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COMPACT LINEAR OPERATORS, A SURVEY

Ricardo Almeida1

Abstract. In this paper we approach the Compact Linear Operators
Theory by the methods of Nonstandard Analysis. We present new proofs
of several known results and some new results as well.
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1. Introduction

Nonstandard Analysis (NSA) was invented by Abraham Robinson in the late
1960s, and among other things, provided an answer to the old question: what
is an infinitesimal number? He showed that we can embed the ordered field of
real numbers as an ordered subfield of a structure which, beside being a totally
ordered field, contains other numbers such as infinitesimal numbers, infinitely
large numbers, etc. Plus, all the valid sentences in the real structure continue
to be valid in the hyperreal structure. We give here a brief discussion of the
matter (for more details on the subject the reader is referred to [2], [8] or [10]).

Let S be a set sufficiently large to contain the elements we work on: re-
als numbers, vectors, functions, sets, sets of sets, etc. We denote by ∗S its
nonstandard extension.

Unless said otherwise, E and F are two arbitrary normed spaces. We will
begin by presenting some basic notions and theorems needed for our work.

Definition 1. Let x and y be two elements of ∗E. We say that

1. x is infinitesimal if for all positive standard r ∈ R holds |x| < r and we
write x ≈ 0;

2. x is finite if |x| < r for some positive standard r ∈ R; the set of the finite
elements of ∗E will be denoted by fin(∗E);

3. x is infinite if it is not finite;

4. x and y are infinitely close if |x − y| is infinitesimal and we denote
x ≈ y;
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5. x is near-standard if there exists a standard y with x ≈ y, and we denote
y = st(x); the set of the near-standard elements of ∗E will be denoted by
ns(∗E);

6. x is pre-near-standard if for every positive standard ε ∈ R there exists
a standard y with |x− y| < ε; the set of the pre-near-standard elements of
∗E will be denoted by pns(∗E);

7. The monad of an element x ∈ ∗E is the set

(1) µ(x) := {y ∈ ∗E| |y − x| ≈ 0}.

We have presented the previous concepts for normed spaces because they
are more elegant and intuitive, but some of them can be presented for metric
spaces (replacing |x− y| by d(x, y)) or even topological spaces. For example, if
(X, T ) is a topological space, for x ∈ X, we define

(2) µ(x) =
⋂

U∈Tx

∗U.

A point y ∈ ∗X is infinitely close x ∈ X if y ∈ µ(x). The set of near-standard
points is the set

(3) ns(∗X) =
⋃

x∈X

µ(x).

Theorem 2. [2] Let (X, T ) be a topological space and U ⊆ X a subset. Then

1. X is a Hausdorff space iff monads of distinct points in X are disjoint;

2. U is open iff µ(x) ⊆ ∗U , for all x ∈ U ;

3. U is closed iff µ(x) ∩ ∗U = ∅ for each x in the complement of U ; the
closure of U consists of those x ∈ X for which µ(x) ∩ ∗U 6= ∅;

4. x is an accumulation point of U iff µ(x) contains a point y ∈ ∗U different
from x;

5. U is compact iff every y ∈ ∗U is infinitely close a standard point x ∈ U .

Theorem 3. [2] A metric space (X, d) is complete iff pns(∗X) = ns(∗X).

Obviously, for all metric spaces (X, d) holds ns(∗X) ⊆ pns(∗X).

Theorem 4. [2] If E is a normed space, then ns(∗E) ⊆ fin(∗E). Moreover,
E is finite dimensional iff ns(∗E) = fin(∗E).
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A point here: if Φ is a formula in LS , the ∗-transformation ∗Φ is obtained
by replacing each constant symbol c in Φ by ∗c. For example, the star transfor-
mation of the sentence

(4) ∀x ∈ R ∀ε ∈ R+ ∃δ ∈ R+ ∀y ∈ R [|x− y| < δ ⇒ |2x− 2y| < ε]

is the sentence

(5) ∀x ∈ ∗R ∀ε ∈ ∗R+ ∃δ ∈ ∗R+ ∀y ∈ ∗R [|x− y| < δ ⇒ |2x− 2y| < ε].

One of the main results in Nonstandard Analysis is the Transfer Principle,
which states that a bounded sentence Ψ is true in LS iff ∗Ψ is true in L∗S . For
example, we know that

(6) ∀x, y ∈ R ∃n ∈ N x + y < n.

So, by the Transfer Principle, we have that

(7) ∀x, y ∈ ∗R ∃n ∈ ∗N x + y < n.

One important tool in Nonstandard Analysis are the hyperfinite sets. They
may contain infinite points but have all the properties possessed by finite sets.

