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Abstract. Generalized random processes by various types of continuity
are considered and classified as generalized random processes (GRPs) of
type (I) and (II). Structure theorems for Hilbert space valued generalized
random processes are obtained: Series expansion theorems for GRPs (I)
considered as elements of the spaces L(A, S(H)−1) are derived, and struc-
ture representation theorems for GRPs (II) on K{Mp}(H) on a set with
arbitrary large probability are given.
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Introduction

Generalized random (stochastic) processes can be defined in various ways,
depending on whether they are regarded as a family of random variables or as
a family of trajectories, but also depending on the type of continuity implied
on this family. It is well known that a classical stochastic process X(t, ω),
t ∈ T ⊆ Rd, ω ∈ Ω, can be regarded either as a family of random variables
X(t, ·), t ∈ T , as a family of trajectories X(·, ω), ω ∈ Ω, or as a family of
functions X : T × Ω → Rn (Rn is the state space) such that for each fixed
t ∈ T , X(t, ·) is an Rn–valued random variable and for each fixed ω ∈ Ω,
X(·, ω) is an Rn–valued deterministic function (called a trajectory). For classical
stochastic processes these three concepts are equivalent, but if we replace the
space of trajectories with some space of deterministic generalized functions,
or if we replace the space of random variables with some space of generalized
random variables, then we get different types of generalized stochastic processes.
The classification of generalized stochastic processes by various conditions of
continuity leads to structural theorems such as integral representations and
series expansions, which will be subject of this paper.

Let us give now a historical overview of various definitions of the concept of
generalized random processes (GRPs). One possible definition of a GRP is the
one used by J.B. Walsh (see [17]) as a measurable mapping X : Ω → D′(T ).
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For each φ ∈ D(T ), the mapping Ω → R, ω 7→ 〈X(ω), φ〉 is a random variable.
This definition is motivated by the fact that trajectories of Brownian motion
are nowhere differentiable and can be considered as elements of D′(T ). K. Itô
defined in [7] a GRP as a linear and continuous mapping from L2(R) to the space
L2(Ω) of random variables with finite second moments, while Inaba considered
in [6] a GRP as a continuous mapping from a certain space of test functions to
the space L2(Ω). Also, Gel’fand and Vilenkin [2] have considered GRPs in this
sense. Further on, we will refer to GRPs defined in this sense as to GRPs of
type (I). On the other hand, O. Hanš, M. Ullrich, L. Swartz and others (see
[3], [8], [14], [16]) defined a GRP as a mapping ξ : Ω × V → C such that for
every ϕ ∈ V, ξ(·, ϕ) is a complex random variable, and for every ω ∈ Ω, ξ(ω, ·)
is an element in V ′, where V denotes a topological vector space and V ′ its dual
space. Further on, we will refer to GRPs defined in this sense as to GRPs of
type (II).

Note, if a GRP is of type (I), then we do not have continuity of sample paths
for each fixed ω ∈ Ω, only continuity in distributional sense. If we assume for a
GRP (I) the continuity for a.e. fixed ω ∈ Ω, then it is also of type (II). However
in [17] Walsh proved that, if the underlying test space V is nuclear, then for a
GRP (I) there exists a version which is also a GRP (II). This result need not
hold true if V is not nuclear, e.g. if it is a Hilbert space, as it was shown in
[12]. Vice versa, if a GRP is of type (II), this does not ensure its continuity as
a mapping from the test space K{Mp} into L2(Ω) or even L0(Ω) equipped with
convergence in probability. It was shown in [12] under which conditions a GRP
of type (II) is also a GRP (I) up to a set of arbitrarily small measure.

T. Hida, Y. Kondratiev, B. Øksendal, H.-H. Kuo, and many others (refer to
[4], [5]) have developed a very general concept of GRPs via chaos expansions.
In [5], GRPs are defined as measurable mappings T → (S)−1, where (S)−1

denotes the Kondratiev space, but one can consider also some other spaces of
generalized random variables instead of it. Thus, they are pointwisely defined
with respect to the parameter t ∈ T and generalized with respect to ω ∈ Ω.

GRPs generalized with respect to both arguments were introduced in [13]
and [11], where we in fact generalized and unified the concept of a GRP in
Inaba’s sense and the previous definition, and considered GRPs as linear con-
tinuous mappings from the Zemanian test space A into (S)−1. There we gave
structural properties of these GRPs by series expansions in spaces of Zemanian
generalized functions and a simultaneous chaos expansion. Since these pro-
cesses, as elements of L(A, (S)−1), are very close to the concept of a GRP (I),
we also call them GRPs of type (I).

The aim of this paper is to generalize the results obtained in [11] and [12]
to Hilbert space valued GRPs. The results in [11] for GRPs (I) and in [12] for
GRPs (II) hold for processes with a finite–dimensional state space. In this paper
we derive similar results for GRPs with an infinite–dimensional state space H,
where H is a separable Hilbert space.

