Novi Sad J. Math. Vol. 37, No. 1, 2007, 107-114

COMPLEXITY OF MAL'CEV INTERPOLATION¹

E. Aichinger², D. Mašulović³ and R. Pöschel⁴

Abstract. A classical result in near-ring theory tells that the 4-interpolation property implies the *n*-interpolation property for all $n \in \mathbb{N}$. In the present note we are interested in the complexity of a special kind of interpolating terms which can be constructed from the 4-interpolations.

AMS Mathematics Subject Classification (2000): 08A40, 16Y30

 $Key\ words\ and\ phrases:$ near-ring, interpolation, local functional completeness

1. Introduction

Let A be a set with at least two elements, let $\mathbf{A} = (A, F)$ be an algebra and let $\operatorname{Pol}_k \mathbf{A}$ denote the set of k-ary polynomials of an algebra \mathbf{A} and $\operatorname{Pol} \mathbf{A} = \bigcup_{k \ge 1} \operatorname{Pol}_k \mathbf{A}$. An *n*-interpolation problem of dimension k is a $2 \times n$ matrix $P = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{pmatrix}$ such that

- $a_1,\ldots,a_n\in A;$
- $\mathbf{x}_1, \ldots, \mathbf{x}_n \in A^k$ and $\mathbf{x}_i \neq \mathbf{x}_j$ whenever $i \neq j$.

A solution to P is a polynomial $f \in \operatorname{Pol}_k \mathbf{A}$ such that $f(\mathbf{x}_i) = a_i$ for all i. A set $F \subseteq A^{A^k}$ of k-ary operations has the *n*-interpolation property if for every *n*-interpolation problem $P = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ of dimension k there exists a solution $f \in F$ to P. An algebra \mathbf{A} has the *n*-interpolation property if $\operatorname{Pol}_k \mathbf{A}$ has the *n*-interpolation property for all $k \ge 1$. An algebra \mathbf{A} is locally functionally complete if it has the *n*-interpolation property for all $n \ge 2$. Our starting point in this paper is the following well-known theorem:

Theorem 1.1. (The 4-Interpolation Property for Near-rings [5]) Let $(\Gamma, +, -, 0)$ be a group, and let F be a subnear-ring of $(\Gamma^{\Gamma}, +, -, 0, \circ)$ that has the 4-interpolation property. Then F has the n-interpolation property for all $n \ge 1$.

 $^{^1{\}rm The}$ work is partially supported by the Ministry for Science, Technologies and Development of the Republic of Serbia (Project No. 144017)

 $^{^2 {\}rm Institute}$ for Algebra, University of Linz, A-4040 Linz, Austria, e-mail: erhard@algebra.uni-linz.ac.at

³Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia, e-mail:masul@im.ns.ac.yu

 $^{^4}$ Institute for Algebra, Dresden University of Technology, D-01062 Dresden, Germany, e-mail: Reinhard.Poeschel@tu-dresden.de

The theorem came as a consequence of the Density Theorems for near-rings [2, 4]; a proof is stated in [1]. We remark that one does not have to assume that F contains the identity map. However, it turns out that this theorem is a consequence of the following (easy) fact:

Fact 1.2. Let A be an algebra with a Mal'cev term m:

$$m(x, y, y) = m(y, y, x) = x$$

and assume that every 4-interpolation problem in \mathbf{A} of dimension 1 has a solution in \mathbf{A} . Then \mathbf{A} has the n-interpolation property for all n.

Proof. We know from [3] that a Mal'cev algebra with at least two elements is locally functionally complete if and only if it is simple and nonaffine. And it is obvious that an algebra \mathbf{A} where every 4-interpolation problem of dimension 1 has a solution has to be both simple and nonaffine.

In this paper we are interested in procedures that build interpolating polynomials from "elementary 4-interpolations", that is, using Mal'cev operations to "add" constants and polynomials that solve the 4-interpolation problems of dimension 1. We would like to know how complicated are the terms that implement the interpolation? In particular, how many 4-interpolations are necessary.

