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COMPLEXITY OF MAL’CEV INTERPOLATIONT
E. Aichinger 2, D. Masulovi@ and R. Pésche®

Abstract. A classical result in near-ring theory tells that the 4-
interpolation property implies the n-interpolation property for all n € N.
In the present note we are interested in the complexity of a special kind of
interpolating terms which can be constructed from the 4-interpolations.
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1. Introduction

Let A be a set with at least two elements, let A = (A, F') be an algebra and
let Polix A denote the set of k-ary polynomials of an algebra A and Pol A =
Uk>1 Poly A. An n-interpolation problem of dimension k is a 2 X n matrix
P = (31525 such that

® ay,...,ay € A;
e Xi,...,%, € A* and x; # x; whenever i # j.

A solution to P is a polynomial f € Polg A such that f(x;) = a; for all i. A

set F C AA" of k-ary operations has the n-interpolation property if for every
n-interpolation problem P = (3! 72 - &™) of dimension k there exists a solution
f € F to P. An algebra A has the n-interpolation property if Pol; A has the
n-interpolation property for all k& > 1. An algebra A is locally functionally
complete if it has the n-interpolation property for all n > 2. Our starting point

in this paper is the following well-known theorem:

Theorem 1.1. (The 4-Interpolation Property for Near-rings [5]) Let
(T,+,—,0) be a group, and let F be a subnear-ring of (I'',+,—,0,0) that has
the 4-interpolation property. Then F has the n-interpolation property for all
n>1.
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The theorem came as a consequence of the Density Theorems for near-rings
[2, 4]; a proof is stated in [I]. We remark that one does not have to assume
that F' contains the identity map. However, it turns out that this theorem is a
consequence of the following (easy) fact:

Fact 1.2. Let A be an algebra with a Mal’cev term m.:

m(z,y,y) =m(y,y,r) =z

and assume that every 4-interpolation problem in A of dimension 1 has a solu-
tion in A. Then A has the n-interpolation property for all n.

Proof. We know from [3] that a Mal’cev algebra with at least two elements is
locally functionally complete if and only if it is simple and nonaffine. And it is
obvious that an algebra A where every 4-interpolation problem of dimension 1
has a solution has to be both simple and nonaffine. O

In this paper we are interested in procedures that build interpolating poly-
nomials from “elementary 4-interpolations”, that is, using Mal’cev operations
to “add” constants and polynomials that solve the 4-inteprolation problems of
dimension 1. We would like to know how complicated are the terms that imple-
ment the interpolation? In particular, how many 4-interpolations are necessary.

It is a well-known fact (see [6]) that if A is a discriminator algebra then the
discriminator and constants suffice to solve any interpolation problem. Namely,
every discriminator algebra has the switching term

u, r=1Yy

i,y u,0) = { o

so an interpolation problem such as e.g. (51 521324 can be straightforwardly
solved by

f(d?) = lf(ZE, CpuCalvif(xvcpzacazaif(xv C;D37cl13’if(x’ Cp47 Ca47ca4))))

where ¢, is a constant symbol with the obvious interpretation. This is why we
are interested in those situations where one has to use the 4-interpolations.

2. Mal’cev interpolation algebras

For a set Alet L4 = {u}UP4UCH be the language of Mal’cev interpolation
on A, where p is a ternary operation symbol, ®4 is a set of unary operation
symbols indexed by 4-interpolation problems over A of dimension 1:

@A:{go(ﬁ} T2 @3 T4 ) (&1 &2 a2 at) is a 4-interpolation problem of dimension 1}

and Cy = {c, : a € A} is a set of constant symbols indexed by elements of A.

We would like to consider interpretations of L4 in various Mal’cev algebras
whose algebraic type need not contain £4. Let F be an algebraic type and
A = (A, F) an F-algebra. The interpretation of L4 in A is a pair (A, o) where
o: L — Pol(A) is a mapping such that
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e ar(o(p)) =3 and o(u) is a Mal’cev term operation of A;

o ar(o(p)) = 1 for all ¢ € @4, and U(ga(ml z T3 u))(xz) = a;, for i =
a1 a2 a3z aaq
1,2,3,4; and

o ar(o(cy)) =0 for all ¢, € C,, and o(c,) = a.

For any set of variables X, o uniquely extends to a map Term, ,(X) — Pol(A)
which we also denote by 0. For a term ¢t € Termg, (X), instead of o(t) we
write £7.

Definition 2.1. An algebra A is a Mal’cev interpolation algebra if there exists
an interpretation of L4 in A. The set of Mal’cev interpolating polynomials over
A is the least set of £ 4-terms such that

e ¢ and ¢(z) are Mal’cev interpolating polynomials for all ¢ € C4 and
peDy;

e if ¢ is a Mal’cev interpolating polynomial, then so is ¢(t) for every ¢ € @ 4;
e if ¢, to, t3 are Mal’cev interpolating polynomials, then so is p(t1,te, t3).

