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OSCILLATION PROPERTIES FOR ADVANCED
DIFFERENCE EQUATIONS

Özkan Öcalan1 and Ömer Akin2

Abstract. In this paper, we provide some sufficient conditions for the
oscillation of every solution of the difference equations

xn+1 − xn + pnxn−k = 0, n = 0, 1, 2, ...,

whenever k ∈ {...,−3,−2} and pn ≤ 0; and also

xn+1 − xn +

m∑
i=1

pinxn−ki = 0, n = 0, 1, 2, ...,

whenever ki ∈ {...,−3,−2,−1} and pin ≤ 0 for i = 1, 2, ..., m. We also
obtain some alternative results for the oscillation of all solutions of these
equations.
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1. Introduction

The oscillatory behavior of some differential and difference equations have
been investigated (see, for instance, [1], [3], [4], [5]). In recent years, the oscilla-
tions of discrete analogues of delay differential equations have been given [2], [7].
Furthermore, explicit conditions for the oscillation of difference equations with
constant coefficients have been studied [6]. Erbe and Zhang [2] have introduced
a sufficient condition for the oscillation of all solutions of the following difference
equations:

(1.1) xn+1 − xn + pnxn−k = 0, n = 0, 1, 2, ...,

whenever k ∈ N and pn ≥ 0; and also

(1.2) xn+1 − xn +
m∑

i=1

pinxn−ki = 0, n = 0, 1, 2, ...,

whenever ki ∈ N and pin ≥ 0 for i = 1, 2, ...,m.
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By a solution of equation (1.1) we mean a sequence (xn) which is defined for
n ≥ −k and which satisfies equation (1.1) for n ≥ 0. We recall that a solution
(xn) of equation (1.1) is said to be oscillatory if the terms xn of the sequence
(xn) are neither eventually positive nor eventually negative. Otherwise, the
solution is called nonoscillatory.

The aim of the present paper is to provide some sufficient conditions for the
oscillation of every solution of equation (1.1) whenever k ∈ {...,−3,−2} and
pn ≤ 0 and that of equation (1.2) whenever ki ∈ {...,−3,−2,−1} and pin ≤ 0
for i = 1, 2, ...,m. We also obtain some alternative results for the oscillation of
all solutions of these equations.

2. Sufficient Conditions for the Oscillation of Eq. (1.1)

In this section, we provide a sufficient condition for the oscillation of every
solution of equation (1.1). Erbe and Zhang [2] have proved the following result.
Theorem A. Assume that

lim inf
n→∞

pn = p >
kk

(k + 1)k+1
, k ∈ N.

Then every solution of equation (1.1) oscillates.

We first need the following lemma.

Lemma 2.1. Let k ∈ {...,−3,−2}. If

(2.1) lim sup
n→∞

pn = p <
kk

(k + 1)k+1
,

then the following holds:
(i) the difference inequality

(2.2) xn+1 − xn + pnxn−k ≥ 0

has no eventually positive solution,
(ii) the difference inequality

(2.3) xn+1 − xn + pnxn−k ≤ 0

has no eventually negative solution.

Proof. (i) Assume, for the sake of contradiction, that inequality (2.2) has an
eventually positive solution. Then, there exists a number N1 > 0 such that
xn > 0 for all n ≥ N1. Also by (2.1) there is a number N2 > 0 such that pn < 0
for all n ≥ N2. Let N = max{N1 − k, N2}. By using (2.1) and (2.2), we have

xn+1 − xn ≥ −pnxn−k > 0
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for all n ≥ N. This implies that xn is nondecreasing for n ≥ N. Now, dividing
inequality (2.2) by xn we have

xn+1

xn
− 1 + pn

xn−k

xn
≥ 0

for all n ≥ N. This yields, for the same n’s, that

(2.4)
xn+1

xn
− 1 + pn

{
xn−k

xn−k−1

xn−k−1

xn−k−2
...

xn+1

xn

}
≥ 0

Let zn =
xn+1

xn
. Then zn ≥ 1 for n ≥ N. By (2.4) we get

(2.5) zn ≥ 1− pn(zn−k−1 zn−k−2...zn).

Setting lim inf
n→∞

zn = q, it is easy to see that q ≥ 1, and also taking into consid-

eration (2.5) we have

q ≥ 1 + lim inf
n→∞

{(−pn)zn−k−1 zn−k−2...zn}
≥ 1 + lim inf

n→∞
(−pn) lim inf

n→∞
zn−k−1... lim inf

n→∞
zn

= 1− lim sup
n→∞

(pn) lim inf
n→∞

zn−k−1... lim inf
n→∞

zn

= 1− pq−k.

So, we conclude that

(2.6) p ≥ (1− q)qk.

