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COMPLEXITY OF MAL’CEV INTERPOLATION1

E. Aichinger 2, D. Mašulović3 and R. Pöschel4

Abstract. A classical result in near-ring theory tells that the 4-
interpolation property implies the n-interpolation property for all n ∈ N.
In the present note we are interested in the complexity of a special kind of
interpolating terms which can be constructed from the 4-interpolations.

AMS Mathematics Subject Classification (2000): 08A40, 16Y30

Key words and phrases: near-ring, interpolation, local functional com-
pleteness

1. Introduction

Let A be a set with at least two elements, let A = (A,F ) be an algebra and
let Polk A denote the set of k-ary polynomials of an algebra A and PolA =⋃

k>1 Polk A. An n-interpolation problem of dimension k is a 2 × n matrix
P = ( x1 x2 ... xn

a1 a2 ... an
) such that

• a1, . . . , an ∈ A;

• x1, . . . ,xn ∈ Ak and xi 6= xj whenever i 6= j.

A solution to P is a polynomial f ∈ Polk A such that f(xi) = ai for all i. A
set F ⊆ AAk

of k-ary operations has the n-interpolation property if for every
n-interpolation problem P = ( x1 x2 ... xn

a1 a2 ... an
) of dimension k there exists a solution

f ∈ F to P . An algebra A has the n-interpolation property if Polk A has the
n-interpolation property for all k > 1. An algebra A is locally functionally
complete if it has the n-interpolation property for all n > 2. Our starting point
in this paper is the following well-known theorem:

Theorem 1.1. (The 4-Interpolation Property for Near-rings [5]) Let
(Γ,+,−, 0) be a group, and let F be a subnear-ring of (ΓΓ, +,−, 0, ◦) that has
the 4-interpolation property. Then F has the n-interpolation property for all
n > 1.
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The theorem came as a consequence of the Density Theorems for near-rings
[2, 4]; a proof is stated in [1]. We remark that one does not have to assume
that F contains the identity map. However, it turns out that this theorem is a
consequence of the following (easy) fact:

Fact 1.2. Let A be an algebra with a Mal’cev term m:

m(x, y, y) = m(y, y, x) = x

and assume that every 4-interpolation problem in A of dimension 1 has a solu-
tion in A. Then A has the n-interpolation property for all n.

Proof. We know from [3] that a Mal’cev algebra with at least two elements is
locally functionally complete if and only if it is simple and nonaffine. And it is
obvious that an algebra A where every 4-interpolation problem of dimension 1
has a solution has to be both simple and nonaffine. 2

In this paper we are interested in procedures that build interpolating poly-
nomials from “elementary 4-interpolations”, that is, using Mal’cev operations
to “add” constants and polynomials that solve the 4-inteprolation problems of
dimension 1. We would like to know how complicated are the terms that imple-
ment the interpolation? In particular, how many 4-interpolations are necessary.

It is a well-known fact (see [6]) that if A is a discriminator algebra then the
discriminator and constants suffice to solve any interpolation problem. Namely,
every discriminator algebra has the switching term

if(x, y, u, v) =

{
u, x = y

v, x 6= y

so an interpolation problem such as e.g. ( p1 p2 p3 p4
a1 a2 a3 a4 ) can be straightforwardly

solved by

f(x) = if(x, cp1 , ca1 , if(x, cp2 , ca2 , if(x, cp3 , ca3 , if(x, cp4 , ca4 , ca4))))

where ca is a constant symbol with the obvious interpretation. This is why we
are interested in those situations where one has to use the 4-interpolations.

2. Mal’cev interpolation algebras

For a set A let LA = {µ}∪ΦA∪CA be the language of Mal’cev interpolation
on A, where µ is a ternary operation symbol, ΦA is a set of unary operation
symbols indexed by 4-interpolation problems over A of dimension 1:

ΦA=
{
ϕ( x1 x2 x3 x4

a1 a2 a3 a4 ) : ( x1 x2 x3 x4
a1 a2 a3 a4 ) is a 4-interpolation problem of dimension 1

}

and CA = {ca : a ∈ A} is a set of constant symbols indexed by elements of A.
We would like to consider interpretations of LA in various Mal’cev algebras

whose algebraic type need not contain LA. Let F be an algebraic type and
A = 〈A,F 〉 an F-algebra. The interpretation of LA in A is a pair (A, σ) where
σ : LA → Pol(A) is a mapping such that
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• ar(σ(µ)) = 3 and σ(µ) is a Mal’cev term operation of A;

• ar(σ(ϕ)) = 1 for all ϕ ∈ ΦA, and σ(ϕ( x1 x2 x3 x4
a1 a2 a3 a4 ))(xi) = ai, for i =

1, 2, 3, 4; and

• ar(σ(ca)) = 0 for all ca ∈ Ca, and σ(ca) = a.

