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FROM FIRST ORDER PDE-SYSTEMS TO
HARMONIC MAPS BETWEEN GENERALIZED

LAGRANGE SPACES

Mircea Neagu1

Abstract. Section 1 defines the geometrical notion of a harmonic map
between two generalized Lagrange spaces. Section 2 analyzes the particu-
lar case of the harmonic maps between two Lagrange spaces of electrody-
namics. Section 3 proves that the smooth solutions of certain important
first order DE- or PDE-systems are harmonic maps between convenient
generalized Lagrange spaces. Section 4 describes the common main geo-
metrical properties of the generalized Lagrange structures which convert
the solutions of the initial first order DE- or PDE-systems into harmonic
maps.
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1. Introduction

Let (Mm, gαβ) and (Nn, hij) be two generalized Lagrange spaces, where m,
respectively n, is the dimension of the manifold M , respectively N. The man-
ifold M , respectively N , has the coordinates (aα)α=1,m, respectively (xi)i=1,n.
In these notations, the fundamental generalized Lagrange metrical tensors are
locally expressed by:

1) gαβ = gαβ(a, b), ∀ α, β = 1,m, where

(a, b) = (a1, ...am, b1, ..., bm)

are the adapted coordinates on the tangent bundle TM ;
2) hij = hij(x, y), ∀ i, j = 1, n, where

(x, y) = (x1, ..., xn, y1, ..., yn)

are the adapted coordinates on the tangent bundle TN.

Remark 1.1. In this paper, the first m coordinates of the manifold M × N
are indexed by α, β, γ, ... and the last n coordinates of the manifold M ×N are
indexed by i, j, k, ....
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Definition 1.2. A tensor field P of type (1, 2) on the manifold M×N, having
all components null, except for P β

αi(a, x) and P j
αi(a, x), is called a tensor of

connection.

Remark 1.3. An ”a priori” fixed tensor of connection P allows us to con-
struct two privileged directions b and y for the metrical tensors gαβ(a, b) and
hij(x, y), which will be used in a natural construction of the notion of a har-
monic map between the generalized Lagrange spaces M and N.

Now, let us fix an arbitrary tensor of connection P on M × N and let us
assume that the manifold M is connected, compact, orientable and endowed
with a Riemannian metric ϕαβ(a).

Remark 1.4. The above assumptions ensure the existence of a volume ele-
ment and, implicitly, of a theory of integration on the manifold M.

In our geometrical context, we can introduce the following notion:

Definition 1.5. The functional

EP
gϕh : C∞(M, N) → R

defined by

EP
gϕh(f) =

1
2

∫

M

gαβ(a, b(a, xk, xk
γ))hij(f(a), y(a, xk, xk

γ))xi
αxj

β

√
ϕda,

where the smooth map f ∈ C∞(M,N) is locally expressed by

a = (a1, ..., am) ∈ M
f→ (x1(a), ..., xn(a)) ∈ N,

and

xi
α =

∂xi

∂aα
, ϕ = det(ϕαβ),

b(a, xk, xk
γ) = bγ(a)

∂

∂aγ

∣∣∣∣
a

def
= ϕαβ(a)xi

α(a)P γ
βi(a, f(a))

∂

∂aγ

∣∣∣∣
a

,

y(a, xk, xk
γ) = yk(a)

∂

∂xk

∣∣∣∣
f(a)

def
= ϕαβ(a)xi

α(a)P k
βi(a, f(a))

∂

∂xk

∣∣∣∣
f(a)

,

is called the
(

P
g ϕ h

)
-energy functional.

Definition 1.6. A smooth map f ∈ C∞(M, N) which is a critical point of the
energy functional EP

gϕh is called a
(

P
g ϕ h

)
-harmonic map
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or a harmonic map between the generalized Lagrange spaces

(Mm, gαβ(a, b)) and (Nn, hij(x, y))

with respect to the tensor of connection P and the Riemannian metric
ϕαβ(a).

Example 1.7. If gαβ(a, b) = ϕαβ(a) and hij(x, y) = hij(x) are Riemannian
metrics and the tensor of connection P is an arbitrary one, we recover the clas-
sical definition of a harmonic map between two Riemannian manifolds
[1]. We remark that, in this particular case, the definition of the

(
P

ϕ ϕ h

)
-harmonic maps

is independent of the choice of the tensor of connection P.