It is a well-known fact (see [6]) that if \mathbf{A} is a discriminator algebra then the discriminator and constants suffice to solve any interpolation problem. Namely, every discriminator algebra has the switching term

$$\mathrm{if}(x,y,u,v) = \begin{cases} u, & x = y \\ v, & x \neq y \end{cases}$$

so an interpolation problem such as e.g. $\begin{pmatrix} p_1 & p_2 & p_3 & p_4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$ can be straightforwardly solved by

$$f(x) = if(x, c_{p_1}, c_{a_1}, if(x, c_{p_2}, c_{a_2}, if(x, c_{p_3}, c_{a_3}, if(x, c_{p_4}, c_{a_4}, c_{a_4}))))$$

where c_a is a constant symbol with the obvious interpretation. This is why we are interested in those situations where one has to use the 4-interpolations.

2. Mal'cev interpolation algebras

For a set A let $\mathcal{L}_A = {\mu} \cup \Phi_A \cup C_A$ be the language of Mal'cev interpolation on A, where μ is a ternary operation symbol, Φ_A is a set of unary operation symbols indexed by 4-interpolation problems over A of dimension 1:

 $\Phi_A = \left\{ \varphi_{\left(\begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ a_1 & a_2 & a_3 & a_4 \end{array} \right)} : \left(\begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ a_1 & a_2 & a_3 & a_4 \end{array} \right) \text{ is a 4-interpolation problem of dimension 1} \right\}$

and $C_A = \{c_a : a \in A\}$ is a set of constant symbols indexed by elements of A.

We would like to consider interpretations of \mathcal{L}_A in various Mal'cev algebras whose algebraic type need not contain \mathcal{L}_A . Let \mathcal{F} be an algebraic type and $\mathbf{A} = \langle A, F \rangle$ an \mathcal{F} -algebra. The *interpretation of* \mathcal{L}_A *in* \mathbf{A} is a pair (\mathbf{A}, σ) where $\sigma : \mathcal{L}_A \to \text{Pol}(\mathbf{A})$ is a mapping such that

108

Complexity of Mal'cev interpolation

- $\operatorname{ar}(\sigma(\mu)) = 3$ and $\sigma(\mu)$ is a Mal'cev term operation of A;
- $\operatorname{ar}(\sigma(\varphi)) = 1$ for all $\varphi \in \Phi_A$, and $\sigma(\varphi_{\left(\begin{array}{cc} x_1 & x_2 & x_3 & x_4 \\ a_1 & a_2 & a_3 & a_4 \end{array}\right)})(x_i) = a_i$, for $i = a_i$ 1, 2, 3, 4; and
- $\operatorname{ar}(\sigma(c_a)) = 0$ for all $c_a \in C_a$, and $\sigma(c_a) = a$.

For any set of variables X, σ uniquely extends to a map $\operatorname{Term}_{\mathcal{L}_A}(X) \to \operatorname{Pol}(\mathbf{A})$ which we also denote by σ . For a term $t \in \text{Term}_{\mathcal{L}_A}(X)$, instead of $\sigma(t)$ we write t^{σ} .

Definition 2.1. An algebra **A** is a *Mal'cev interpolation algebra* if there exists an interpretation of \mathcal{L}_A in **A**. The set of Mal'cev interpolating polynomials over A is the least set of \mathcal{L}_A -terms such that

- c and $\varphi(x)$ are Mal'cev interpolating polynomials for all $c \in C_A$ and $\varphi \in \Phi_A;$
- if t is a Mal'cev interpolating polynomial, then so is $\varphi(t)$ for every $\varphi \in \Phi_A$;
- if t_1, t_2, t_3 are Mal'cev interpolating polynomials, then so is $\mu(t_1, t_2, t_3)$.

A Mal'cev interpolating polynomial for an n-interpolation problem P w.r.t. the interpretation (\mathbf{A}, σ) is a Mal'cev interpolating polynomial t such that t^{σ} solves P.

It is easy to see that every finite Mal'cev interpolation algebra A is functionally complete. Moreover, if $n > |A|^k$ there are no *n*-interpolation problems over A of dimension k. Therefore, in the sequel we consider only infinite Mal'cev interpolation algebras.