The paper is organized in the following manner: In the introductory section
(Section 1) we provide some basic terminology and background information from
the theory of generalized functions, generalized random variables and general-
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ized random processes. In Section 2 we derive chaos expansion theorems for
GRPs (I) considered as elements of the spaces L(A, S(H)−1) i.e. as linear con-
tinuous mappings defined on the space of Zemanian test fuctions A and taking
values in the H–valued Kondratiev space S(H)−1. We also prove that in the
case when A is nuclear, a GRP (I) can also be regarded as an element of the
space L(A(H), S−1). Section 3 contains an integral representation theorem on
sets with arbitrary large probability for GRPs (II) on K{Mp}(H) spaces.

With these theorems established, in Part II of the paper, we will derive the
Wick product for GRPs (I) and use the series expansion machinery for solving a
class of linear and a class of nonlinear evolution stochastic differential equations.

1. Basic concepts

In this introductory chapter we give a brief overview of some classes of de-
terministic (e.g. Schwartz, Zemanian) and stochastic (Hida, Kondratiev, etc.)
generalized function spaces. Definitions of some basic concepts, their most im-
portant properties and relations are given, which are necessary to understand
the methods used in the sequent parts of the paper. Most of the material pre-
sented here is familiar and therefore given without proofs, but with references
for further reading.

We use the notation α = (α1, . . . , αd) ∈ Nd
0 for multi-indices, Dα = ∂α1

1 · · · ∂αd

d

for the differential operator, and xα = xα1
1 · · ·xαd

d for x = (x1, . . . , xd) ∈ Rd.
The length of a multi-index α is defined as |α| = α1 + α2 + · · ·+ αd.

1.1. Hermite functions

The Hermite polynomial of order n, n ∈ N0, is defined by

hn(x) = (−1)ne
x2
2

dn

dxn
(e−

x2
2 ), x ∈ R.

It is well known that the family { 1√
n!

hn : n ∈ N0} constitutes an orthonormal

basis of the space L2(R, dµ), where dµ = 1√
2π

e−
x2
2 dx is the Gaussian measure.

The Hermite function of order n + 1, n ∈ N0, is defined as

ξn+1(x) =
1

4
√

π
√

n!
e−

x2
2 hn(

√
2x), x ∈ R.

Let α = (α1, α2, . . . , αd) ∈ Nd
0 be a multi-index. Define ξα = ξα1⊗ξα2⊗· · ·⊗ξαd

.
The set of multi-indeces α can be ordered in an ascending sequence as it is
described in [5]. Denote by α(j) the jth multi-index in this ordering. Hence,
the family of vectors ξα can also be enumerated into a countable family ηj =
ξα(j) , j ∈ N. The family of functions {ηj : j ∈ N} is an orthonormal basis of the
space L2(Rd).
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1.2. Zemanian spaces

Let I be an open interval in R, and let R be a formally self-adjoint linear
differential operator of the form

(1) R = θ0D
n1θ1 · · ·Dnν θν = θ̄ν(−D)nν · · · (−D)n2 θ̄1(−D)n1 θ̄0

where D = d/dx, θk are smooth complex functions without zero-points in I,
and nk are integers k = 1, 2, . . . , ν. Suppose that there exist a sequence of
real numbers 〈λn〉n∈N, limn→∞ |λn| = ∞, and a sequence of smooth functions
〈ψn〉n∈N in L2(I) which are the eigenvalues and eigenfunctions, respectively,
of the operator R, i.e. Rψn = λnψn, n ∈ N. We can enumerate them in
an ascending order: |λ1| ≤ |λ2| ≤ |λ3| ≤ · · · → ∞. This re-ordering is made
just for technical reasons, but it is neither unique nor unavoidable. Suppose
that {ψn : n ∈ N} forms a complete orthonormal system in L2(I) with respect
to the usual inner product denoted by (·|·). Each function f ∈ L2(I) can be
represented as an infinite sum f =

∑∞
n=1(f |ψn)ψn converging in L2(I). Define

inductively: R0 = I, Rk+1 = R(Rk), k ∈ N. Note, λn = 0 for some n ∈ N
implies λk = 0 for every k < n. From now on, if λn = 0, we replace it with
λ̃n = 1, else we put λ̃n = λn, n ∈ N.

Define:

Ak = {f =
∞∑

n=1

anψn :
∞∑

n=1

|an|2λ̃n

2k
< ∞}, k ∈ Z.

