COMPLEXITY OF MAL'CEV INTERPOLATIONㅔ

E. Aichinger ${ }^{\text {2 }}$, D. Mašulovid ${ }^{3}$ and R. Pösche ${ }^{4}$

Abstract

A classical result in near-ring theory tells that the 4interpolation property implies the n-interpolation property for all $n \in \mathbb{N}$. In the present note we are interested in the complexity of a special kind of interpolating terms which can be constructed from the 4 -interpolations.

AMS Mathematics Subject Classification (2000): 08A40, 16Y30
Key words and phrases: near-ring, interpolation, local functional completeness

1. Introduction

Let A be a set with at least two elements, let $\mathbf{A}=(A, F)$ be an algebra and let $\mathrm{Pol}_{k} \mathbf{A}$ denote the set of k-ary polynomials of an algebra \mathbf{A} and $\operatorname{Pol} \mathbf{A}=$ $\bigcup_{k \geqslant 1} \operatorname{Pol}_{k} \mathbf{A}$. An n-interpolation problem of dimension k is a $2 \times n$ matrix $P=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\ a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$ such that

- $a_{1}, \ldots, a_{n} \in A$;
- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in A^{k}$ and $\mathbf{x}_{i} \neq \mathbf{x}_{j}$ whenever $i \neq j$.

A solution to P is a polynomial $f \in \operatorname{Pol}_{k} \mathbf{A}$ such that $f\left(\mathbf{x}_{i}\right)=a_{i}$ for all i. A set $F \subseteq A^{A^{k}}$ of k-ary operations has the n-interpolation property if for every n-interpolation problem $P=\left(\begin{array}{cccc}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\ a_{1} & a_{2} & \ldots . & a_{n}\end{array}\right)$ of dimension k there exists a solution $f \in F$ to P. An algebra \mathbf{A} has the n-interpolation property if $\operatorname{Pol}_{k} \mathbf{A}$ has the n-interpolation property for all $k \geqslant 1$. An algebra \mathbf{A} is locally functionally complete if it has the n-interpolation property for all $n \geqslant 2$. Our starting point in this paper is the following well-known theorem:

Theorem 1.1. (The 4-Interpolation Property for Near-rings [5]) Let $(\Gamma,+,-, 0)$ be a group, and let F be a subnear-ring of $\left(\Gamma^{\Gamma},+,-, 0, \circ\right)$ that has the 4-interpolation property. Then F has the n-interpolation property for all $n \geqslant 1$.

[^0]The theorem came as a consequence of the Density Theorems for near-rings [2, 4]; a proof is stated in [1]. We remark that one does not have to assume that F contains the identity map. However, it turns out that this theorem is a consequence of the following (easy) fact:

Fact 1.2. Let A be an algebra with a Mal'cev term m:

$$
m(x, y, y)=m(y, y, x)=x
$$

and assume that every 4-interpolation problem in \mathbf{A} of dimension 1 has a solution in A. Then A has the n-interpolation property for all n.

Proof. We know from [3] that a Mal'cev algebra with at least two elements is locally functionally complete if and only if it is simple and nonaffine. And it is obvious that an algebra \mathbf{A} where every 4-interpolation problem of dimension 1 has a solution has to be both simple and nonaffine.

In this paper we are interested in procedures that build interpolating polynomials from "elementary 4-interpolations", that is, using Mal'cev operations to "add" constants and polynomials that solve the 4-inteprolation problems of dimension 1. We would like to know how complicated are the terms that implement the interpolation? In particular, how many 4-interpolations are necessary.