Let $t \in \operatorname{Term}_{\mathcal{F}}(X)$ be an \mathcal{F} -term and let $\mathcal{H} \subseteq \mathcal{F}$. The \mathcal{H} -complexity of t is defined recursively by

- $|x|_{\mathcal{H}} = 0$ for all $x \in X$, $|f(t_1, \dots, t_k)|_{\mathcal{H}} = |t_1|_{\mathcal{H}} + \dots + |t_k|_{\mathcal{H}} + \begin{cases} 0, & f \notin \mathcal{H}, \\ 1, & f \in \mathcal{H}. \end{cases}$

Let **A** be a Mal'cev interpolation algebra and let (\mathbf{A}, σ) be an interpretation of \mathcal{L}_A in **A**. Let $P = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ be an *n*-interpolation problem over A of dimension k. By

 $\operatorname{Cmp}_{(\mathbf{A},\sigma)} P = \min\{|t|_{\mathcal{L}_A} : t \text{ is a Mal'cev interpolating polynomial}\}$ which solves P w.r.t. (\mathbf{A}, σ)

we denote the minimal complexity of a Mal'cev interpolating polynomial that solves P w.r.t. (\mathbf{A}, σ) . If $\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P = |t|_{\mathcal{L}_A}$, we say that t is a minimal polynomial for P w.r.t. (\mathbf{A}, σ) .

The complexity of an n-interpolation problem P of dimension k in a Mal'cev *interpolation algebra* \mathbf{A} is then given by

 $\operatorname{Cmp}_{\mathbf{A}} P = \sup \{ \operatorname{Cmp}_{(\mathbf{A},\sigma)} P : \sigma \text{ is an interpretation of } \mathcal{L}_A \text{ in } \mathbf{A} \}.$

Note that $\operatorname{Cmp}_{\mathbf{A}} P$ is an integer or \aleph_0 . The complexity of Mal'cev term interpolation in a Mal'cev interpolation algebra \mathbf{A} is given by

$$Cmp_{\mathbf{A}}(n,k) = \sup\{Cmp_{\mathbf{A}}P : P \text{ is an } n \text{-interpolation problem} \\ \text{over } A \text{ of dimension } k\}.$$

Since every subset of $\{0, 1, 2, ...\} \cup \{\aleph_0\}$ has a supremum in in the same set, we see that $\operatorname{Cmp}_{\mathbf{A}}(n, k)$ is an integer or \aleph_0 .

We measure the *complexity of Mal'cev term interpolation* by the following two functions:

 $\operatorname{Cmp}_{*}(n,k) = \min\{\operatorname{Cmp}_{\mathbf{A}}(n,k) : \mathbf{A} \text{ is an infinite Mal'cev interpolation algebra}\}$ $\operatorname{Cmp}^{*}(n,k) = \sup\{\operatorname{Cmp}_{\mathbf{A}}(n,k) : \mathbf{A} \text{ is an infinite Mal'cev interpolation algebra}\}.$

Clearly, $\operatorname{Cmp}_*(n) \ge 1$ for all $n \in \mathbb{N}$. This is not a useful lower bound, but the proof of Theorem 3.1 makes use of this simple fact.

3. A lower and an upper bound on the complexity of Mal'cev interpolation

In this section we provide a lower and an upper bound on the complexity of Mal'cev interpolation. We show that there exist positive constants γ_1 and γ_2 such that

 $\operatorname{Cmp}_*(n,k) \ge \gamma_1 \cdot n \text{ and } \operatorname{Cmp}^*(n,k) \le \gamma_2 \cdot n^2 \log n.$

Theorem 3.1. There exists a positive constant γ_1 such that $\operatorname{Cmp}_*(n,k) \ge \gamma_1 \cdot n$ for all positive integers n and k.

Proof. If $n \in \{1, 2\}$ the claim is obviously true since $\operatorname{Cmp}_{\mathbf{A}}(n, k) \ge 1$ for all infinite Mal'cev interpolation algebras \mathbf{A} . So, let $n \ge 3$ and let k be arbitrary. In order to show that $\operatorname{Cmp}_*(n, k) \ge \gamma_1 \cdot n$ for some $\gamma_1 > 0$ it suffices to show that for every infinite Mal'cev interpolation algebra \mathbf{A} there exists an interpretation σ and an *n*-interpolation problem P of dimension k such that $\operatorname{Cmp}_{(\mathbf{A},\sigma)} P \ge \gamma_1 \cdot n$.