If k ∈ N0, then Ak ⊆ L2(I). For each k ∈ N0, Ak is a Hilbert space when pro-

vided with the inner product (f |g)k =
∑∞

n=1 anb̄nλ̃n

2k
, where f =

∑∞
n=1 anψn,

g =
∑∞

n=1 bnψn ∈ Ak. Denote by ‖ · ‖k the norm induced by this inner product.
The dual space A′k, equipped with the usual dual norm, is isomorphic with A−k.
Thus, we have a sequence of linear continuous canonical inclusions

· · · ⊆ Ak+1 ⊆ Ak ⊆ · · ·A0 = L2(I) ⊆ A−1 ⊆ A−2 ⊆ · · ·
The set

(2) S = {f ∈ L2(I) : f =
m∑

n=1

anψn, an ∈ C,m ∈ N},

i.e. the linear span of the set {ψn : n ∈ N}, is dense in each Ak, k ∈ Z. Define:

A =
⋂

k∈N0

Ak =

{
f ∈ L2(I) : f =

∞∑
n=1

anψn, ∀k,

∞∑
n=1

|an|2λ̃n

2k
< ∞

}
,

A′ =
⋃

k∈N0

A−k =

{
f =

∞∑
n=1

bnψn : ∃k,

∞∑
n=1

|bn|2λ̃n

−2k
< ∞

}
.

The Zemanian space of test functions A is equipped with the projective topol-
ogy, and its dual A′, the Zemanian space of generalized functions, is equipped
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with the inductive topology which is equivalent to the strong dual topology.
The action of a generalized function f =

∑∞
n=1 anψn ∈ A′ onto a test function

ϕ =
∑∞

n=1 bnψn is given by the dual pairing 〈f, ϕ〉 =
∑∞

n=1 anbn. The orthonor-

mal basis of Ak, k ∈ N0, is the family of functions {λ̃n

−k
ψn : n ∈ N}. Note, A

is nuclear if for some c ∈ N0 the condition
∑

n∈N λ̃n

−2c
< ∞ holds.

Example 1.1. In particular, for the choice R = − d2

dx2 + x2 + 1, defined on a
maximal domain in L2(R), A′ is the space of tempered distributions S ′(R).

Let p ∈ N. Denote expp x = exp(exp(· · · (exp x)) · · · )︸ ︷︷ ︸
p

and define (see [10])

exppA as the projective limit of the family

expp,k A = {ϕ =
∞∑

n=1

anψn :
∞∑

n=1

|an|2(expp λ̃n)2k < ∞}, k ∈ N0,

equipped with the norm ‖ϕ‖p,k =
∑∞

n=1 |an|2(expp λ̃n)2k, k ∈ N0. Thus,

exppA =
⋂

k∈N0

expp,k A, exppA′ =
⋃

k∈N0

expp,−kA.

Clearly, S is dense in each expp,k A. The canonical inclusions expp,k+1A ⊆
expp,k A are compact. Moreover, exppA is nuclear if for some c ∈ N0 the series∑∞

n=1(expp λ̃n)−2c converges. Define the pair of test and generalized function
spaces ExpA and ExpA′ as

ExpA = projlimp→∞ exppA, ExpA′ = indlimp→∞ exppA′.

The canonical inclusions expp+1A ⊆ exppA are continuous and compact. The
set S is dense in exppA for each p ∈ N. Hence, ExpA is dense in each exppA
as well as in A.

1.2.1. Hilbert space valued Zemanian functions

Let H be a separable Hilbert space with orthonormal basis {ei : i ∈ N}.
We will assume that A is nuclear, i.e. that there exists some p ≥ 0, such that∑∞

n=1 λ̃n

−2p
< ∞. This is necessary in order to have an isomorphism of A′(I;H)

with the tensor product space A′⊗H (refer to [15, Prop.50.7]). In general case,
A′ ⊗H would be isomorphic to a subspace of A′(I;H). Note that the notation
⊗ stands for the π–completition of the tensor product space, which is equivalent
to the ε–completition in case A is nuclear.

Denote by Ak(I; H) the space of functions f : I → H of the form f =
∑∞

i=1

∑∞
n=1 ai,nψnei such that ‖f‖k;H =

∑∞
i=1

∑∞
n=1 |ai,n|2λ̃n

2k
< ∞. Let

A(I;H) = projlimk→∞Ak(I;H). Clearly, A′k(I; H) is isomorphic to A−k(I;H)
and we may define A′(I; H) = indlimk→∞A−k(I; H).
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A similar construction can be carried out also for the spaces ExpA and
ExpA′. We denote their Hilbert space valued versions by ExpA(I; H) and
ExpA′(I; H).

1.3. Spaces of generalized random variables

The spaces of generalized random variables are stochastic analogues of de-
terministic generalized functions: they have no point value for ω ∈ Ω, only an
average value with respect to a test random variable. For details refer to [4] or
[5].