It is a well-known fact (see [6]) that if \mathbf{A} is a discriminator algebra then the discriminator and constants suffice to solve any interpolation problem. Namely, every discriminator algebra has the switching term

$$
\operatorname{if}(x, y, u, v)= \begin{cases}u, & x=y \\ v, & x \neq y\end{cases}
$$

so an interpolation problem such as e.g. $\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4} \\ a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right)$ can be straightforwardly solved by

$$
f(x)=\operatorname{if}\left(x, c_{p_{1}}, c_{a_{1}}, \operatorname{if}\left(x, c_{p_{2}}, c_{a_{2}}, \operatorname{if}\left(x, c_{p_{3}}, c_{a_{3}}, \operatorname{if}\left(x, c_{p_{4}}, c_{a_{4}}, c_{a_{4}}\right)\right)\right)\right)
$$

where c_{a} is a constant symbol with the obvious interpretation. This is why we are interested in those situations where one has to use the 4-interpolations.

2. Mal'cev interpolation algebras

For a set A let $\mathcal{L}_{A}=\{\mu\} \cup \Phi_{A} \cup C_{A}$ be the language of Mal'cev interpolation on A, where μ is a ternary operation symbol, Φ_{A} is a set of unary operation symbols indexed by 4 -interpolation problems over A of dimension 1 :
$\Phi_{A}=\left\{\varphi\left(\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ a_{1} & x_{4} \\ a_{2} & a_{3} & a_{4}\end{array}\right):\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right)\right.$ is a 4-interpolation problem of dimension 1$\}$ and $C_{A}=\left\{c_{a}: a \in A\right\}$ is a set of constant symbols indexed by elements of A.

We would like to consider interpretations of \mathcal{L}_{A} in various Mal'cev algebras whose algebraic type need not contain \mathcal{L}_{A}. Let \mathcal{F} be an algebraic type and $\mathbf{A}=\langle A, F\rangle$ an \mathcal{F}-algebra. The interpretation of \mathcal{L}_{A} in \mathbf{A} is a pair (\mathbf{A}, σ) where $\sigma: \mathcal{L}_{A} \rightarrow \operatorname{Pol}(\mathbf{A})$ is a mapping such that

- $\operatorname{ar}(\sigma(\mu))=3$ and $\sigma(\mu)$ is a Mal'cev term operation of \mathbf{A};
- $\operatorname{ar}(\sigma(\varphi))=1$ for all $\varphi \in \Phi_{A}$, and $\sigma\left(\varphi_{\left(\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ a_{1} & a_{2} & a_{3}\end{array} a_{4}\right.}^{4}\right)\left(x_{i}\right)=a_{i}$, for $i=$ $1,2,3,4$; and
- $\operatorname{ar}\left(\sigma\left(c_{a}\right)\right)=0$ for all $c_{a} \in C_{a}$, and $\sigma\left(c_{a}\right)=a$.

For any set of variables X, σ uniquely extends to a map $\operatorname{Term}_{\mathcal{L}_{A}}(X) \rightarrow \operatorname{Pol}(\mathbf{A})$ which we also denote by σ. For a term $t \in \operatorname{Term}_{\mathcal{L}_{A}}(X)$, instead of $\sigma(t)$ we write t^{σ}.

Definition 2.1. An algebra \mathbf{A} is a Mal'cev interpolation algebra if there exists an interpretation of \mathcal{L}_{A} in \mathbf{A}. The set of Mal'cev interpolating polynomials over A is the least set of \mathcal{L}_{A}-terms such that

- c and $\varphi(x)$ are Mal'cev interpolating polynomials for all $c \in C_{A}$ and $\varphi \in \Phi_{A} ;$
- if t is a Mal'cev interpolating polynomial, then so is $\varphi(t)$ for every $\varphi \in \Phi_{A}$;
- if t_{1}, t_{2}, t_{3} are Mal'cev interpolating polynomials, then so is $\mu\left(t_{1}, t_{2}, t_{3}\right)$.

A Mal'cev interpolating polynomial for an n-interpolation problem P w.r.t. the interpretation (\mathbf{A}, σ) is a Mal'cev interpolating polynomial t such that t^{σ} solves P.

It is easy to see that every finite Mal'cev interpolation algebra \mathbf{A} is functionally complete. Moreover, if $n>|A|^{k}$ there are no n-interpolation problems over A of dimension k. Therefore, in the sequel we consider only infinite Mal'cev interpolation algebras.