We shall say that vectors $\mathbf{x} = (x_1, \ldots, x_k)$ and $\mathbf{x}' = (x'_1, \ldots, x'_k)$ are disjoint if $\{x_1, \ldots, x_k\} \cap \{x'_1, \ldots, x'_k\} = \emptyset$. Also, we shall say that a vector $\mathbf{x} = (x_1, \ldots, x_k)$ is disjoint from a set S if $\{x_1, \ldots, x_k\} \cap S = \emptyset$.

Take any *n* mutually disjoint vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in A^k$ and any *n* distinct $a_1, \ldots, a_n \in A$, and consider the *n*-interpolation problem $P = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \ldots & \mathbf{x}_n \\ a_1 & a_2 & \ldots & a_n \end{pmatrix}$ of dimension *k*. Furthermore, let $\mathbf{x}_i = (x_{i1}, \ldots, x_{ik})$ for $i \in \{1, \ldots, n\}$ and let $d \in A$ be arbitrary. Since **A** is a Mal'cev interpolation algebra, every interpolation problem has a solution in **A**. For any 4-interpolation problem $\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}$ of dimension 1 consider the following interpolation problem:

$$Q_{\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}} = \begin{pmatrix} y_1 & y_2 & y_3 & y_4 & x_{i_1} & \dots & x_{i_m} \\ b_1 & b_2 & b_3 & b_4 & d & \dots & d \end{pmatrix}$$

where $\{x_{i_1}, \ldots, x_{i_m}\} = \{x_{11}, \ldots, x_{1k}, \ldots, x_{n1}, \ldots, x_{nk}\} \setminus \{y_1, y_2, y_3, y_4\}.$

Let $f_{\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}} \in \operatorname{Pol}(\mathbf{A})$ be a solution to $Q_{\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}}$ interpretation σ of \mathcal{L}_A in \mathbf{A} as follows: and define the

- $\sigma(\mu)$ is any Mal'cev term operation of **A**;
- $\sigma(c_a) = a$ for all $a \in A$; and
- $\sigma(\varphi_{\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}}) = f_{\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}}.$

By the construction of σ , if $z, z' \notin \{y_1, y_2, y_3, y_4\}$ then $\varphi^{\sigma}(z) = \varphi^{\sigma}(z')$ for every $\varphi \in \Phi_A$.

Now, let u be a minimal polynomial that solves P, so that $\mathrm{Cmp}_{(\mathbf{A},\sigma)}P=$ $\begin{array}{l} |u|_{\mathcal{L}_{A}}, \text{ let } \varphi_{\left(\begin{array}{c} y_{11} \\ b_{11} \\ b_{12} \\ b_{13} \end{array}\right)_{14}}^{} (y_{11} \\ y_{12} \\ y_{13} \\ b_{14} \end{array}), \varphi_{\left(\begin{array}{c} y_{21} \\ y_{21} \\ b_{22} \\ b_{23} \\ b_{24} \end{array}\right)}^{}, \ldots, \varphi_{\left(\begin{array}{c} y_{m1} \\ y_{m2} \\ b_{m1} \\ b_{m2} \\ b_{m3} \\ b_{m4} \end{array}\right)}^{} \text{ be the } \\ \text{list of all symbols from } \Phi_{A} \text{ that occur in } u \text{ and let} \end{array}$

$$Y = \{y_{11}, y_{12}, y_{13}, y_{14}, \dots, y_{m1}, y_{m2}, y_{m3}, y_{m4}\}$$

If there exist distinct indices i and j such that both \mathbf{x}_i and \mathbf{x}_j are disjoint from Y then a simple induction shows that $u^{\sigma}(\mathbf{x}_i) = u^{\sigma}(\mathbf{x}_i)$, which is impossible due to the choice of P and u. Therefore, at most one of the \mathbf{x}_i 's can be disjoint from Y, or, in other words, at least n-1 of the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are not disjoint from Y. Since all the \mathbf{x}_i 's are mutually disjoint, it follows that $|Y| \ge n-1$, whence $4m \ge |Y| \ge n-1$. This shows that $\operatorname{Cmp}_{(\mathbf{A},\sigma)}P = |u|_{\mathcal{L}_A} \ge |u|_{\Phi_A} = m \ge \frac{n-1}{4}$. \Box

Theorem 3.2. There exists a positive constant γ_2 such that $\operatorname{Cmp}^*(n,k) \leq$ $\gamma_2 \cdot n^2 \log n$ for all positive integers n and k.