For any set of variables X, σ uniquely extends to a map TermLA
(X) → Pol(A)

which we also denote by σ. For a term t ∈ TermLA(X), instead of σ(t) we
write tσ.

Definition 2.1. An algebra A is a Mal’cev interpolation algebra if there exists
an interpretation of LA in A. The set of Mal’cev interpolating polynomials over
A is the least set of LA-terms such that

• c and ϕ(x) are Mal’cev interpolating polynomials for all c ∈ CA and
ϕ ∈ ΦA;

• if t is a Mal’cev interpolating polynomial, then so is ϕ(t) for every ϕ ∈ ΦA;

• if t1, t2, t3 are Mal’cev interpolating polynomials, then so is µ(t1, t2, t3).

A Mal’cev interpolating polynomial for an n-interpolation problem P w.r.t. the
interpretation (A, σ) is a Mal’cev interpolating polynomial t such that tσ solves
P .

It is easy to see that every finite Mal’cev interpolation algebra A is func-
tionally complete. Moreover, if n > |A|k there are no n-interpolation problems
over A of dimension k. Therefore, in the sequel we consider only infinite Mal’cev
interpolation algebras.

Let t ∈ TermF (X) be an F-term and let H ⊆ F . The H-complexity of t is
defined recursively by

• |x|H = 0 for all x ∈ X,
• |f(t1, . . . , tk)|H = |t1|H + . . . + |tk|H +

{
0, f /∈ H,

1, f ∈ H.

Let A be a Mal’cev interpolation algebra and let (A, σ) be an interpretation
of LA in A. Let P = ( x1 x2 ... xn

a1 a2 ... an
) be an n-interpolation problem over A of

dimension k. By

Cmp(A,σ)P = min{|t|LA :t is a Mal’cev interpolating polynomial

which solves P w.r.t. (A, σ)}
we denote the minimal complexity of a Mal’cev interpolating polynomial that
solves P w.r.t. (A, σ). If Cmp(A,σ)P = |t|LA

, we say that t is a minimal poly-
nomial for P w.r.t. (A, σ).

The complexity of an n-interpolation problem P of dimension k in a Mal’cev
interpolation algebra A is then given by

CmpAP = sup{Cmp(A,σ)P : σ is an interpretation of LA in A}.
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Note that CmpAP is an integer or ℵ0. The complexity of Mal’cev term interpo-
lation in a Mal’cev interpolation algebra A is given by

CmpA(n, k) = sup{CmpAP : P is an n-interpolation problem
over A of dimension k}.

Since every subset of {0, 1, 2, . . .}∪ {ℵ0} has a supremum in in the same set, we
see that CmpA(n, k) is an integer or ℵ0.

We measure the complexity of Mal’cev term interpolation by the following
two functions:

Cmp∗(n, k) = min{CmpA(n, k) : A is an infinite Mal’cev interpolation algebra}
Cmp∗(n, k) = sup{CmpA(n, k) : A is an infinite Mal’cev interpolation algebra}.

Clearly, Cmp∗(n) > 1 for all n ∈ N. This is not a useful lower bound, but the
proof of Theorem 3.1 makes use of this simple fact.

3. A lower and an upper bound on the complexity of
Mal’cev interpolation

In this section we provide a lower and an upper bound on the complexity of
Mal’cev interpolation. We show that there exist positive constants γ1 and γ2

such that
Cmp∗(n, k) > γ1 · n and Cmp∗(n, k) 6 γ2 · n2 log n.

Theorem 3.1. There exists a positive constant γ1 such that Cmp∗(n, k) >
γ1 · n for all positive integers n and k.

Proof. If n ∈ {1, 2} the claim is obviously true since CmpA(n, k) > 1 for all
infinite Mal’cev interpolation algebras A. So, let n > 3 and let k be arbitrary. In
order to show that Cmp∗(n, k) > γ1 ·n for some γ1 > 0 it suffices to show that for
every infinite Mal’cev interpolation algebra A there exists an interpretation σ
and an n-interpolation problem P of dimension k such that Cmp(A,σ)P > γ1 ·n.