Let $t \in \operatorname{Term}_{\mathcal{F}}(X)$ be an \mathcal{F}-term and let $\mathcal{H} \subseteq \mathcal{F}$. The \mathcal{H}-complexity of t is defined recursively by

- $|x|_{\mathcal{H}}=0$ for all $x \in X$,
- $\left|f\left(t_{1}, \ldots, t_{k}\right)\right|_{\mathcal{H}}=\left|t_{1}\right|_{\mathcal{H}}+\ldots+\left|t_{k}\right|_{\mathcal{H}}+\left\{\begin{array}{ll}0, & f \notin \mathcal{H}, \\ 1, & f \in \mathcal{H} .\end{array}\right.$.

Let \mathbf{A} be a Mal'cev interpolation algebra and let (\mathbf{A}, σ) be an interpretation of \mathcal{L}_{A} in \mathbf{A}. Let $P=\left(\begin{array}{cccc}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\ a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$ be an n-interpolation problem over A of dimension k. By

$$
\begin{aligned}
\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P=\min \left\{|t|_{\mathcal{L}_{A}}\right. & : t \text { is a Mal'cev interpolating polynomial } \\
& \text { which solves } P \text { w.r.t. }(\mathbf{A}, \sigma)\}
\end{aligned}
$$

we denote the minimal complexity of a Mal'cev interpolating polynomial that solves P w.r.t. (\mathbf{A}, σ). If $\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P=|t|_{\mathcal{L}_{A}}$, we say that t is a minimal polynomial for P w.r.t. (\mathbf{A}, σ).

The complexity of an n-interpolation problem P of dimension k in a Mal'cev interpolation algebra \mathbf{A} is then given by

$$
\mathrm{Cmp}_{\mathbf{A}} P=\sup \left\{\mathrm{Cmp}_{(\mathbf{A}, \sigma)} P: \sigma \text { is an interpretation of } \mathcal{L}_{A} \text { in } \mathbf{A}\right\} .
$$

Note that $\mathrm{Cmp}_{\mathbf{A}} P$ is an integer or \aleph_{0}. The complexity of Mal'cev term interpolation in a Mal'cev interpolation algebra \mathbf{A} is given by

$$
\begin{array}{r}
\operatorname{Cmp}_{\mathbf{A}}(n, k)=\sup \left\{\mathrm{Cmp}_{\mathbf{A}} P: P \text { is an } n\right. \text {-interpolation problem } \\
\text { over } A \text { of dimension } k\} .
\end{array}
$$

Since every subset of $\{0,1,2, \ldots\} \cup\left\{\aleph_{0}\right\}$ has a supremum in in the same set, we see that $\mathrm{Cmp}_{\mathbf{A}}(n, k)$ is an integer or \aleph_{0}.

We measure the complexity of Mal'cev term interpolation by the following two functions:
$\operatorname{Cmp}_{*}(n, k)=\min \left\{\operatorname{Cmp}_{\mathbf{A}}(n, k): \mathbf{A}\right.$ is an infinite Mal'cev interpolation algebra $\}$ $\mathrm{Cmp}^{*}(n, k)=\sup \left\{\operatorname{Cmp}_{\mathbf{A}}(n, k): \mathbf{A}\right.$ is an infinite Mal'cev interpolation algebra $\}$.

Clearly, $\operatorname{Cmp}_{*}(n) \geqslant 1$ for all $n \in \mathbb{N}$. This is not a useful lower bound, but the proof of Theorem 3.1 makes use of this simple fact.

3. A lower and an upper bound on the complexity of Mal'cev interpolation

In this section we provide a lower and an upper bound on the complexity of Mal'cev interpolation. We show that there exist positive constants γ_{1} and γ_{2} such
that $\operatorname{Cmp}_{*}(n, k) \geqslant \gamma_{1} \cdot n$ and $\operatorname{Cmp}^{*}(n, k) \leqslant \gamma_{2} \cdot n^{2} \log n$.