Example 1.8. If we consider that M = [a, b] ⊂ R, ϕ11(t) = g11(t) = 1, where
a1 not= t, and the tensor of connection is

P = (P 1
1i(t, x), P j

1i(t, x) = δj
i ),

then we obtain

C∞(M, N) not= Ωa,b(N) = {c : [a, b] → N | c− C∞ differentiable}.
Moreover, the energy functional EP

11h is

EP
11h(c) =

1
2

∫ b

a

hij(c(t), ċ(t))
dxi

dt

dxj

dt
dt, ∀ c ∈ Ωa,b(N),

where the smooth curve c is locally expressed by

t ∈ [a, b] c→ (x1(t), ..., xn(t)) ∈ N,

and

ċ(t) =
dxi

dt
· ∂

∂xi

∣∣∣∣
c(t)

.

In conclusion, the
(

P
1 1 h

)
-harmonic curves

are exactly the geodesics of the generalized Lagrange space (N,hij(x, y)) [2].

Example 1.9. If we take N = R, h11(x) = 1, where x1 not= x, and the tensor
of connection is of the form

P = (P β
α1(a, x) = δβ

α, P 1
β1(a, x)),
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then we obtain

C∞(M,N) not= F(M) = {f : M → R | f − C∞ differentiable}.
Moreover, the energy functional EP

gϕ1 becomes

EP
gϕ1(f) =

1
2

∫

M

gαβ(a, gradϕf)xαxβ
√

ϕda, ∀ f ∈ F(M),

where the smooth function f is locally expressed by

a = (a1, ..., am) ∈ M
f→ x(a) ∈ R,

and

xα =
∂x

∂aα
, gradϕf =

[
ϕαβ(a)xα(a)

] · ∂

∂aβ

∣∣∣∣
a

.

2. Harmonic maps between two Lagrange spaces of
electrodynamics

Let (Mm, LM ) and (Nn, LN ) be Lagrange spaces with the Lagrangians

LM (a, b) = gαβ(a)bαbβ + gαβ(a)Uα(a)bβ + F (a)

and
LN (x, y) = hij(x)yiyj + hij(x)V i(x)yj + G(x),

where

• gαβ (resp. hij) is a Riemannian metric on the manifold M (resp. N)
representing the gravitational potentials on M (resp. N);

• Uα (resp. V i) is a vector field on M (resp. N) representing the electro-
magnetic potentials on M (resp. N);

• F (resp. G) is a smooth function on M (resp. N) representing the poten-
tial function on M (resp. N).

The fundamental metrical tensors of these Lagrangians are the Riemannian
metrics

gαβ(a) =
1
2

∂2LM

∂bα∂bβ
and hij(x) =

1
2

∂2LN

∂yi∂yj
.

Taking now an arbitrary tensor of connection P on M×N, the energy functional
EP

gϕh becomes

EP
gϕh(f) =

1
2

∫

M

gαβ(a)hij(f(a))xi
αxj

β

√
ϕda

not= Egϕh(f), ∀ f ∈ C∞(M, N).

Remark 2.1. We remark that, in this particular case, the energy functional
Egϕh is independent of the choice of the tensor of connection P.
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Obviously, the Euler-Lagrange equations of the energy functional Egϕh are
the equations of the harmonic maps between the Lagrange spaces of electrody-
namics (Mm, LM ) and (Nn, LN ) with respect to the Riemannian metric ϕαβ(a),
namely

gαβ

{
xk

αβ −
[
Gγ

αβ +
1
2

∂

∂aα

(
ln

g

ϕ

)
δγ

β

]
xk

γ + Hk
ijx

i
αxj

β

}
= 0, ∀ k = 1, n,

where

• xk
αβ =

∂2xk

∂aα∂aβ
, g = det(gαβ), ϕ = det(ϕαβ);

• Gγ
αβ(a) are the Christoffel symbols of the Riemannian metric gαβ(a);

• Hk
ij(x) are the Christoffel symbols of the Riemannian metric hij(x).

Remark 2.2. If we have gαβ(a) = ϕαβ(a), then we recover the classical equa-
tions of the harmonic maps between the Riemannian manifolds (Mm, gαβ(a))
and (Nn, hij(x)) [1].