Definition 5. Let A be a set. We say that A if finite (resp. hyperfinite) with
cardinality n ∈ N (resp. n ∈ ∗N) if there exists a bijection (resp. internal
bijection) f : {1, . . . , n} → A.

Any elementary mathematical result that holds for finite sets extends to a
similar result for hyperfinite sets by the Transfer Principle. For example, every
hyperfinite set of hyperreal numbers has a minimum and a maximum element.

The following theorem is also true.

Theorem 6. Discretization Principle [10] For any set X there exists an
hyperfinite set H such that

(8) X ⊆ H ⊆ ∗X.

Furthermore, X is infinite if and only if both inclusions are strict.

2. Compact Operators

We will present several known results related to compact linear operators.
All the proofs that we will present here are original and are, in our opinion,
easier to understand. When a result is already known we give references where
the reader can find a classical proof of it.

In the cases where E or F are finite dimensional spaces, the classical proofs
use the Riesz’s Lemma that states that a normed space is finite dimensional
iff the closed ball {x | |x| ≤ 1} is compact. In our proofs, we will use instead
Theorem 4.

We recall that a subset U of a topological space (X, T ) is called relatively
compact if U is a compact set.
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Theorem 7. The set U is relatively compact iff ∗U ⊆ ns(∗X).

Proof. The proof is an immediate application of Theorem 2, conditions 3 and
5. 2

Theorem 8. If (X, d) is a metric space and U ⊆ X, then ∗U ⊆ ns(∗X) iff
∗U ⊆ ns(∗X).

Proof. Since ∗U ⊆ ∗U , one of the implications is obvious. Let us prove the other
one. To begin with, we may write

(9) U = {x ∈ X | ∀n ∈ N ∃y ∈ U d(x, y) < 1/n} ,

and as a result

(10) ∗U = {x ∈ ∗X | ∀n ∈ ∗N∃y ∈ ∗U d(x, y) < 1/n} .

Let us fix x ∈ ∗U and n ∈ ∗N∞ (the set of positive infinite hyperintegers). Then
there exists y ∈ ∗U satisfying the condition x ≈ y. But ∗U ⊆ ns(∗X) and so
x ∈ ns(∗X). 2

For topological spaces the previous theorem is false as can be seen in the
next example. Let X = R with the topology T where the open sets are R, ∅ and
the intervals ]a,∞[, for a ∈ R. If we take U = {1}, we have that ∗U ⊆ ns(∗R)
(all standard elements are near-standard) but ∗U = ∗]−∞, 1], which contains
points that are not near-standard.

From the previous theorems we have the following corollary:

Corollary 9. If (X, d) is a metric space and U ⊆ X a subset, then U is
relatively compact iff ∗U ⊆ ns(∗X).

Again, for topological spaces this result is false.
Let (X, d) be a metric space and U ⊆ X. U is called totally bounded if

(11) ∀r > 0∃x1, . . . , xn ∈ X U ⊆
n⋃

i=1

Br(xi).

We will now prove some known results using nonstandard techniques.

Theorem 10. [4] Let (X, d) be a metric space and U ⊆ X. Then:

1. If U is relatively compact, then U is totally bounded.

2. If U is totally bounded and X is a complete space, then U is relatively
compact.

Proof.
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1. Assume that

(12) ∃r > 0∀n ∈ N∀x1, . . . , xn ∈ X ∃y ∈ U y /∈
n⋃

i=1

Br(xi),

i.e.,

(13) ∃r > 0∀n ∈ N∀x1, . . . , xn ∈ X ∃y ∈ U ∀i ∈ {1, . . . , n} d(xi, y) ≥ r.

Begin by fixing such r ∈ R+. By transfer,

(14) ∀n ∈ ∗N ∀x1, . . . , xn ∈ ∗X ∃y ∈ ∗U ∀i ∈ {1, . . . , n} d(xi, y) ≥ r.

Let H := {y1, . . . yN} be an hyperfinite set satisfying X ⊆ H ⊆ ∗X.
Therefore there exists y ∈ ∗U with d(yi, y) ≥ r, for all yi ∈ H. Since
X ⊆ H, we have that y /∈ ns(∗X).

2. If X is a complete set, if follows from Theorem 3 that ns(∗X) = pns(∗X).
Let us take x ∈ ∗U and a standard r > 0. The set U is totally bounded,
and so U ⊆ ∪n

i=1Br(xi), for some xi ∈ X and n ∈ N. Thus

(15) ∗U ⊆ ∗
(

n⋃

i=1

Br(xi)

)
=

n⋃

i=1

∗Br(xi)

and x ∈ ∗Br(xi), for some xi ∈ X which proves that x ∈ pns(∗X), ending
the proof.