Theorem 3.1. There exists a positive constant γ_{1} such that $\operatorname{Cmp}_{*}(n, k) \geqslant$ $\gamma_{1} \cdot n$ for all positive integers n and k.

Proof. If $n \in\{1,2\}$ the claim is obviously true since $\operatorname{Cmp}_{\mathbf{A}}(n, k) \geqslant 1$ for all infinite Mal'cev interpolation algebras \mathbf{A}. So, let $n \geqslant 3$ and let k be arbitrary. In order to show that $\operatorname{Cmp}_{*}(n, k) \geqslant \gamma_{1} \cdot n$ for some $\gamma_{1}>0$ it suffices to show that for every infinite Mal'cev interpolation algebra \mathbf{A} there exists an interpretation σ and an n-interpolation problem P of dimension k such that $\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P \geqslant \gamma_{1} \cdot n$.

We shall say that vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ and $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ are disjoint if $\left\{x_{1}, \ldots, x_{k}\right\} \cap\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}=\varnothing$. Also, we shall say that a vector $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ is disjoint from a set S if $\left\{x_{1}, \ldots, x_{k}\right\} \cap S=\varnothing$.

Take any n mutually disjoint vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in A^{k}$ and any n distinct $a_{1}, \ldots, a_{n} \in A$, and consider the n-interpolation problem $P=\left(\begin{array}{cccc}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\ a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$ of dimension k. Furthermore, let $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i k}\right)$ for $i \in\{1, \ldots, n\}$ and let $d \in$ A be arbitrary. Since \mathbf{A} is a Mal'cev interpolation algebra, every interpolation problem has a solution in A. For any 4-interpolation problem $\left(\begin{array}{llll}y_{1} & y_{2} & y_{3} & y_{4} \\ b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right)$ of dimension 1 consider the following interpolation problem:

$$
Q_{\left(\begin{array}{llll}
y_{1} & y_{2} & y_{3} & y_{4} \\
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right)}=\left(\begin{array}{lllllll}
y_{1} & y_{2} & y_{3} & y_{4} & x_{i_{1}} & \ldots & x_{i_{m}} \\
b_{1} & b_{2} & b_{3} & b_{4} & d & \ldots & d
\end{array}\right)
$$

where $\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\}=\left\{x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right\} \backslash\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

Let $f\left(\begin{array}{cccc}y_{1} & y_{2} & y_{3} & y_{4} \\ b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right) \in \operatorname{Pol}(\mathbf{A})$ be a solution to $Q_{\left(\begin{array}{llll}y_{1} & y_{2} & y_{3} & y_{4} \\ b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right)}$ and define the interpretation σ of \mathcal{L}_{A} in \mathbf{A} as follows:

- $\sigma(\mu)$ is any Mal'cev term operation of \mathbf{A};
- $\sigma\left(c_{a}\right)=a$ for all $a \in A$; and
- $\sigma\left(\varphi_{\left(\begin{array}{llll}y_{1} & y_{2} & y_{3} & y_{4} \\ b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right)}\right)=f\left(\begin{array}{llll}y_{1} & y_{2} & y_{3} & y_{4} \\ b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right)$.

By the construction of σ, if $z, z^{\prime} \notin\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ then $\varphi^{\sigma}(z)=\varphi^{\sigma}\left(z^{\prime}\right)$ for every $\varphi \in \Phi_{A}$.