Remark 2.3. The coefficients

∆γ
αβ = Gγ

αβ +
1
2

∂

∂aα

(
ln

g

ϕ

)
δγ

β

represent the components of a linear connection on the manifold M , which is
produced by the Riemannian metrics gαβ(a) and ϕαβ(a).

Using the last remark, we can introduce the following definition:

Definition 2.4. A curve c : I ⊂ R→ M which is an autoparallel curve of the
linear connection ∆γ

αβ produced by the Riemannian metrics gαβ(a) and ϕαβ(a)
is called a (g, ϕ)-geodesic on the manifold M .

Remark 2.5. If the curve c is locally expressed by c(t) = (aα(t)), then the
curve c is a (g, ϕ)-geodesic on the manifold M if and only if

(2.1)
d2aγ

dt2
= −∆γ

αβ

daα

dt

daβ

dt
, ∀ γ = 1,m.

Remark 2.6. If we take gαβ(a) = ϕαβ(a), then we recover the classical defi-
nition of a geodesic on the Riemannian manifold (Mm, gαβ(a)).

Remark 2.7. It is obvious that a (g, ϕ)-geodesic on the manifold M is a
reparametrized geodesic of the Riemannian metric gαβ(a).
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Theorem 2.8. Let f : (Mm, LM ) → (Nn, LN ) be a smooth map which carries
the (g, ϕ)-geodesics from M into h-geodesics on N . Then the smooth map f is
a harmonic map between the Lagrange spaces of electrodynamics (M,LM ) and
(N,LN ) with respect to the Riemannian metric ϕαβ(a).

Proof. Let c : I ⊂ R → M , locally expressed by c(t) = (aα(t)), be a (g, ϕ)-
geodesic on the manifold M . Then, the relations (2.1) hold. Because the curve
c(t) = f(c(t)), locally expressed by c(t) = (xi(aα(t))), is an h-geodesic on the
manifold N , it follows that we have

(2.2)
d2xk

dt2
+ Hk

ij

dxi

dt

dxj

dt
= 0, ∀ k = 1, n.

But, it is obvious that we also have

dxk

dt
= xk

α

daα

dt
and

d2xk

dt2
= xk

αβ

daα

dt

daβ

dt
+ xk

γ

d2aγ

dt2
, ∀ k = 1, n,

Replacing these relations into (2.2), we obtain

d2aγ

dt2
xk

γ + xk
αβ

daα

dt

daβ

dt
+ Hk

ijx
i
αxj

β

daα

dt

daβ

dt
= 0, ∀ k = 1, n.

Now, using the relations (2.1), it follows that we have

(
xk

αβ −∆γ
αβxk

γ + Hk
ijx

i
αxj

β

) daα

dt

daβ

dt
= 0, ∀ k = 1, n.

Obviously, because the (g, ϕ)-geodesic c on M is an arbitrary one, it follows
what we were looking for. 2

3. Geometrical interpretations of solutions of certain first
order PDE-systems

The problem of finding a geometrical structure of Riemannian type on a man-
ifold M such that the orbits of an arbitrary vector field X should be geodesics
was intensively studied by Sasaki. The results were not satisfactory, but, in his
study, Sasaki discovered the well known almost contact structures on a manifold
of odd dimension [5]. After the introduction of the generalized Lagrange spaces
by Miron and Anastasiei [2], the same problem was resumed by Udrişte [6], [8].
In his studies, he succeded to discover a Lagrange structure on M , depending
on the vector field X and an associated (1, 1)-tensor field, such that the orbits
of C2 class should be geodesics. Moreover, he formulated some more general
problems [6]:

1) Are there structures of Lagrange type such that the solutions of a first
order PDE-systems to be harmonic maps?

2) What means a harmonic map in such Lagrange structures?
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A partial answer to these questions is offered by the author of this paper in
the work [4], using the notion of harmonic map on a direction between a Rie-
mannian manifold and a generalized Lagrange manifold. The generalized notion
of a harmonic map between two generalized Lagrange manifolds, introduced in
[7], allows us to extend the results of the previous papers [4], [6], [8] and ob-
tain beautiful geometrical interpretations for the solutions of certain first order
PDE-systems in the sense of Udrişte questions. In this direction, note that for
every smooth map f ∈ C∞(M, N) we use the notation

δf = xi
αdaα|a ⊗ ∂

∂xi

∣∣∣∣
f(a)

∈ Γ(T ∗M ⊗ TN).

