{Pn : n ∈ N}, where each Pn is weakly hereditarily
closure-preserving. By Theorem 3.1, X is sn-first countable. By Lemma 3.2, it
suffices to prove that X has a countable wcs∗-network.

For each n ∈ N, put Dn = {x ∈ X : Pn is not point-countable at x} and put
P ′n = {P −Dn : P ∈ Pn}.

Claim 1. P ′n is countable.
If P ′n = {P −Dn : P ∈ Pn} is not countable, then there is an uncountable

subfamily {Pα : α ∈ Λ} of Pn such that Pα − Dn 6= ∅ for each α ∈ Λ and
Pα − Dn 6= Pα′ − Dn if α 6= α′, where Λ is an uncountable index set. Take
xα ∈ Pα−Dn for each α ∈ Λ. Since Pn is weakly hereditarily closure-preserving,
{xα : α ∈ Λ} is a closed discrete subspace of X. Note that X is ℵ1-compact,
{xα : α ∈ Λ} is countable. So, there is an uncountable subset Λ′ of Λ such that
{xα : α ∈ Λ′} = {x} for some x ∈ X. Thus Pn is not point-countable at x.
This contradicts that x 6∈ Dn. So {P −Dn : P ∈ Pn} is countable.

Claim 2. Dn is a countable closed discrete subspace of X.
If Dn is not countable, then there is an uncountable subset D′

n = {yβ :
β < ω1} of Dn. Take y1 ∈ P1 for some P1 ∈ Pn. Pn is not point-countable
at y2, so y2 ∈ P2 for some P2 ∈ Pn − {P1}. By transfinite induction we can
obtain a subfamily {Pβ : β < ω1} of Pn such that Pβ ∈ Pn − {Pγ : γ < β} and
yβ ∈ Pβ for each β < ω1. Thus D′

n = {yβ : β < ω1} is an uncountable closed
discrete subspace of X because Pn is weakly hereditarily closure-preserving.
This contradicts ℵ1-compactness of X. So Dn is countable. In a similar way as
in the proof of that D′

n is a closed discrete subspace of X, it is easy to prove
that Dn is a closed discrete subspace of X.

Put Un = P ′n
⋃{{x} : x ∈ Dn} for each n ∈ N and put U =

⋃{Un : n ∈ N}.
Then U is countable. We only need to prove the following claim.

Claim 3. U is a wcs∗-network of X.
Let {xn} be a sequence converging to x ∈ U with U open in X. Since

P =
⋃{Pk : k ∈ N} is an sn-network of X, {xn} is eventually in P ⊂ U , where

P ∈ Pk for some k ∈ N. If xn = x for infinitely many n ∈ N, then for each
n ∈ N there is mn > n such that xmn = x. If x ∈ Dk, then {x} ∈ U and
xmn = x ∈ {x} ⊂ U . If x 6∈ Dk, then P −Dk ∈ U and xmn = x ∈ P −Dk ⊂ U .
If xn 6= x for all but finitely many n ∈ N, put S = {xn : n ∈ N}, then S

⋂
P is

infinite. Note that S
⋂

Dk is compact in Dk, S
⋂

Dk is finite, so S
⋂

(P −Dk) is
infinite. Thus, for each n ∈ N there is mn > n such that xmn ∈ P −Dk, where
P −Dk ∈ U and P −Dk ⊂ U . This completes the proof of Claim 3.
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Theorem 3.4. The following statements are equivalent for a space X.
(1) X is sn-second countable.
(2) X is a hereditarily Lindelöf space with a σ-weakly hereditarily closure-

preserving sn-network.
(3) X is a Lindelöf space with a σ-weakly hereditarily closure-preserving

sn-network.
(4) X is a hereditarily separable space with a σ-weakly hereditarily closure-

preserving sn-network.
(5) X is an ℵ1-compact space with a σ-weakly hereditarily closure-preserving

sn-network.

Proof. (1) =⇒ (2) and (1) =⇒ (4): They hold by [5, Theorem 2.1].
(2) =⇒ (3): It is clear.
(3) =⇒ (5) and (4) =⇒ (5): It is easy to prove that every Lindelöf space or

every hereditarily separable space is ℵ1-compact. So (3) =⇒ (5) and (4) =⇒ (5).
(5) =⇒ (1): It holds from Theorem 3.3.

Remark 3.5. “Hereditarily separable” in Corollary 3.4(4) can not relax to
“separable”. In fact, [5, Example 2.3] gives a separable space with a σ-discrete
sn-network, which is not sn-second countable.
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