Now, let u be a minimal polynomial that solves P, so that $\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P=$
 list of all symbols from Φ_{A} that occur in u and let

$$
Y=\left\{y_{11}, y_{12}, y_{13}, y_{14}, \ldots, y_{m 1}, y_{m 2}, y_{m 3}, y_{m 4}\right\}
$$

If there exist distinct indices i and j such that both \mathbf{x}_{i} and \mathbf{x}_{j} are disjoint from Y then a simple induction shows that $u^{\sigma}\left(\mathbf{x}_{i}\right)=u^{\sigma}\left(\mathbf{x}_{j}\right)$, which is impossible due to the choice of P and u. Therefore, at most one of the \mathbf{x}_{i} 's can be disjoint from Y, or, in other words, at least $n-1$ of the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are not disjoint from Y. Since all the \mathbf{x}_{i} 's are mutually disjoint, it follows that $|Y| \geqslant n-1$, whence $4 m \geqslant|Y| \geqslant n-1$. This shows that $\operatorname{Cmp}_{(\mathbf{A}, \sigma)} P=|u|_{\mathcal{L}_{A}} \geqslant|u|_{\Phi_{A}}=m \geqslant \frac{n-1}{4}$.

Theorem 3.2. There exists a positive constant γ_{2} such that $\operatorname{Cmp}^{*}(n, k) \leqslant$ $\gamma_{2} \cdot n^{2} \log n$ for all positive integers n and k.

Proof. Clearly, it suffices to show that $\operatorname{Cmp}_{\mathbf{A}}(n, k) \leqslant \gamma_{2} \cdot n^{2} \log n$ for every Mal'cev interpolation algebra A. So, take any Mal'cev interpolation algebra $\mathbf{A}=(A, F)$ and an arbitrary interpretation σ of \mathcal{L}_{A}. Let $P=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\ a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$ be an arbitrary n-interpolation problem of dimension $m \geqslant 1$.

Let $p, q, r \in A$ be three arbitrary distinct elements of A and let us first construct a sequence of polynomials g_{2}, \ldots, g_{n} such that

$$
g_{k} \text { solves }\left(\begin{array}{cccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
p & \ldots & p & q
\end{array}\right) .
$$

We can always find a polynomial which solves a 2-interpolation problem $\left(\begin{array}{cc}\mathbf{x}_{l} & \mathbf{x}_{k} \\ a & b\end{array}\right)$. Namely, since $\mathbf{x}_{k} \neq \mathbf{x}_{l}$, there exists a coordinate j such that $x_{k, j} \neq x_{l, j}$. Then the function we are looking for is $\varphi_{\left(\begin{array}{cccc}x_{l, j} & x_{k, j} & u & \\ a & b & u^{\prime} & v^{\prime}\end{array}\right)}$ for some $u, u^{\prime}, v, v^{\prime} \in A$.

If $\mu^{\sigma}(p, q, r)=r$, for each k we can inductively construct terms $g_{k / 2}^{\prime}$ and $g_{k / 2}^{\prime \prime}$ so that

$$
g_{k / 2}^{\prime} \text { solves }\left(\begin{array}{cccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor} & \mathbf{x}_{k} \\
q & \ldots & q & p
\end{array}\right)
$$

	x_{1}	\ldots	$\mathbf{X}_{\left\lfloor\frac{k-1}{2}\right\rfloor}$	$\mathbf{X}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1}$...	\mathbf{x}_{k-1}	x_{k}
h^{\prime}	q	\ldots	q	p or q		p or q	p
$h^{\prime \prime}$	q or r	\ldots	q or r	q	\ldots	q	r
c_{r}	r	\ldots	r	r	\ldots	r	r
$\mu\left(h^{\prime}, h^{\prime \prime}, c_{r}\right)$	q or r		q or r	r		r	p
$\varphi_{\left(\begin{array}{llll}p & q & r & u \\ q & p & u_{0}\end{array}\right)}\left(\mu\left(h^{\prime}, h^{\prime \prime}, c_{r}\right)\right)$	p	\ldots	p	p		p	q

Figure 1: Case 1. $\mu^{\sigma}(p, q, r)=r$
and

$$
g_{k / 2}^{\prime \prime} \text { solves }\left(\begin{array}{cccc}
\mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1} & \cdots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
q & \cdots & q & r
\end{array}\right)
$$