Now, let us consider that T is an arbitrary tensor of type (1, 1) on the manifold
M ×N , having all components equal to zero, except for

(T i
α(a, x)), ∀ i = 1, n, α = 1,m.

In this context, the tensor field T produces the first order PDE-system

(3.1) δf = T ⇔ ∂xi

∂aα
= T i

α(a, f(a)).

Remark 3.1. If (M, ϕαβ(a)) and (N, ψij(x)) are Riemannian manifolds, then
we can construct a natural scalar product on Γ(T ∗M ⊗ TN) by

〈T, S〉 = ϕαβ(a)ψij(x)T i
α(a, x)Sj

β(a, x),

where

T = T i
α(a, x) daα|a ⊗

∂

∂xi

∣∣∣∣
x

and S = Sj
β(a, x) daβ

∣∣
a
⊗ ∂

∂xj

∣∣∣∣
x

.

Under the previous assumptions, we can prove the following result:

Theorem 3.2. If (M, ϕ) and (N, ψ) are Riemannian manifolds and the map
f ∈ C∞(M, N) is a solution of the first order PDE-system (3.1), then f is a
solution of the variational problem associated to the functional

LT : C∞(M, N)\{f | ∃ a ∈ M such that 〈δf, T 〉 (a) = 0} → R+

defined by

LT (f) =
1
2

∫

M

||δf ||2||T ||2
〈δf, T 〉2

√
ϕda =

1
2

∫

M

||T ||2
〈δf, T 〉2 ϕαβψijx

i
αxj

β

√
ϕda.

Proof. The Cauchy inequality for the scalar product 〈 , 〉 holds good. It follows
that the following inequality is true:

〈T, S〉2 ≤ ||T ||2||S||2, ∀ T, S ∈ Γ(T ∗M ⊗ TN),
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with equality if and only if there exists K ∈ F(M × N) such that T = KS.
Consequently, for every smooth map f ∈ C∞(M, N) we have

LT (f) =
1
2

∫

M

||δf ||2||T ||2
〈δf, T 〉2

√
ϕda ≥ 1

2

∫

M

√
ϕda.

Obviously, if the map f is a solution of the first order PDE-system (3.1), then
we obtain

LT (f) =
1
2

∫

M

√
ϕda,

that is the map f is a global minimum point for the functional LT . 2

Remark 3.3. The global minimum points of the functional LT are solutions
of the first order PDE-system δf = KT , where K ∈ F(M ×N), not necessarily
with K = 1.

Remark 3.4. In some particular cases of the first order PDE-system (3.1)
the functional LT becomes exactly a functional of the type

(
P

g ϕ h

)
-energy.

This fact means that the solutions of these particular first order PDE-systems
become harmonic maps between two convenient generalized Lagrange spaces.

Fundamental examples.

1. Orbits

For M = ([a, b], ϕ11(t) = 1) and T = ξ ∈ Γ(TN), the first order PDE-system
(3.1) becomes the DE-system of orbits for ξ, namely

(3.2)
dxi

dt
= ξi(c(t)),

where the curve c : [a, b] → N is locally expressed by c(t) = (xi(t)). Moreover,
the functional Lξ is

Lξ(c) =
1
2

b∫

a

||ξ||2ψ[
ξb(ċ(t))

]2 ψij

dxi

dt

dxj

dt
dt,

where

ξb(ċ(t)) = ψklξ
l dxk

dt
.

Hence it folows that the functional Lξ is a
(

P
1 1 h

)
-energy
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(see Example 1.8). The generalized Lagrange metric on the manifold N is

hij : TN\{(x, y) | ξb(y) = 0} → R,

where
ξb(y) = ψklξ

lyk

and

hij(x, y) =
||ξ||2ψ[
ξb(y)

]2 ψij(x) = ψij(x) exp
[
2 ln

||ξ||ψ
|ξb(y)|

]
.

Remark 3.5. This DE-system was studied in other way by Udrişte in the
papers [6], [8].

2. Pfaffian systems

For N = (R, ψ11(x) = 1) and T = A ∈ Γ(T ∗M), the first order PDE-system
(3.1) becomes the Pfaffian system

(3.3)
∂x

∂aα
= Aα(a),

where the function f : M → R is locally expressed by f(a) = x(a). Moreover,
the functional LA becomes

LA(f) =
1
2

∫

M

||A||2ϕ
[A(gradϕf)]2

ϕαβxαxβ
√

ϕda.