Consider the function f defined by f(q) = (1 − q)qk. Then observe that
f ′

(
k

k+1

)
= 0 and f ′′

(
k

k+1

)
> 0. Therefore, by (2.6) we obtain

p ≥ f

(
k

k + 1

)
=

kk

(k + 1)k+1
,

which contradicts condition (2.1).
(ii) It is easily shown that, under condition (2.1), inequality (2.3) has no

eventually negative solution by using similar method as in (i). 2

By using Lemma 2.1 one can deduce the following main result immediately.

Theorem 2.2. (Main Theorem) Let k ∈ {...,−3,−2}. If condition (2.1)
holds, then every solution of the difference equation (1.1) oscillates.

Proof. Combining (i) and (ii) in Lemma 2.1 we conclude that under condition
(2.1) every solution of (1.1) oscillates. 2

Remarks. We should note that by choosing pn = p in condition (2.1), Theorem
2.2 reduces to Theorem 2.1 in [6]. Furthermore, replacing condition (2.1) by

lim inf
n→∞

pn = p >
kk

(k + 1)k+1
and taking k ∈ N we have Theorem A (see [2]).

Theorem 2.2 contains the following result.
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Corollary 2.3. Let k ∈ {...,−3,−2}. If

(2.7) sup
n∈N

pn <
kk

(k + 1)k+1
,

then every solution of equation (1.1) oscillates.

Proof. Assume that (2.7) holds. Since lim sup
n→∞

pn ≤ sup
n∈N

pn, we obtain that

lim sup
n→∞

pn <
kk

(k + 1)k+1
. Hence, the proof follows from Theorem 2.2 at once. 2

Corollary 2.4. Let k ∈ N. If

(2.8) inf
n∈N

pn >
kk

(k + 1)k+1
,

then every solution of equation (1.1) oscillates.

Proof. Suppose that (2.8) holds. Since inf
n∈N

pn ≤ lim inf
n→∞

pn, we may write

lim inf
n→∞

pn >
kk

(k + 1)k+1
, which completes the proof by Theorem A. 2

Before closing this section, we will recall the following theorem.

Theorem 2.5. Let k ∈ {...,−3,−2}. If pn ≤ 0 and

(2.9) lim inf
n→∞

pn >
kk

(k + 1)k+1
,

then equation (1.1) has a nonoscillatory solution.

Proof. Condition (2.9) implies that there is a number N1 > 0 such that

(2.10) pn ≥ kk

(k + 1)k+1

for all n ≥ N1. Taking zn =
xn+1

xn
in equation (1.1), we may write

zn = 1− pn zn−k−1...zn+1zn.

This yields to

(2.11) zn = (1 + pn zn−k−1...zn+1)−1.

To complete the proof it suffices to show that equation (2.11) has a positive
solution. Indeed, with N ≥ N1 define

(2.12) SN−k−1 = ... = SN+1 =
k

k + 1
= q > 1,
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and

(2.13) SN = (1 + pN SN−k−1...SN+1)−1 > 1.

By (2.10), (2.12) and (2.13) we have

pN SN−k−1...SN+1 >
1
k

.

So, it is obvious that
1 < SN < q.

By induction we get

1 < SN−k < q, for k = ...,−3,−2.

Hence, we conclude that (sn) (n ≥ N) is a solution of equation (2.11). Now,
defining xN = 1, xN+1 = xNSN and so on, it follows that (xn) (n ≥ N) is a
positive solution of (1.1). 2

The fact that lim inf
n→∞

pn ≥ inf
n∈N

pn leads us to the following result.

Corollary 2.6. Let k ∈ {...,−3,−2}. If pn ≤ 0 and

inf
n∈N

pn >
kk

(k + 1)k+1
,

then equation (1.1) has a nonoscillatory solution.

3. Sufficient Conditions for the Oscillation of Eq. (1.2)

In this section we extend the results from Section 2 to equation (1.2). We
remark that throughout this paper we will use the convention that 0 0 = 1. We
first recall the following theorem [2]:

Theorem B. Assume that pin ≥ 0 and

m∑

i=1

(lim inf
n→∞

pin)
(ki + 1)ki+1

ki
ki

> 1, ki ∈ N, i = 1, 2, ..., m.

Then every solution of (1.2) oscillates.
Note that Yan and Qian [7] proved Theorem B by using a different method

from that used in [2].

Lemma 3.1. Let ki ∈ {...,−3,−2,−1} and lim sup
n→∞

pin = pi for i = 1, 2, ..., m.

If pin ≤ 0 and

(3.1)
m∑

i=1

pi
(ki + 1)ki+1

ki
ki

> 1,
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then the following holds:
(i) the difference inequality

(3.2) xn+1 − xn +
m∑

i=1

pinxn−ki
≥ 0

has no eventually positive solution,
(ii) the difference inequality

(3.3) xn+1 − xn +
m∑

i=1

pinxn−ki
≤ 0

has no eventually negative solution.