1.3.1. White Noise Space

Consider the Gel’fand triple S(Rd) ⊆ L2(Rd) ⊆ S ′(Rd), the Borel σ-algebra
B generated by the weak topology on S ′(Rd) and the characteristic function
C(φ) = exp{− 1

2 |φ|2L2(Rd)}. According to the Bochner-Minlos theorem, there
exists a unique measure µ on (S ′(Rd),B) such that for each φ ∈ S(Rd) the
relation ∫

S′(Rd)

ei〈ω,φ〉dµ(ω) = C(φ)

holds. Here 〈ω, φ〉 is the dual pairing of S ′(Rd) and S(Rd). The triplet (S ′(Rd),
B, µ) is called the white noise space and µ is called the white noise measure or
the Gaussian measure on S ′(Rd).

From now on we suppose that the basic probability space (Ω,F , P ) is the
space (S ′(Rd),B, µ). Put (L)2 = L2(S ′(Rd),B, µ). It is a Hilbert space equipped
with the inner product (F |G)(L)2 = Eµ(FG).

In a multi-dimensional case, for a given m ∈ N, m > 1, define Sm =∏m
i=1 Si(Rd), where Si(Rd) is a copy of S(Rd), and let S ′m =

∏m
i=1 S ′i(Rd).

Equip the space S ′m with the product Borel σ-algebra and with the product
measure µm = µ× · · · × µ. The triple (S ′m,B, µm) is called the m-dimensional
d-parameter white noise space. Put (L)2,m = L2(S ′m, µm), and for N ∈ N,
N > 1, let (L)2,m,N =

⊕N
k=1(L)2,m be the direct sum of N identical copies of

the m-dimensional d-parameter white noise space. Here the finite dimension N
is the state space dimension. In Section 2, instead of the N–dimensional state
space, we will also consider the infinite–dimensional case, when the state space
is a separable Hilbert space H.

1.3.2. The Wiener-Itô chaos expansion

Denote by I = (NN0 )c the set of sequences of integers which have only finitely
many nonzero components. For a given α = (α1, α2, . . .) ∈ I define the
Fourier-Hermite polynomial as Hα(ω) =

∏∞
i=1 hαi(〈ω, ηi〉), ω ∈ S ′(Rd). In

the multi-dimensional valued case (m > 1) the orthonormal basis of the space
K =

⊕m
k=1 L2(Rd) is constituted of vectors of length m of the form e(k) =

(0, . . . , ηj , 0, . . .), where ηj takes the ith place in the sequence, and i, j are inte-
gers such that k = i + (j − 1)m, i ∈ {1, 2, . . . , m}, j ∈ N. In this case we de-
fine H

(m)
α (ω) =

∏∞
k=1 hαk

(〈ω, e(k)〉), ω ∈ S ′m. The Fourier-Hermite polynomials
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H
(m)
α form an orthogonal basis of (L)2,m. It is also known that ‖H(m)

α ‖(L)2,m =√
α1!α2! · · ·, α = (α1, α2, . . .) ∈ I.

The Wiener-Itô expansion theorem (see [5]) states that each element F ∈
(L)2,m,N has a unique representation of the form

F (ω) =
∑

α∈I
cαH(m)

α (ω), ω ∈ S ′m, cα ∈ RN , α ∈ I,

such that ‖F‖2(L)2,m,N =
∑

α∈I α!c2
α, where c2

α = (cα|cα) is the standard inner
product in RN .

Example 1.2. Let εj = (0, 0, . . . , 1, 0, . . .) be a sequence of zeros with the
number 1 as the jth component. The one-dimensional d-parameter Brownian
motion B(t, ω) = 〈ω, κ[0,t]〉 has the expansion

B(t, ω) =
∞∑

j=1

(∫ t

0

ηj(u)du

)
Hεj (ω), t ∈ Rd, ω ∈ S ′(Rd).

1.3.3. The Kondratiev spaces

We will use the notation αβ = αβ1
1 αβ2

2 · · · for the given multi-indices α, β ∈ I,
and

(2N)γ =
∞∏

j=1

(2j)γj ,

where γ = (γ1, γ2, . . .) ∈ I. Then,
∑

α∈I(2N)−pα < ∞ if and only if p > 1, and∑
α∈I e−p(2N)α

< ∞ if and only if p > 0.
We will use the definition of the Kondratiev spaces given in [5], where the

authors provide an equivalent construction of the original one introduced by
Y. Kondratiev. The space of the Kondratiev stochastic test functions (space
of Kondratiev test random variables) (S)m,N

ρ consists of those elements f =∑
α∈I cαH

(m)
α ∈ (L)2,m,N , cα ∈ RN , α ∈ I, such that

‖f‖2ρ,p =
∑

α∈I
c2
α(α!)1+ρ(2N)pα < ∞, for all p ∈ N0.

The space of the Kondratiev stochastic generalized functions (space of Kon-
dratiev generalized random variables) (S)m,N

−ρ consists of formal expansions of

the form F =
∑

α∈I bαH
(m)
α , bα ∈ RN , α ∈ I, such that

‖F‖2−ρ,−p =
∑

α∈I
b2
α(α!)1−ρ(2N)−pα < ∞, for some p ∈ N0.