We shall say that vectors x = (x1, . . . , xk) and x′ = (x′1, . . . , x
′
k) are disjoint if

{x1, . . . , xk}∩{x′1, . . . , x′k} = ∅. Also, we shall say that a vector x = (x1, . . . , xk)
is disjoint from a set S if {x1, . . . , xk} ∩ S = ∅.

Take any n mutually disjoint vectors x1, . . . , xn ∈ Ak and any n distinct
a1, . . . , an ∈ A, and consider the n-interpolation problem P = ( x1 x2 ... xn

a1 a2 ... an
) of

dimension k. Furthermore, let xi = (xi1, . . . , xik) for i ∈ {1, . . . , n} and let d ∈
A be arbitrary. Since A is a Mal’cev interpolation algebra, every interpolation
problem has a solution in A. For any 4-interpolation problem

( y1 y2 y3 y4
b1 b2 b3 b4

)
of

dimension 1 consider the following interpolation problem:

Q( y1 y2 y3 y4
b1 b2 b3 b4

) =
(

y1 y2 y3 y4 xi1 . . . xim

b1 b2 b3 b4 d . . . d

)

where {xi1 , . . . , xim} = {x11, . . . , x1k, . . . , xn1, . . . , xnk} \ {y1, y2, y3, y4}.
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Let f( y1 y2 y3 y4
b1 b2 b3 b4

) ∈ Pol(A) be a solution to Q( y1 y2 y3 y4
b1 b2 b3 b4

) and define the

interpretation σ of LA in A as follows:

• σ(µ) is any Mal’cev term operation of A;

• σ(ca) = a for all a ∈ A; and

• σ(ϕ( y1 y2 y3 y4
b1 b2 b3 b4

)) = f( y1 y2 y3 y4
b1 b2 b3 b4

).

By the construction of σ, if z, z′ /∈ {y1, y2, y3, y4} then ϕσ(z) = ϕσ(z′) for every
ϕ ∈ ΦA.

Now, let u be a minimal polynomial that solves P , so that Cmp(A,σ)P =
|u|LA

, let ϕ( y11 y12 y13 y14
b11 b12 b13 b14

), ϕ( y21 y22 y23 y24
b21 b22 b23 b24

), . . . , ϕ( ym1 ym2 ym3 ym4
bm1 bm2 bm3 bm4

) be the

list of all symbols from ΦA that occur in u and let

Y = {y11, y12, y13, y14, . . . , ym1, ym2, ym3, ym4}.

If there exist distinct indices i and j such that both xi and xj are disjoint from Y
then a simple induction shows that uσ(xi) = uσ(xj), which is impossible due to
the choice of P and u. Therefore, at most one of the xi’s can be disjoint from Y ,
or, in other words, at least n− 1 of the vectors x1, . . . , xn are not disjoint from
Y . Since all the xi’s are mutually disjoint, it follows that |Y | > n − 1, whence
4m > |Y | > n−1. This shows that Cmp(A,σ)P = |u|LA

> |u|ΦA
= m > n−1

4 . 2

Theorem 3.2. There exists a positive constant γ2 such that Cmp∗(n, k) 6
γ2 · n2 log n for all positive integers n and k.

Proof. Clearly, it suffices to show that CmpA(n, k) 6 γ2 · n2 log n for every
Mal’cev interpolation algebra A. So, take any Mal’cev interpolation algebra
A = (A,F ) and an arbitrary interpretation σ of LA. Let P = ( x1 x2 ... xn

a1 a2 ... an
) be

an arbitrary n-interpolation problem of dimension m > 1.
Let p, q, r ∈ A be three arbitrary distinct elements of A and let us first

construct a sequence of polynomials g2, . . . , gn such that

gk solves
(
x1 . . . xk−1 xk

p . . . p q

)
.

We can always find a polynomial which solves a 2-interpolation problem ( xl xk

a b ) .
Namely, since xk 6= xl, there exists a coordinate j such that xk,j 6= xl,j . Then
the function we are looking for is ϕσ( xl,j xk,j u v

a b u′ v′
) for some u, u′, v, v′ ∈ A.