A Mal’cev interpolating polynomial for an n-interpolation problem P w.r.t. the
interpretation (A, o) is a Mal’cev interpolating polynomial ¢ such that t7 solves
P.

It is easy to see that every finite Mal’cev interpolation algebra A is func-
tionally complete. Moreover, if n > |A|* there are no n-interpolation problems
over A of dimension k. Therefore, in the sequel we consider only infinite Mal’cev
interpolation algebras.

Let t € Termz(X) be an F-term and let H C F. The H-complexity of t is
defined recursively by

07 f ¢ H7

o [F(t1, .t = ltalm + oo+ | +
(bt =l bt 472

o |z =0foralzelX, {

Let A be a Mal’cev interpolation algebra and let (A, o) be an interpretation
of L4 in A. Let P = (5! 32 %") be an n-interpolation problem over A of
dimension k. By

Cmp(a )P = min{[t|z, :t is a Mal’cev interpolating polynomial
which solves P w.r.t. (A,0)}
we denote the minimal complexity of a Mal'cev interpolating polynomial that
solves P w.r.t. (A, o). If Cmpa P = [t[c,, we say that t is a minimal poly-
nomial for P w.r.t. (A, o).

The complexity of an n-interpolation problem P of dimension k in a Mal’cev
interpolation algebra A is then given by

Cmpy P = sup{Cmp(AJ)P : 0 is an interpretation of L4 in A}.
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Note that Cmp, P is an integer or Ng. The complexity of Mal’cev term interpo-
lation in a Mal’cev interpolation algebra A is given by

Cmpy (n, k) = sup{Cmp, P : P is an n-interpolation problem

over A of dimension k}.

Since every subset of {0,1,2,...} U{Ro} has a supremum in in the same set, we
see that Cmp, (n, k) is an integer or Ng.

We measure the complexity of Mal’cev term interpolation by the following
two functions:

Cmp, (n,k) = min{Cmp, (n, k) : A is an infinite Mal’cev interpolation algebra}
Cmp™(n, k) = sup{Cmpy (n, k) : A is an infinite Mal’cev interpolation algebra}.

Clearly, Cmp,(n) > 1 for all n € N. This is not a useful lower bound, but the
proof of Theorem Bl makes use of this simple fact.

3. A lower and an upper bound on the complexity of
Mal’cev interpolation

In this section we provide a lower and an upper bound on the complexity of
Mal’cev interpolation. We show that there exist positive constants v; and s
such that
Cmp, (n,k) > 1 -n and Cmp*(n, k) < 72 - n?logn.

Theorem 3.1. There exists a positive constant vy such that Cmp,(n,k) >
v1 - n for all positive integers n and k.

Proof. If n € {1,2} the claim is obviously true since Cmpy (n, k) > 1 for all
infinite Mal’cev interpolation algebras A. So, let n > 3 and let k be arbitrary. In
order to show that Cmp, (n, k) > 71-n for some y; > 0 it suffices to show that for
every infinite Mal’cev interpolation algebra A there exists an interpretation o
and an n-interpolation problem P of dimension k such that Cmp s ;)P = 71-n.

We shall say that vectors x = (21,...,z) and x’ = (z1,. .., x},) are disjoint if
{z1,...,zptn{z], ... 2} } = @. Also, we shall say that a vector x = (z1,...,x)
is disjoint from a set S if {x1,...,2x} NS = @.

Take any n mutually disjoint vectors xi, ..., x, € A* and any n distinct
ai, ..., a, € A, and consider the n-interpolation problem P = (51 52 = 5" ) of
dimension k. Furthermore, let x; = (2;1,...,24) fori € {1,...,n} and let d €
A be arbitrary. Since A is a Mal’cev interpolation algebra, every interpolation
problem has a solution in A. For any 4-interpolation problem (3! p2 72 7%) of
dimension 1 consider the following interpolation problem:

Qv ys ys iy = Yr Y2 Ys Ya Tip ... T4y,
1 2 3 Ya -
(bl ba b3 b4) bl b2 b3 b4 d . d

Where {inl, . ,inm} = {.1311, ey L1kye ey Lnly .- ,Z‘nk} \ {yl,yg,yg,y4}.
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Let f/uyi y2 y3 yay € Pol(A) be a solution to Qy: y2 ys va and define the
. (b1 b2b3b4> . (blb2b3b4)
interpretation o of L4 in A as follows:

e o(u) is any Mal’cev term operation of A;
e o(cy) =a for all a € A; and

L4 0'(90 Y1 Y2 Y3 Ya ):f Y1 Y2 Y3 ya )\ -
(bl b2 b3 b4> (bl b2 b3 b4)
By the construction of o, if z, 2" ¢ {y1, Y2, y3, ya} then 7 (2) = p7(2’) for every
(RS D 4.