Proof. (i) Assume that xn is an eventually positive solution of (3.2). So, there
is a number N1 > 0 such that xn > 0 for all n ≥ N1. Let zn =

xn+1

xn
. Then it

is clear that xn is nondecreasing and zn ≥ 1 for n ≥ N1. On the other hand,
dividing the inequality (3.2) by xn we have

(3.4) zn ≥ 1−
m∑

i=1

pin zn−ki−1...zn

for all n ≥ N1, where N = max{N1, N1 − k1, ..., N1 − km}. Let lim inf
n→∞

zn = q.

Of course, q ≥ 1. Taking lim inf as n →∞ on both sides of (3.4) we may write

q ≥ 1 +
m∑

i=1

lim inf
n→∞

(−pin) lim inf
n→∞

zn−ki−1... lim inf
n→∞

zn

= 1−
m∑

i=1

lim sup
n→∞

pin lim inf
n→∞

zn−ki−1... lim inf
n→∞

zn

= 1−
m∑

i=1

piq
−ki .

Therefore,
m∑

i=1

piq
−ki ≥ 1− q,

which implies that q 6= 1 and that

(3.5)
m∑

i=1

pi
q−ki

1− q
≤ 1.

Now consider the function f defined by f(q) =
q−ki

1− q
. Then, observe that
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f ′
(

ki

ki + 1

)
= 0 and f ′′

(
ki

ki + 1

)
< 0. It follows that

m∑

i=1

pi
(ki + 1)ki+1

ki
ki

=
m∑

i=1

pif

(
ki

ki + 1

)

≤
m∑

i=1

pi
q−ki

1− q
.

Hence by (3.5)

(3.6)
m∑

i=1

pi
(ki + 1)ki+1

ki
ki

≤ 1,

which contradicts condition (3.1).
(ii) By using similar method as in (i), the fact that (3.3) has no eventually

negative solution is clear under condition (3.1). 2

One can now deduce the following result.

Theorem 3.2. Let ki ∈ {. . . ,−3,−2,−1} and lim sup
n→∞

pin = pi for i = 1,

2, . . . , m. If pin ≤ 0 and condition (3.1) holds, then every solution of equation
(1.2) oscillates.

Proof. Lemma 3.1 yields the result immediately. 2

Theorem 3.2 and Theorem B contain the next results, respectively.

Corollary 3.3. Let ki ∈ {...,−3,−2,−1} for i = 1, 2, ...,m. If pin ≤ 0 and

(3.7)
m∑

i=1

(
sup
n∈N

pin

)
(ki + 1)ki+1

ki
ki

> 1,

then every solution of equation (1.2) oscillates.

Proof. Assume that (3.7) holds. Since lim sup
n→∞

pin ≤ sup
n∈N

pin and
(ki + 1)ki+1

ki
ki

<

0 for i = 1, 2, ..., m, then, by (3.7), we may write

m∑

i=1

lim sup
n→∞

pin
(ki + 1)ki+1

ki
ki

≥
m∑

i=1

(
sup
n∈N

pin

)
(ki + 1)ki+1

ki
ki

> 1.

Therefore, the proof follows from Theorem 3.2. 2
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Corollary 3.4. Let ki ∈ N for i = 1, 2, ..., m. If pin ≥ 0 and

(3.8)
m∑

i=1

(
inf
n∈N

pin

)
(ki + 1)ki+1

ki
ki

> 1,

then every solution of equation (1.2) oscillates.

Proof. Assume now that (3.8) holds. Since inf
n∈N

pin ≤ lim inf
n→∞

pin and also

(ki + 1)ki+1

ki
ki

> 0, we obtain from (3.8) that

m∑

i=1

lim inf
n→∞

pin
(ki + 1)ki+1

ki
ki

>

m∑

i=1

(
inf
n∈N

pin

)
(ki + 1)ki+1

ki
ki

> 1.

Combining this inequality with Theorem B the proof is completed. 2

We now obtain the next results.

Theorem 3.5. Let ki ∈ {. . . ,−3,−2,−1} and lim sup
n→∞

pin = pi for i = 1,

2, . . . , m. If pin ≤ 0 and

(3.9) m

(
m∏

i=1

|pi|
)1/m

>

∣∣∣∣∣
(k̄)k̄

(k̄ + 1)k̄+1

∣∣∣∣∣ ,

where k̄ = 1
m

∑m
i=1 ki. Then every solution of (1.2) oscillates.

Proof. Assume that (yn) is an eventually positive solution of equation (1.2).
Then, by using (3.5) and (3.6), and also applying the arithmetic-geometric mean
inequality, we conclude that

1 ≥
m∑

i=1

pi
q−ki

1− q

≥ m

[
m∏

i=1

pi
q−ki

1− q

]1/m

= m
q−(k̄)

q − 1

[
m∏

i=1

(−pi)

]1/m

≥ m

∣∣∣∣∣
(k̄ + 1)k̄+1

(k̄)k̄

∣∣∣∣∣

(
m∏

i=1

|pi|
)1/m

,

which contradicts (3.9). In a similar way one can obtain that equation (1.2) has
no eventually negative solution. 2
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