The action of F onto a test function f is given by 〈F, f〉 =
∑

α∈I(bα|cα)α!
where (·|·) is the standard inner product in RN .

The generalized expectation of F is defined as E(F ) = 〈F, 1〉 = b0.
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The space (S)m,N
−ρ can also be constructed as the inductive limit of the family

(S−p)
m,N
−ρ = {f =

∑
α∈I cαHα : ‖f‖−ρ,−p < ∞}, p ∈ N0.

In particular, for ρ = 0 the Kondratiev spaces are called the Hida spaces of
test and generalized stochastic functions.

Example 1.3. One-dimensional d-parameter singular white noise is defined
via the formal expansion

W (t, ω) =
∞∑

k=1

ηk(t)Hεk
(ω)

where t ∈ Rd, and εk, ηk are as in the previous example. Singular white noise
belongs to the Hida space of generalized stochastic functions.

1.3.4. The Spaces exp(S)m,N
ρ and exp(S)m,N

−ρ

In [13] and [11] the following space of generalized random variables was in-
troduced: The space of stochastic test functions exp(S)m,N

ρ consists of those

elements f =
∑

α∈I cαH
(m)
α ∈ (L)2,m,N , cα ∈ RN , α ∈ I, such that

‖f‖2ρ,p,exp =
∑

α∈I
c2
α(α!)1+ρep(2N)α

< ∞, for all p ∈ N0.

The space of stochastic generalized functions exp(S)m,N
−ρ consists of formal ex-

pansions of the form F =
∑

α∈I bαH
(m)
α , bα ∈ RN , α ∈ I, such that

‖F‖2−ρ,−p,exp =
∑

α∈I
b2
α(α!)1−ρe−p(2N)α

< ∞, for some p ∈ N0.

Note, for each ρ ∈ [0, 1], exp(S)m,N
ρ is nuclear and exp(S)m,N

−ρ ⊆ exp(S)m,N
−1

(the canonical inclusion exp(S)m,N
1 ⊆ exp(S)m,N

ρ is compact). Moreover, the
following relationship to the Kondratiev spaces holds:

exp(S)m,N
ρ ⊆ (S)m,N

ρ ⊆ (L)2,m,N ⊆ (S)m,N
−ρ ⊆ exp(S)m,N

−ρ .

The canonical inclusion exp(S)m,N
ρ ⊆ (S)m,N

ρ is compact. From the construction
it follows that exp(S)m,N

ρ is dense in (L)2,m,N , i.e. exp(S)m,N
ρ ⊆ (L)2,m,N ⊆

exp(S)m,N
−ρ is a Gel’fand triple.

1.3.5. Hilbert space valued generalized random variables

Let H be a separable Hilbert space with orthonormal basis {ei : i ∈ N}.
As already suggested, we will treat H as the state space, i.e. we replace the
N–dimensional case with an infinitedimensional state space (see [9] and the
references therein). While in [9] the case m = 1 is considered, we keep our
white noise space dimension to be m ≥ 1.
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Recall that the basic probability space is (S ′m,B, µm). Denote by L2,m(Ω;H)
the space of functions on Ω with values in H which are square integrable with
respect to µm. The family of functions {H(m)

α ei : i ∈ N, α ∈ I} is an orthogonal
basis of the Hilbert space L2,m(Ω; H). Each element of L2,m(Ω;H) can be
represented in either of the following forms:

f(ω) =
∞∑

i=1

ai(ω)ei, ai = 〈f, ei〉H ∈ (L)2,m,

∞∑

i=1

‖ai‖2(L)2,m < ∞,

f(ω) =
∞∑

i=1

∑

α∈I
ai,αH(m)

α (ω)ei, ai,α = 〈f,H(m)
α ei〉 ∈ R,

∞∑

i=1

∑

α∈I
α!|ai,α|2 < ∞,

f(ω) =
∑

α∈I
aαH(m)

α (ω), aα = 〈f, H(m)
α 〉(L)2,m ∈ H,

∑

α∈I
α!‖aα‖2H < ∞.

Now, one can build up spaces of H–valued generalized random variables
(H–valued Kondratiev spaces and others) over L2,m(Ω;H) following the same
ideas as in the RN–valued case. Let ρ ∈ [0, 1].

Define S(H)m
ρ as the space of functions f ∈ L2,m(Ω;H),

f(ω) =
∑∞

i=1

∑
α∈I ai,αH

(m)
α (ω)ei, ai,α ∈ R, such that for all p ∈ N0,

‖f‖2ρ,p;H =
∞∑

i=1

∑

α∈I
α!1+ρ|ai,α|2(2N)pα =

∑

α∈I

∞∑

i=1

α!1+ρ|ai,α|2(2N)pα < ∞.