If µσ(p, q, r) = r, for each k we can inductively construct terms g′k/2 and
g′′k/2 so that

g′k/2 solves
(
x1 . . . xb k−1

2 c xk

q . . . q p

)
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x1 . . . xb k−1
2 c xb k−1

2 c+1 . . . xk−1 xk

h′ q . . . q p or q . . . p or q p
h′′ q or r . . . q or r q . . . q r
cr r . . . r r . . . r r

µ(h′, h′′, cr) q or r . . . q or r r . . . r p
ϕ( p q r u

q p p p )(µ(h′, h′′, cr)) p . . . p p . . . p q

Figure 1: Case 1. µσ(p, q, r) = r

and

g′′k/2 solves
(
xb k−1

2 c+1 . . . xk−1 xk

q . . . q r

)
.

In order to take care of values (g′k)σ(xi) for bk−1
2 c+1 6 i 6 k−1 and (g′′k )σ(xj)

for 1 6 j 6 bk−1
2 c, note that there exists a sequence ϕ′1, . . . , ϕ′s ∈ ΦA of the

form ϕ( p q u v
p q p p ) and a sequence ϕ′′1 , . . . , ϕ′′t ∈ ΦA of the form ϕ( q r u v

q r q q ) such

that h′ = ϕ′1(. . . (ϕ
′
s(g

′
k/2)) . . .) solves

(
x1 . . . xb k−1

2 c xb k−1
2 c+1 . . . xk−1 xk

q . . . q p or q . . . p or q p

)

and h′′ = ϕ′′1(. . . (ϕ′′t (g′′k/2)) . . .) solves

(
x1 . . . xb k−1

2 c xb k−1
2 c+1 . . . xk−1 xk

q or r . . . q or r q . . . q r

)
.

Then µ(h′, h′′, cr) solves

(
x1 . . . xb k−1

2 c xb k−1
2 c+1 . . . xk−1 xk

q or r . . . q or r r . . . r p

)

and finally, ϕ( p q r u
q p p p )(µ(h′, h′′, cr)) solves

(
x1 . . . xb k−1

2 c xb k−1
2 c+1 . . . xk−1 xk

p . . . p p . . . p q

)
.

This procedure can be schematically represented as in Fig. 1.
In case µσ(p, q, r) ∈ {p, q} the procedure is the same, and the corresponding

scheme is given in Fig. 2, while in case µσ(p, q, r) = s /∈ {p, q, r} we again follow
the same procedure according to the scheme given in Fig. 3.

Due to the divide and conquer approach, one easily deduces that the com-
plexity of the terms gk is O(k log k).
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x1 . . . xb k−1
2 c xb k−1

2 c+1 . . . xk−1 xk

h′ p . . . p p or q . . . p or q q
cq q . . . q q . . . q q
h′′ q or r . . . q or r q . . . q r

µ(h′, cq, h
′′) p or q . . . p or q p or q . . . p or q r

ϕ( p q r u
p p q p )(µ(h′, cq, h

′′)) p . . . p p . . . p q

Figure 2: Case 2. µσ(p, q, r) ∈ {p, q}

x1 . . . xb k−1
2 c xb k−1

2 c+1 . . . xk−1 xk

h′ p or q . . . p or q q . . . q p
cq q . . . q q . . . q q
h′′ q . . . q q or r . . . q or r r

µ(h′, cq, h
′′) p or q . . . p or q q or r . . . q or r s

ϕ( p q r s
p p p q )(µ(h′, cq, h

′′)) p . . . p p . . . p q

Figure 3: Case 3. µσ(p, q, r) = s /∈ {p, q, r}

Using the terms g2, . . . , gn we now construct a term f such that fσ(xi) = ai,
i ∈ {1, . . . , n}. We shall inductively construct a sequence of terms f2, f3, . . . ,
fn = f such that

fj solves
(
x1 x2 . . . xj

a1 a2 . . . aj

)
.

The construction of f2 is straightforward. Let us now show how to construct
fk+1 starting from fk. Let z := fσ

k (xk+1) so that

fk solves
(
x1 . . . xk−1 xk xk+1

a1 . . . ak−1 ak z

)
.

If z = ak+1 then fk+1 = fk. Otherwise, fk+1 = µ(fk, cz, ϕ( p q u v
z ak+1 u v )(gk+1))

has the required properties. Since the complexity of gk is O(k log k), it easily
follows that the complexity of f is O(n2 log n). This concludes the proof. 2
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