Hence it follows that the functional LA is a
(

P
g ϕ 1

)
-energy

(see Example 1.9). The generalized Lagrange metric on the manifold M is

gαβ : TM\{(a, b) | A(b) = 0} → R,

where
A(b) = Aαbα

and

gαβ(a, b) =
[A(b)]2

||A||2ϕ
ϕαβ(a) = ϕαβ(a) exp

[
2 ln

|A(b)|
||A||ϕ

]
.

Remark 3.6. The preceding cases appear also in the paper [7] and, from an-
other point of view, in the paper [4]. The following case is the main novelty of
this paper.
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3. A general case

If we have

T i
α(a, x) =

t∑
r=1

ξi
r(x)Ar

α(a),

where {ξr}r=1,t ⊂ Γ(TN) are vector fields on N and {Ar}r=1,t ⊂ Γ(T ∗M) are
1-forms on M , then the first order PDE-system (3.1) reduces to

(3.4)
∂xi

∂aα
=

t∑
r=1

ξi
r(f(a))Ar

α(a).

Remark 3.7. Without loss of generality of the problem, we can suppose that
{ξr}r=1,t ⊂ Γ(TN) (resp. {Ar}r=1,t ⊂ Γ(T ∗M)) are linearly independent.
Under these assumptions, we have t ≤ min{m,n}, where m = dim M and
n = dim N.

3.1. Let us assume that {ξr}r=1,t ⊂ Γ(TN) is an orthonormal system
of vector fields with respect to the Riemannian metric ψij(x) on N and let
B ∈ Γ(T ∗M) be an arbitrary unit 1-form on M. Under these assumptions, by a
simple calculation, we obtain

||T ||2 = ϕαβψijξ
i
rA

r
αξj

sA
s
β =

t∑
r,s=1

〈ξr, ξs〉ψ 〈Ar, As〉ϕ =
t∑

r=1

||Ar||2ϕ,

〈δf, T 〉 = ϕαβψijx
i
αξj

rA
r
βBµBµ.

Defining the tensor of connection by

P γ
iβ(a, x) = ψij(x)ξj

r(x)Ar
β(a)Bγ(a)

and putting
bγ = ϕαβxi

αP γ
iβ ,

the functional LT takes the form

LT (f) =
1
2

∫

M

∑t
r=1 ||Ar||2ϕ
[B(b)]2

ϕαβψijx
i
αxj

β

√
ϕda =

=
1
2

∫

M

gαβ(a, b)ψij(f(a))xi
αxj

β

√
ϕda.

Consequently, the functional LT is a
(

P
g ϕ ψ

)
-energy.

The generalized Lagrange metric on the manifold M is

gαβ : TM\{(a, b) | B(b) = 0} → R,
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where
B(b) = Bαbα

and

gαβ(a, b) =
[B(b)]2∑t
r=1 ||Ar||2ϕ

ϕαβ(a) = ϕαβ(a) exp


2 ln

|B(b)|√∑t
r=1 ||Ar||2ϕ


 .

3.2. As above, let us assume that {Ar}r=1,t ⊂ Γ(T ∗M) is an orthonormal
system of 1-forms with respect to the metric ϕαβ(a) on M and let X ∈ Γ(TN)
be an arbitrary unit vector field on N. By analogy to 3. 1. we have

||T ||2 =
t∑

r=1

||ξr||2ψ and 〈δf, T 〉 = ϕαβψijx
i
αξj

rA
r
βXkXk.

Taking the tensor of connection

P k
iβ(a, x) = ψij(x)ξj

r(x)Ar
β(a)Xk(x)

and putting
yk = ϕαβxi

αP k
iβ ,

the functional LT takes the form

LT (f) =
1
2

∫

M

∑t
r=1 ||ξr||2ψ
[Xb(y)]2

ϕαβψijx
i
αxj

β

√
ϕda =

=
1
2

∫

M

ϕαβ(a)hij(f(a), y)xi
αxj

β

√
ϕda.

Obviously, the functional LT is a
(

P
ϕ ϕ h

)
-energy.