Proof. Clearly, it suffices to show that $\operatorname{Cmp}_{\mathbf{A}}(n,k) \leq \gamma_2 \cdot n^2 \log n$ for every Mal'cev interpolation algebra A. So, take any Mal'cev interpolation algebra $\mathbf{A} = (A, F)$ and an arbitrary interpretation σ of \mathcal{L}_A . Let $P = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ be an arbitrary *n*-interpolation problem of dimension $m \ge 1$.

Let $p,q,r \in A$ be three arbitrary distinct elements of A and let us first construct a sequence of polynomials g_2, \ldots, g_n such that

$$g_k$$
 solves $\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ p & \dots & p & q \end{pmatrix}$.

We can always find a polynomial which solves a 2-interpolation problem $\begin{pmatrix} \mathbf{x}_l & \mathbf{x}_k \\ a & b \end{pmatrix}$. Namely, since $\mathbf{x}_k \neq \mathbf{x}_l$, there exists a coordinate j such that $x_{k,j} \neq x_{l,j}$. Then the function we are looking for is $\varphi_{\begin{pmatrix} x_{l,j} & x_{k,j} & u & v \\ a & b & u' & v' \end{pmatrix}}^{\sigma}$ for some $u, u', v, v' \in A$. If $\mu^{\sigma}(p,q,r) = r$, for each k we can inductively construct terms $g'_{k/2}$ and

 $g_{k/2}''$ so that

$$g'_{k/2}$$
 solves $\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor} & \mathbf{x}_k \\ q & \dots & q & p \end{pmatrix}$

	\mathbf{x}_1		$\mathbf{x}_{\lfloor rac{k-1}{2} floor}$	$\mathbf{x}_{\lfloor \frac{k-1}{2} floor+1}$		\mathbf{x}_{k-1}	\mathbf{x}_k
h'	q		q	p or q		p or q	p
$h^{\prime\prime}$	q or r		q or r	q		q	r
c_r	r		r	r		r	r
$\mu(h',h'',c_r)$	q or r		q or r	r		r	p
$\varphi_{\left(\begin{smallmatrix}p&q&r&u\\q&p&p&p\end{smallmatrix}\right)}(\mu(h',h'',c_r))$	p	•••	p	p	•••	p	q

Figure 1: Case 1. $\mu^{\sigma}(p,q,r) = r$

and

$$g_{k/2}^{\prime\prime}$$
 solves $\begin{pmatrix} \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor+1} & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ q & \dots & q & r \end{pmatrix}$.

In order to take care of values $(g'_k)^{\sigma}(\mathbf{x}_i)$ for $\lfloor \frac{k-1}{2} \rfloor + 1 \leq i \leq k-1$ and $(g''_k)^{\sigma}(\mathbf{x}_j)$ for $1 \leq j \leq \lfloor \frac{k-1}{2} \rfloor$, note that there exists a sequence $\varphi'_1, \ldots, \varphi'_s \in \Phi_A$ of the form $\varphi_{\begin{pmatrix} p \ q \ p \ p \end{pmatrix}}$ and a sequence $\varphi''_1, \ldots, \varphi''_t \in \Phi_A$ of the form $\varphi_{\begin{pmatrix} q \ r \ q \ q \end{pmatrix}}$ such that $h' = \varphi'_1(\ldots(\varphi'_s(g'_{k/2}))\ldots)$ solves

$$\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor} & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor+1} & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ q & \dots & q & p \text{ or } q & \dots & p \text{ or } q & p \end{pmatrix}$$

and $h'' = \varphi_1''(\dots(\varphi_t''(g_{k/2}''))\dots)$ solves

$$\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor} & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor+1} & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ q \text{ or } r & \dots & q \text{ or } r & q & \dots & q & r \end{pmatrix}$$

Then $\mu(h', h'', c_r)$ solves

$$\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor} & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor+1} & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ q \text{ or } r & \dots & q \text{ or } r & r & \dots & r & p \end{pmatrix}$$

and finally, $\varphi_{\left(\begin{smallmatrix} p & q & r & u \\ q & p & p & p \end{smallmatrix} \right)}(\mu(h',h'',c_r))$ solves

$$\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor} & \mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor+1} & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k \\ p & \dots & p & p & \dots & p & q \end{pmatrix}.$$

This procedure can be schematically represented as in Fig. 1.