In order to take care of values $\left(g_{k}^{\prime}\right)^{\sigma}\left(\mathbf{x}_{i}\right)$ for $\left\lfloor\frac{k-1}{2}\right\rfloor+1 \leqslant i \leqslant k-1$ and $\left(g_{k}^{\prime \prime}\right)^{\sigma}\left(\mathbf{x}_{j}\right)$ for $1 \leqslant j \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor$, note that there exists a sequence $\varphi_{1}^{\prime}, \ldots, \varphi_{s}^{\prime} \in \Phi_{A}$ of the form $\varphi_{\left(\begin{array}{llll}p & q & u & v \\ p & q & p & p\end{array}\right)}$ and a sequence $\varphi_{1}^{\prime \prime}, \ldots, \varphi_{t}^{\prime \prime} \in \Phi_{A}$ of the form $\varphi\left(\begin{array}{ccc}q & r & u \\ q & r & v \\ q\end{array}\right)$ such that $h^{\prime}=\varphi_{1}^{\prime}\left(\ldots\left(\varphi_{s}^{\prime}\left(g_{k / 2}^{\prime}\right)\right) \ldots\right)$ solves

$$
\left(\begin{array}{ccccccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor} & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
q & \ldots & q & p \text { or } q & \ldots & p \text { or } q & p
\end{array}\right)
$$

and $h^{\prime \prime}=\varphi_{1}^{\prime \prime}\left(\ldots\left(\varphi_{t}^{\prime \prime}\left(g_{k / 2}^{\prime \prime}\right)\right) \ldots\right)$ solves

$$
\left(\begin{array}{ccccccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor} & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
q \text { or } r & \ldots & q \text { or } r & q & \ldots & q & r
\end{array}\right) .
$$

Then $\mu\left(h^{\prime}, h^{\prime \prime}, c_{r}\right)$ solves

$$
\left(\begin{array}{ccccccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor} & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
q \text { or } r & \ldots & q \text { or } r & r & \ldots & r & p
\end{array}\right)
$$

and finally, $\varphi\left(\begin{array}{llll}p & q & r & u \\ q & p & x_{1}\end{array}\right)\left(\mu\left(h^{\prime}, h^{\prime \prime}, c_{r}\right)\right)$ solves

$$
\left(\begin{array}{ccccccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor} & \mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} \\
p & \ldots & p & p & \ldots & p & q
\end{array}\right) .
$$

This procedure can be schematically represented as in Fig. 1 .
In case $\mu^{\sigma}(p, q, r) \in\{p, q\}$ the procedure is the same, and the corresponding scheme is given in Fig. 2, while in case $\mu^{\sigma}(p, q, r)=s \notin\{p, q, r\}$ we again follow the same procedure according to the scheme given in Fig. 3,

Due to the divide and conquer approach, one easily deduces that the complexity of the terms g_{k} is $O(k \log k)$.

	\mathbf{x}_{1}	\cdots	$\mathbf{X}_{\left\lfloor\frac{k-1}{2}\right\rfloor}$	$\mathbf{X}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1}$. .	\mathbf{x}_{k-1}	\mathbf{x}_{k}
h^{\prime}	p	. .	p	p or q		p or q	q
c_{q}	q	. .	q	q	\ldots	q	q
$h^{\prime \prime}$	q or r	. .	q or r	q	\ldots	q	r
$\mu\left(h^{\prime}, c_{q}, h^{\prime \prime}\right)$	p or q		p or q	p or q	\ldots	p or q	r
$\varphi\left(\begin{array}{cccc} p & q & r & u \\ p & p & q & p \end{array}\right)\left(\mu\left(h^{\prime}, c_{q}, h^{\prime \prime}\right)\right)$	p	\ldots	p	p	. .	p	q