Define S(H)m
−ρ as the space of formal expansions

F (ω) =
∑∞

i=1

∑
α∈I bi,αH

(m)
α (ω)ei, bi,α ∈ R, such that for some q ∈ N0,

‖F‖2−ρ,−q;H =
∞∑

i=1

∑

α∈I
α!1−ρ|bi,α|2(2N)−qα =

∑

α∈I

∞∑

i=1

α!1−ρ|bi,α|2(2N)−qα < ∞.

Note, we can also write

f(ω) =
∑

α∈I

∞∑

i=1

ai,αH(m)
α (ω)ei =

∑

α∈I
aαH(m)

α (ω) =
∞∑

i=1

ai(ω)ei,

where aα =
∑∞

i=1 ai,αei ∈ H and ai =
∑

α∈I ai,αH
(m)
α (ω) ∈ (S)m

ρ . Also,

‖f‖2ρ,p;H =
∑

α∈I
α!1+ρ‖aα‖2H(2N)pα =

∞∑

i=1

‖ai‖2ρ,p.

The same holds also for

F (ω) =
∑

α∈I

∞∑

i=1

bi,αH(m)
α (ω)ei =

∑

α∈I
bαH(m)

α (ω) =
∞∑

i=1

bi(ω)ei,
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where bα =
∑∞

i=1 bi,αei ∈ H and bi =
∑

α∈I bi,αH
(m)
α (ω) ∈ (S)m

−ρ. Also,

‖F‖2−ρ,−q;H =
∑

α∈I
α!1−ρ‖bα‖2H(2N)−qα =

∞∑

i=1

‖bi‖2−ρ,−q.

The action of F onto f is given by

〈F, f〉 =
∑

α∈I
α!〈bα, aα〉H .

Similarly as for the finite-dimensional case we have

S(H)(m)
1 ⊆S(H)(m)

ρ ⊆S(H)(m)
0 ⊆L2,m(Ω;H)⊆S(H)(m)

−0 ⊆S(H)(m)
−ρ ⊆S(H)(m)

−1 .

The same construction can be carried out for the exponential growth rate
spaces. Let expS(H)m

ρ be the space of functions f ∈ L2,m(Ω; H), f(ω) =∑∞
i=1

∑
α∈I ai,αH

(m)
α (ω)ei, ai,α ∈ R, such that for all p ∈ N0,

‖f‖2ρ,p,exp;H =
∞∑

i=1

∑

α∈I
α!1+ρ|ai,α|2ep(2N)α

=
∑

α∈I

∞∑

i=1

α!1+ρ|ai,α|2ep(2N)α

< ∞.

The corresponding space of stochastic generalized functions expS(H)m
−ρ con-

sists of formal expansions of the form F (ω) =
∑∞

i=1

∑
α∈I bi,αH

(m)
α (ω)ei, bi,α ∈

R, such that for some q ∈ N0,

‖F‖2−ρ,−q,exp;H=
∞∑

i=1

∑

α∈I
α!1−ρ|bi,α|2e−q(2N)α

=
∑

α∈I

∞∑

i=1

α!1−ρ|bi,α|2e−q(2N)α

< ∞.

Both S(H)m
ρ and expS(H)m

ρ are countably Hilbert spaces and

expS(H)m
ρ ⊆ S(H)m

ρ ⊆ L2,m(Ω;H) ⊆ S(H)m
−ρ ⊆ expS(H)m

−ρ.

In general, S(H)m
ρ and expS(H)m

ρ are not nuclear spaces. They would be
nuclear e.g. if H were finite–dimensional (see [15, Prop.50.1]).

Note, since (S)m
ρ and exp(S)m

ρ are nuclear spaces, by [15, Prop.50.7] we have
again (as for the Schwartz spaces in the deterministic case) an isomorphism with
the tensor product spaces:

S(H)m
−ρ
∼= (S)m

−ρ ⊗H, expS(H)m
−ρ
∼= exp(S)m

−ρ ⊗H.

Remark. For technical simplicity, in the sequel we consider only the case
m = 1, but all results can be carried over to the general case.

Examples of elements of S(H)0 are H–valued Brownian motion and singular
white noise (see [9]).
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1.4. Expansion theorems for GRPs (I)

We give now an overview of the results obtained in [13] and [11]. Elements
of the spaces L(A, (S)−1) and L(A, exp(S)−1), but also of L(ExpA, (S)−1) and
L(ExpA, exp(S)−1), are GRPs (I). As already mentioned, these processes are
generalized both by the time-parameter t and by the random parameter ω.
Further we will also denote by [·, ·] the action of an element from L(A, (S)−1)
or L(A, exp(S)−1) onto an element from A, and with 〈·, ·〉 the classical dual
pairing in A′ and A.

Consider, for example, GRPs (I) as elements of the space A∗ = L(A, (S)−1).
Elements of A∗k = L(Ak, (S)−1) are called GRPs (I) of R-order k. We have a
chain of continuous canonical inclusions

(L2(I))∗ = A∗0 ⊆ A∗1 ⊆ · · · ⊆ A∗k ⊆ A∗ =
⋃

k∈N0

A∗k.