In case $\mu^{\sigma}(p,q,r) \in \{p,q\}$ the procedure is the same, and the corresponding scheme is given in Fig. 2, while in case $\mu^{\sigma}(p,q,r) = s \notin \{p,q,r\}$ we again follow the same procedure according to the scheme given in Fig. 3.

Due to the divide and conquer approach, one easily deduces that the complexity of the terms g_k is $O(k \log k)$.

	\mathbf{x}_1		$\mathbf{x}_{\lfloor rac{k-1}{2} floor}$	$\mathbf{x}_{\lfloor \frac{k-1}{2} \rfloor + 1}$		\mathbf{x}_{k-1}	\mathbf{x}_k
h'	p		p	p or q		p or q	q
c_q	q	• • •	q	q		q	q
<i>h''</i>	q or r	• • •	q or r	q	• • •	q	r
$\mu(h',c_q,h'')$	p or q		p or q	p or q		p or q	r
$\varphi_{\left(\begin{smallmatrix}p&q&r&u\\p&p&q&p\end{smallmatrix}\right)}(\mu(h',c_q,h''))$	p		p	p		p	q

Figure 2: Case 2. $\mu^{\sigma}(p,q,r) \in \{p,q\}$

	\mathbf{x}_1		$\mathbf{X}_{\lfloor rac{k-1}{2} floor}$	$\mathbf{x}_{\lfloor \frac{k-1}{2} floor+1}$		\mathbf{x}_{k-1}	\mathbf{x}_k
h'	p or q		p or q	q		q	p
c_q	q		q	q		q	q
h''	q	• • •	q	q or r	• • •	q or r	r
$\mu(h',c_q,h'')$	p or q		p or q	q or r		q or r	s
$\varphi_{\left(\begin{array}{cc}p&q&r&s\\p&p&p&q\end{array}\right)}(\mu(h',c_q,h''))$	p	•••	p	p		p	q

Figure 3: Case 3. $\mu^{\sigma}(p,q,r) = s \notin \{p,q,r\}$

Using the terms g_2, \ldots, g_n we now construct a term f such that $f^{\sigma}(\mathbf{x}_i) = a_i$, $i \in \{1, \ldots, n\}$. We shall inductively construct a sequence of terms $f_2, f_3, \ldots, f_n = f$ such that

$$f_j$$
 solves $\begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_j \\ a_1 & a_2 & \dots & a_j \end{pmatrix}$.

The construction of f_2 is straightforward. Let us now show how to construct f_{k+1} starting from f_k . Let $z := f_k^{\sigma}(\mathbf{x}_{k+1})$ so that

$$f_k$$
 solves $\begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{k-1} & \mathbf{x}_k & \mathbf{x}_{k+1} \\ a_1 & \dots & a_{k-1} & a_k & z \end{pmatrix}$.

If $z = a_{k+1}$ then $f_{k+1} = f_k$. Otherwise, $f_{k+1} = \mu(f_k, c_z, \varphi_{\left(\begin{array}{c}p \\ z \\ a_{k+1} \end{array} u v\right)}^{q}(g_{k+1}))$ has the required properties. Since the complexity of g_k is $O(k \log k)$, it easily follows that the complexity of f is $O(n^2 \log n)$. This concludes the proof. \Box

References

- Aichinger, E., Local Interpolation Near-rings as a Frame-work for the Density Theorems. Contributions to General Algebra, Vol. 9, Verlag Hölder-Pichler-Tempsky, Wien - Verlag B.G. Teubner, Stuttgart, 1995, 27-36.
- [2] Betsch, G., Primitive near-rings. Math. Z. 130 (1973), 351-361.

- [3] Gumm, H. P., Algebras in congruence permutable varieties: Geometrical properties of affine algebras. Algebra Universalis 9 (1979), 8-34.
- [4] Pilz, G., Primitive Near-rings and Interpolation Theory. Instituts bericht 1, Hochschule Linz, Institut für Mathematik, 4040 Linz, Austria, April 1974.
- [5] Pilz, G., Near-rings, 2nd Ed. Amsterdam, New York, Oxford: North-Holland Publishing Company 1983.
- Werner, H., Eine Characterisierung funktional vollständiger Algebren. Arch. Math. (Basel) 21 (1970), 381-385

Received by the editors November 13, 2006