The generalized Lagrange metric tensor on the manifold N is

hij : TN\{(x, y) | Xb(y) = 0} → R,

where
Xb(y) = ψklX

lyk

and

hij(x, y) =

∑t
r=1 ||ξr||2ψ
[Xb(y)]2

ψij(x) = ψij(x) exp


2 ln

√∑t
r=1 ||ξr||2ψ
|Xb(y)|


 .

Remark 3.8. We assumed above the a priori existence of a Riemannian
metric ϕ (resp. ψ) on the manifold M (resp. N) such that the system of
covectors {Ar}r=1,t (resp. of vectors {ξr}r=1,t) is orthonormal. This fact is
always possible. In conclusion, our assumptions upon the orthonormality of
the above systems of covectors or vectors do not restrict the generality of the
problem.
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4. Generalized Lagrange geometry associated to certain
first order PDE-systems

We remark that in the studies of all preceding cases of first order PDE-
systems we proved that the smooth solutions of the initial PDE-system become
harmonic maps between two generalized Lagrange spaces, in the sense defined
in this paper. It is important to note that the generalized Lagrange structures
that convert these solutions into harmonic maps are of the type

GLn = (Mn, e2σ(x,y)γij(x)),

where σ : TM\{Hyperplane} → R is a smooth function. We emphasize that
in these spaces, using the ideas exposed in [2] and [3], we can construct a gen-
eralized Lagrange geometry and a field theory. Obviously, these geometrical
Lagrange theories can be regarded as natural ones, associated to the studied
first order PDE-system. In this direction, we assume that the generalized La-
grange space GLn satisfies the following axiom:

Axiom: The space GLn is endowed with the nonlinear connection

N i
j(x, y) = Γi

jk(x)yk,

where Γi
jk(x) are the Christoffel symbols of the Riemannian metric γij(x).

Under the preceding axiom, the generalized Lagrange space GLn verifies a
constructive-axiomatic formulation of General Relativity due to Ehlers, Pirani
and Schild [2]. Moreover, the space GLn represents a convenient relativistic
geometrical model because it has the same conformal and projective properties
as the Riemannian space Rn = (M, γij(x)).

We recall that in the generalized Lagrangian theory of electromagnetism,
the electromagnetic tensors Fij and fij of the generalized Lagrange space GLn

are

Fij =
(

gip
δσ

δxj
− gjp

δσ

δxi

)
yp, fij =

(
gip

∂σ

∂yj
− gjp

∂σ

∂yi

)
yp.

In the sequel, developping the formalism presented in [2], [3] and denoting by
ri
jkl the curvature tensor field of the Riemannian metric γij(x), the following

Maxwell equations of the electromagnetic tensors Fij and fij hold:





Fij|k + Fjk|i + Fki|j = −∑
(i,j,k) gipr

h
qjk

∂σ

∂yh
ypyq,

Fij |k + Fjk|i + Fki|j = −(fij|k + fjk|i + fki|j),

fij |k + fjk|i + fki|j = 0,

where |i (resp. |a) represents the h− (resp. v−) covariant derivative induced by
the Cartan canonical metrical d-connection CΓ(N) of the generalized Lagrange
space GLn.
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In the construction of the gravitational field equations of the generalized
Lagrange space GLn we use the notations:





rij = rk
ijk, r = γijrij ,

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,

σH = γkl δσ

δxk

δσ

δxl
, σV = γab ∂σ

∂ya

∂σ

∂yb
, σ = γijσij , σ̇ = γabσ̇ab,

where

σij =
δσ

δxi
|j +

δσ

δxi

δσ

δxj
− 1

2
γijσ

H , σ̇ab =
∂σ

∂ya

∣∣∣∣
b

+
∂σ

∂ya

∂σ

∂yb
− 1

2
γabσ

V .

In this context, the Einstein equations of the generalized Lagrange space GLn

take the form 



rij − 1
2
rγij + tij = KTH

ij

(2− n)(σ̇ab − σ̇γab) = KTV
ab,

where TH
ij and TV

ab are the h− and the v−components of the energy momentum
tensor field, K is the gravific constant and

tij = (n− 2)(γijσ − σij) + γijrsty
sγtp ∂σ

∂yp
+

∂σ

∂yi
ra
tjayt − γjsγ

ap ∂σ

∂yp
rs
itayt.
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