For technical reasons we assume that the set of multi-indices I is ordered in a
lexicographic order and denote by αj , j ∈ N, the jth element in this ordering.

Definition 1.1. Let fj ∈ A′, j = 1, 2, . . . ,m and let θαj ∈ (S)−1, j =
1, 2, . . . ,m. Then

∑m
j=1 fj ⊗ θαj is a GRP (I), i.e. an element of A∗ defined by

(3)




m∑

j=1

fj ⊗ θαj , ϕ


 =

m∑

j=1

〈fj , ϕ〉θαj , ϕ ∈ A.

Theorem 1.1. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ A∗k.
(ii) Φ can be represented in the form

(4) Φ =
∞∑

j=1

fj ⊗Hαj , fj ∈ A−k, j ∈ N,

and there exists k0 ∈ N0 such that for each bounded set B ⊆ Ak

(5) sup
ϕ∈B

∞∑

j=1

|〈fj , ϕ〉|2 (2N)−k0αj

< ∞.

(iii) Φ can be represented in the form (4) and there exists k1 ∈ N0 such that

(6)
∞∑

j=1

‖fj‖2−k(2N)−k1αj

< ∞.

Since A∗ is constructed as the inductive limit of the family A∗k, k ∈ N0, we
obtain the following expansion theorem for a GRP (I).
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Theorem 1.2. Φ ∈ A∗ if and only if there exist k, k0 ∈ N0, such that series
expansion (4) and condition (5) hold.

It has been shown in [11] that these expansion theorems for GRPs (I) are
consistent with the expansion theorems of Pettis–integrable generalized stochas-
tic processes defined pointwisely as in [5].

Analogously to the previous theorems concerning GRPs (I) with values in
(S)−1 one can consider GRPs (I) taking values in other spaces of generalized
stochastic functions. Consider, for example, the space exp(S)−1, which will
provide a larger class of GRPs (I). Let expA∗ = L(A, exp(S)−1) and expA∗k =
L(Ak, exp(S)−1) be GRPs (I) and GRPs (I) ofR-order k, respectively. Further,
let all the other terms be defined analogously as for A∗; i.e. we replace (S)−1

with exp(S)−1 in Definition 1.1 and else where necessary.

Theorem 1.3. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ expA∗k.
(ii) Φ can be represented in the form

(7) Φ =
∞∑

j=1

fj ⊗Hαj , fj ∈ A−k, j ∈ N,

and there exists k0 ∈ N0, such that for each bounded set B ⊆ Ak

(8) sup
ϕ∈B

∞∑

j=1

|〈fj , ϕ〉|2e−k0(2N)αj

< ∞.

(iii) Φ can be represented in the form (7) and there exists k1 ≥ 0, such that

∞∑

j=1

‖fj‖2−ke−k1(2N)αj

< ∞.

For examples of GRPs (I) refer to [11].

1.5. K{Mp} spaces

Now we give a brief overview of some basic notions from the theory of K{Mp}
spaces, which are constructed similarly as the tempered distributions, but are
more general. For further details refer to [1].

Let (Mp)p∈N0 be a sequence of continuous functions on R such that the
following conditions are satisfied:

(9) 1 ≤ Mp(x) ≤ Mp′(x), x ∈ R, p < p′.

(P) For every p ∈ N0 there is p′ ∈ N0 such that

lim
|x|→∞

Mp(x)M−1
p′ (x) = 0.
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(N) For every p ∈ N0 there is p′ ∈ N0 such that MpM
−1
p′ ∈ L1(R).

K{Mp} is defined as a space of smooth functions ϕ ∈ C∞(R) endowed with
the family of norms

‖ ϕ ‖p= sup{Mp(x)|ϕ(i)(x)| : x ∈ R, i ≤ p} , p ∈ N0.

For the properties of K{Mp} and its strong dual K′{Mp} we refer the reader to
[1]. In this paper we shall consider a subclass of such spaces. Namely, as in [2,
p.82], we shall assume that {Mp, p ∈ N0} are smooth functions such that

(I) for every k, p ∈ N0 there exist p′ ∈ N0 and C > 0 such that

|M (k)
p (x)| ≤ CMp′(x), x ∈ R.

With the quoted conditions on Mp, p ∈ N0, the sequence of norms ‖ · ‖p,
p ∈ N0, is equivalent to the sequence of norms

‖ ϕ ‖p,2= sup{(
∫

R
|Mp(x)ϕ(i)(x)|2dx)1/2 : i ≤ p}, p ∈ N0.

For example, if we choose Mp(x) = (1 + |x|2) p
2 , we obtain the space of rapidly

decreasing functions S(R) as K{Mp}.
Further on we will also assume that the weight functions Mp satisfy condition

(T)
for every p ∈ N0 there exist p̃ ∈ N0 such that

Mp(x− u)Mp(u) ≤ Mp̃(x), 0 ≤ u ≤ |x|, x ∈ R.