2

Definition 11. Let T : E → F be a linear operator. We say that T is com-
pact if for all bounded subset M of E, T (M) is relatively compact.

We will now present a new proof of a theorem due to Robinson:

Theorem 12. [8] A linear operator T : E → F is compact iff T (fin(∗E)) ⊆
ns(∗F ).

Proof. Suppose that x ∈ fin(∗E); therefore x ∈ ∗Bst(|x|)+1(0). Since T is
compact, T (Bst(|x|)+1(0)) is relatively compact and consequently, by Corollary
9, we obtain the desired.

To prove the reverse, let M be a bounded set. We will prove that ∗T (M) ⊆
ns(∗F ). Fix x ∈ ∗T (M) and let x = T (y), for some y ∈ ∗M . By the hypothesis
T (y) ∈ ns(∗F ) and so x ∈ ns(∗F ). 2

For our next theorem we will need the following result:
Given a sequence (xn)n∈N in a metric space (X, d), then the sequence has

a convergent subsequence iff there exist L ∈ X and n ∈ ∗N∞ for which xn ≈ L
(see [2]).
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Theorem 13. [4] Let T : E → F be a linear operator. If T is compact then
for every bounded sequence (xn)n∈N in E, there exists a convergent subsequence
of (Txn)n∈N in F .

Proof. Let (xn)n∈N be a bounded sequence. Then there is a standard positive
real number R satisfying |xn| < R, for all positive integers n. Hence, by the
Transfer Principle, for all n ∈ ∗N, xn is finite and consequently T (xn) ∈ ns(∗F ).
Fixing any n ∈ ∗N∞ and defining L := st(T (xn)), we get the desired. 2

Theorem 14. [5] Every compact linear operator is bounded.

Proof. Let S1 denote the unit sphere in E and H := {x1, . . . , xN} an hyperfinite
set with S1 ⊆ H ⊆ ∗S1. For each xi ∈ H we have that |xi| = 1 and so
T (xi) ∈ ns(∗F ) ⊆ fin(∗F ). Define ki := |T (xi)| ∈ fin(∗R) and let K :=
max{ki | i = 1, . . . , N} ∈ fin(∗R). Thus |T (S1)| < st(K) + 1. 2

Theorem 15. [6] The set of compact operators {T : E → F} is closed if F is
a Banach space.

Proof. Fix any x ∈ fin(∗E). Since F is complete, it follows that

(16) T (x) ∈ ns(∗F ) ⇔ T (x) ∈ pns(∗F ).

Fix now 0 < ε ∈ R. Moreover, |Tn − T | → 0, and so there exists n ∈ N such
that

(17) ∀y ∈ E |Tn(y)− T (y)| < ε

2
.

By the Transfer Principle, |Tn(x) − T (x)| < ε/2. Since Tn(x) ∈ ns(∗F ), there
exists L := st(Tn(x)) and thus |L− T (x)| < ε. 2

Theorem 16. [3] The compact operators T : E → F form a linear subspace
of L(E, F ).

Proof. Straightforward. 2

Theorem 17. [3] If T is a bounded linear operator with finite dimensional
range T (E), then T is compact.

Proof. Fix x ∈ fin(∗E); then T (x) ∈ fin(∗T (E)) = ns(∗T (E)) ⊆ ns(∗F ). 2

Theorem 18. [1] If E is finite dimensional, then every linear operator T :
E → F is compact.
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Proof. For x ∈ fin(∗E) = ns(∗E), since T is a continuous map, it follows that
T (x) ≈ T (st(x)) ∈ F and so T (x) ∈ ns(∗F ). 2

Theorem 19. [6] If T : E → F is an onto compact operator, invertible with
continuous inverse, then dim(E) < ∞.

Proof. Fix x ∈ fin(∗E). So there is a ∈ F with T (x) ≈ a. Since T is onto and
T−1 is continuous, it follows that x ≈ T−1(a). Therefore fin(∗E) = ns(∗E). 2

Theorem 20. [3] The identity operator I : E → E is compact iff E is finite
dimensional.

Proof. Simply note that

(18) dim(E) < ∞⇔ ns(∗E) = fin(∗E).

2

Theorem 21. [1] Let T : E → F be a compact operator and A : E1 → E,
B : F → F1 two bounded linear operators. Then BTA is also compact.

Proof. Let x ∈ fin(∗E1); then A(x) ∈ fin(∗E). Since T is compact, TA(x) ∈
ns(∗F ) and therefore BTA(x) ∈ ns(∗F1) because B is continuous. 2

3. Weak Convergence and Weak Cauchy Sequences

Definition 22. Let (xn)n be a sequence in E. We say that

1. (xn)n is (strongly) convergent to x if |xn − x| → 0 as n → ∞ and we
denote xn → x.