Figure 2: Case 2. $\mu^{\sigma}(p, q, r) \in\{p, q\}$

	\mathbf{x}_{1}	\ldots	$\mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor}$	$\mathbf{x}_{\left\lfloor\frac{k-1}{2}\right\rfloor+1}$	\ldots	\mathbf{x}_{k-1}	\mathbf{x}_{k}
h^{\prime}	p or q	\ldots	p or q	q	\ldots	q	p
c_{q}	q	\ldots	q	q	\ldots	q	q
$h^{\prime \prime}$	q	\ldots	q	q or r	\ldots	q or r	r
$\mu\left(h^{\prime}, c_{q}, h^{\prime \prime}\right)$	p or q	\ldots	p or q	q or r	\ldots	q or r	s
$\varphi_{\left(\begin{array}{lll}p & q & s \\ p & p & s\end{array}\right)}\left(\mu\left(h^{\prime}, c_{q}, h^{\prime \prime}\right)\right)$	p	\ldots	p	p	\ldots	p	q

Figure 3: Case 3. $\mu^{\sigma}(p, q, r)=s \notin\{p, q, r\}$

Using the terms g_{2}, \ldots, g_{n} we now construct a term f such that $f^{\sigma}\left(\mathbf{x}_{i}\right)=a_{i}$, $i \in\{1, \ldots, n\}$. We shall inductively construct a sequence of terms f_{2}, f_{3}, \ldots, $f_{n}=f$ such that

$$
f_{j} \text { solves }\left(\begin{array}{cccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{j} \\
a_{1} & a_{2} & \ldots & a_{j}
\end{array}\right) \text {. }
$$

The construction of f_{2} is straightforward. Let us now show how to construct f_{k+1} starting from f_{k}. Let $z:=f_{k}^{\sigma}\left(\mathbf{x}_{k+1}\right)$ so that

$$
f_{k} \text { solves }\left(\begin{array}{ccccc}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{k-1} & \mathbf{x}_{k} & \mathbf{x}_{k+1} \\
a_{1} & \ldots & a_{k-1} & a_{k} & z
\end{array}\right)
$$

If $z=a_{k+1}$ then $f_{k+1}=f_{k}$. Otherwise, $f_{k+1}=\mu\left(f_{k}, c_{z}, \varphi\left(\begin{array}{ccc}p & q & a_{k+1} \\ z & u & v \\ a_{k}\end{array}\right)\left(g_{k+1}\right)\right)$ has the required properties. Since the complexity of g_{k} is $O(k \log k)$, it easily follows that the complexity of f is $O\left(n^{2} \log n\right)$. This concludes the proof.

References

[1] Aichinger, E., Local Interpolation Near-rings as a Frame-work for the Density Theorems. Contributions to General Algebra, Vol. 9, Verlag Hölder-Pichler-Tempsky, Wien - Verlag B.G. Teubner, Stuttgart, 1995, 27-36.
[2] Betsch, G., Primitive near-rings. Math. Z. 130 (1973), 351-361.
[3] Gumm, H. P., Algebras in congruence permutable varieties: Geometrical properties of affine algebras. Algebra Universalis 9 (1979), 8-34.
[4] Pilz, G., Primitive Near-rings and Interpolation Theory. Institutsbericht 1, Hochschule Linz, Institut für Mathematik, 4040 Linz, Austria, April 1974.
[5] Pilz, G., Near-rings, 2nd Ed. Amsterdam, New York, Oxford: North-Holland Publishing Company 1983.
[6] Werner, H., Eine Characterisierung funktional vollständiger Algebren. Arch. Math. (Basel) 21 (1970), 381-385

Received by the editors November 13, 2006

[^0]: ${ }^{1}$ The work is partially supported by the Ministry for Science, Technologies and Development of the Republic of Serbia (Project No. 144017)
 ${ }^{2}$ Institute for Algebra, University of Linz, A-4040 Linz, Austria, e-mail: erhard@algebra.uni-linz.ac.at
 ${ }^{3}$ Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia, e-mail:masul@im.ns.ac.yu
 ${ }^{4}$ Institute for Algebra, Dresden University of Technology, D-01062 Dresden, Germany, email: Reinhard.Poeschel@tu-dresden.de