Now, let u be a minimal polynomial that solves P, so that Cmp(s , )P =

|U|L‘Aa let @(yu Y12 Y13 914), Sﬁ(ym Y22 Y23 y24), ceey So(yml Ym2 Ym3 ym4) be the
. b11 bi2 b1z bia ba1 baz baz bay bm1 bm2 bms bma
list of all symbols from ® 4 that occur in uw and let

Y = {y11»y12a Y13, Y14, - aymlvym27ym37ym4}~

If there exist distinct indices ¢ and j such that both x; and x; are disjoint from Y
then a simple induction shows that u”(x;) = u?(x;), which is impossible due to
the choice of P and u. Therefore, at most one of the x;’s can be disjoint from Y,
or, in other words, at least n — 1 of the vectors x1, ..., X, are not disjoint from
Y. Since all the x;’s are mutually disjoint, it follows that |Y| > n — 1, whence
4m > |Y| > n—1. This shows that Cmpa )P = [ulz, > |u[e, =m > nl O

Theorem 3.2. There exists a positive constant vy such that Cmp*(n, k) <
v -n2logn for all positive integers n and k.

Proof. Clearly, it suffices to show that Cmp, (n,k) < 72 - n?logn for every
Mal’cev interpolation algebra A. So, take any Mal’cev interpolation algebra
A = (A, F) and an arbitrary interpretation o of £4. Let P = (31 52 15" ) be
an arbitrary n-interpolation problem of dimension m > 1.

Let p,q,r € A be three arbitrary distinct elements of A and let us first

construct a sequence of polynomials g, ..., g, such that
X1 ... Xgp—1 Xk
solves .
9k ( poo... p q )

We can always find a polynomial which solves a 2-interpolation problem (% %*).

Namely, since xj, # x;, there exists a coordinate j such that xj ; # x; ;. Then
the function we are looking for is 74, ; «y; u v ) for some u, v, v, v’ € A.

a b u v
If u(p,q,r) = r, for each k we can inductively construct terms g; /2 and

gg/2 so that
, X1 ... Xpeo1 xk)
g5 /o solves ( 2
h/2 q - g p
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: X1 XL%J XL%J-H Xk—1 Xk

h q q porq ... porq p

h |gqorr ... gqorr q q r

Cr r r r r r

w(h' k" je) [qgorr ... qorr r T D

pparuy(uh % e)) | op e p p P q
appp

Figure 1: Case 1. u?(p,q,7) =r

and
XL%JJA vee Xk—1 Xk>

o solves
iz SOV q q r

In order to take care of values (g},)% (x;) for [£51] +1 <i < k—1and (g)7 (x;)

2
for 1 < j < [%51], note that there exists a sequence ¢}, ..., ¢, € ®4 of the
form ¢ pquvy and a sequence ¢y, ..., ¢} € ®4 of the form ¢ qruwvy such

/(p PP o (4rqaq)
that h' = ¢ (... (¢L(g}/2)) - - ) solves
(Xl X[%J XL%H‘l Xk—1 Xk>
q ... q porq ... porq p

and 7" = (... (¥} (g}2)) - - -) solves

X1 XL%J XL%JJA cee Xgp—1 Xk .
qorrTr ... qorr q q r

Then u(h', 1", c,) solves

X1 XL%J XL%J-H cee Xkp—1 Xk
gqorr ... qorr T r D
and finally, ppar u)(,u(h’,h”,cr)) solves
appp
(X1 R L e N xk>.
poo... P P . p q

This procedure can be schematically represented as in Fig. [Il

In case u”(p,q,r) € {p, q} the procedure is the same, and the corresponding
scheme is given in Fig. 2 while in case pu?(p,q,7) = s ¢ {p,q,r} we again follow
the same procedure according to the scheme given in Fig.

Due to the divide and conquer approach, one easily deduces that the com-
plexity of the terms g is O(klogk).
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X1 XL%J XL%J-H Xke—1 Xk
h P P porq ... porq q
Cq q q q q q
' |qorr ... qorr q q r
w(h/,cq,h") |porq ... porq porq ... porqg T
praruy(ph,cg, k7)) | p ... p p oD q
Figure 2: Case 2. u?(p,q,7) € {p,q}
X1 XL%J XL%J-H Xk—1 Xk
h|porq ... porg q q P
Cq q q q q q
n" q q gorr ... gorr T
u(h',cq,h") |porqg ... porg gorr ... qorr s
pparsy(ulh e, k) | p P N
Figure 3: Case 3. u?(p,q,7) =s ¢ {p,q,r}
Using the terms go, ..., g, we now construct a term f such that f7(x;) = a;,
i € {1,...,n}. We shall inductively construct a sequence of terms fa, f3, ...,
fn = f such that
o« 3 X1 X2 ... X5
f; solves (al I a]-) .

The construction of fs is straightforward. Let us now show how to construct
fr+1 starting from fi. Let z := f7(Xg41) so that

X1 oo Xkp—1 Xk Xk41
fx solves ).
ap cee Q1 ar z

If z = Ak+1 then fk+1 = fk- Otherwise, fk+1 = u(fk-,cz,ga(zza q u 11)(gk+1))

Ak41 UV

has the required properties. Since the complexity of g is O(klogk), it easily
follows that the complexity of f is O(n?logn). This concludes the proof. a
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