2. (xn)n is weakly convergent to x if for all bounded linear functionals
f : E → R, the sequence (f(xn))n is convergent to f(x) and we write
xn ⇀ x.

3. (xn)n is a weak Cauchy sequence if for all bounded linear functionals
f : E → R, the sequence (f(xn))n is a Cauchy sequence in R.

Theorem 23. [2] Given a sequence (xn)n in E, we have that (xn)n converges
to x iff xn ≈ x for all n ∈ ∗N∞ and (xn)n is a Cauchy sequence iff xn ≈ xm

for all n,m ∈ ∗N∞.

Let us begin by proving the following theorem:
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Theorem 24. Suppose that xn ⇀ x. Then

(19) ∀n ∈ ∗N∞ xn ∈ ns(∗E) ⇒ xn ≈ x.

Proof. Let f : E → R be a bounded linear functional and n ∈ ∗N∞ with
xn ∈ ns(∗E). Then

(20) f(xn) ≈ f(x) ⇒ f(st(xn)− x) = 0.

Since it is true for all the functionals, it implies that st(xn)−x = 0, i.e., xn ≈ x.
2

The reverse of this theorem is false, even if we assume that the sequence
is bounded. For example, let y = (1, 0, 1, 0, 1, . . .) ∈ l∞ and Ty : l1 → R
defined by Ty(x) =

∑∞
n=1 ynxn; then Ty is a bounded linear functional since

|Ty(x)| ≤ |y|∞|x|1. Define the sequence (x)n in l1

(21) xn(i) :=
{

0, i 6= n
1, i = n

Note , if n ∈ ∗N∞ then xn /∈ ns(∗l1). So this sequence satisfies the condition

(22) ∀n ∈ ∗N∞ xn ∈ ns(∗l1) ⇒ xn ≈ x,

for any x, but the sequence (T (xn))n does not converge to any real number.

Corollary 25. [4] Let (xn)n be a sequence in E. If dim(E) < ∞ then xn ⇀ x
iff xn → x.

Proof. It is obvious that if xn → x then xn ⇀ x. On the other hand, if xn ⇀ x
then the sequence (xn)n is bounded (cf. [4]) and therefore xn ∈ fin(∗E) =
ns(∗E), for all n ∈ ∗N. Thus xn → x by Theorem 24. 2

Theorem 26. [7] Let T be a compact linear operator and xn ⇀ x in E. Then
T (xn) → T (x) in F .

Proof. We will begin proving that T (xn) ⇀ T (x). Let g : F → R be a
bounded linear function on F and define f := gT ; then f is also a bounded linear
functional (on E). By the hypothesis, f(xn) → f(x), i.e., g(Txn) → g(Tx).
Since g was any functional, T (xn) ⇀ T (x). Lastly, since xn ⇀ x then (xn)n is
bounded and so T (xn) ∈ ns(∗F ), for all n ∈ ∗N. By Theorem 24, T (xn) ≈ T (x)
for all n ∈ ∗N∞. 2

Theorem 27. Let (xn)n be a weak Cauchy sequence in E. Then

(23) ∀n,m ∈ ∗N∞ xn, xm ∈ ns(∗E) ⇒ xn ≈ xm.
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Proof. Let (xn)n be a weak Cauchy sequence, n,m ∈ ∗N∞ with xn, xm ∈ ns(∗E)
and f : E → R a bounded linear functional. Then

(24) f(xn) ≈ f(xm) ⇒ f(st(xn)− st(xm)) = 0 ⇒ xn ≈ xm.

2

Corollary 28. If dim(E) < ∞, then (xn)n is a weak Cauchy sequence iff
(xn)n is a Cauchy sequence.

Proof. Observe that if (xn)n is a weak Cauchy sequence, then it is bounded (cf.
[4]) and so, for all n ∈ ∗N∞, xn, xm ∈ fin(∗E) = ns(∗E). 2

Theorem 29. [5] Let T be a compact operator and (xn)n a weak Cauchy se-
quence in E. Then (T (xn))n is a Cauchy sequence in F .

Proof. Let g : F → R be a bounded linear funcional on F and f := gT .
Therefore, for n,m ∈ ∗N∞, f(xn) ≈ f(xm). Thus

(25) g(T (xn)− T (xm)) ≈ 0 ⇔ g(st(T (xn))− st(T (xm))) = 0 ⇔

(26) st(T (xn))− st(T (xm)) = 0.

So T (xn) ≈ T (xm), proving that (T (xn))n is a Cauchy sequence. 2
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