Note that the functions Mp(x) = (1 + |x|2) p
2 , and the functions defined to

be Mp(x) = ep|x|r , for |x| > x0 > 0 and smooth around zero, r ∈ [1,∞), satisfy
condition (T).

1.5.1. H–valued K{Mp} spaces

Conditions (P) and (N) imply that K{Mp} is a nuclear space. Thus, if H is a
Hilbert space with orthonormal basis {ei : i ∈ N}, we can consider the H–valued
K{Mp} spaces, denoted by K{Mp}(H), as the tensor product K{Mp}(H) ∼=
K{Mp}⊗H. Thus, a function φ belongs to K{Mp}(H) if and only if it is of the
form φ =

∑∞
i=1 φiei, φi ∈ K{Mp}, i ∈ N, and ‖φ‖2p,2;H =

∑∞
i=1 ‖φi‖2p < ∞ for

all p ∈ N0.

1.6. Structure theorems for GRPs (II)

We give now an overview of the results obtained in [12]. Let V be a
topological vector space, V ′ its dual space, (Ω,F , P ) be a probability space
and Zp = Lp(Ω), p ≥ 1, be the space of random variables X such that
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∫
Ω
|X|pdP < ∞. By Lr(Rn), r ≥ 1, we denote the space of r–integrable func-

tions with respect to the Lebesgue measure m.

Definition 1.2. A GRP (II) is a mapping ξ : Ω× V → C such that for every
ϕ ∈ V, ξ(·, ϕ) is a complex random variable and for every ω ∈ Ω, ξ(ω, ·) is an
element in V ′.

As in [2], we will suppose that the expectation of ξ, denoted by E(ξ(ω, ϕ)) =
m(ϕ), ϕ ∈ V, exists and belongs to V ′. Due to this fact we shall suppose that
E(ξ(·, ϕ)) = 0 for every ϕ ∈ V.

The proof of the following results can be found in [12].

Theorem 1.4. Let G =
∏n

i=1(αi, βi) ⊂ Rn, −∞ ≤ αi < βi ≤ ∞, i =
1, 2, ..., n, and let ξ be a GRP on Ω× Lr(G), r > 1.

a) There exists a function f : Ω×G → C such that

(i) for every x ∈ G, f(·, x) is measurable and for every ω ∈ Ω, f(ω, ·) ∈
Lp(G), p = r/(r − 1).

(ii)

ξ(ω, ϕ) =
∫

G

f(ω, t)ϕ(t)dt, ω ∈ Ω, ϕ ∈ Lr(G).

b) Let G = Rn. If there exists A ∈ F such that P (A) = 0 and

|ξ(ω, ϕ)| ≤ C(ω)||ϕ||r , ω ∈ Ω\A,

then the correlation operator Cξ(·, ·) has a representation

Cξ(ϕ,ψ) =
∫

Rn

∫

Rn

ϕ(t)E(f(ω, t)f(ω, s))ψ(s)dtds, ϕ, ψ ∈ Lr(G).

Theorem 1.5. a) Let ξ be a GRP on K{Mp}. Then for every ε > 0 there
exist d ∈ N0, M ∈ F satisfying P (M) ≥ 1−ε, and functions fα : Ω×R→
C, α = 0, 1, ..., d, such that fα(·, t) is measurable for every t ∈ R, fα(ω, ·)
is in L2(R) for every ω ∈ M , α = 0, 1, ..., d and

(10) ξ(ω, ϕ) =
d∑

α=0

∫

R
fα(ω, t)Md(t)ϕ(α)(t)dt, ω ∈ M, ϕ ∈ K{Mp},

(11)
d∑

α=0

‖ fα(ω, ·) ‖L2≤ d, ω ∈ M.

In particular, if there exist C(ω) > 0, ω ∈ Ω, and d ∈ N such that

(12) |ξ(ω, ϕ)| ≤ C(ω) ‖ ϕ ‖d,2, ω ∈ Ω, ϕ ∈ K{Mp},
then representation (10) is valid on the whole Ω.
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b) Moreover, if ξ is also a continuous mapping from K{Mp} to Z2, then for
almost every t, s ∈ R there exist E(fα(·, t)fβ(·, s)), α ≤ d, β ≤ d and the
correlation operator Cξ(ϕ,ψ), ϕ, ψ ∈ K{Mp} has the representation

Cξ(ϕ,ψ) =

=
d∑

α=0

d∑

β=0

∫

R

∫

R
E(fα(·, t)fβ(·, s))Md(t)Md(s)ϕ(α)(t)ψ(β)(s)dtds.

c) If ξ is a GRP on K{Mp} such that (12) holds and ω 7→ C(ω) is in Z2,
then ξ : K{Mp} → Z2 is continuous and (10) holds for every ω ∈ Ω.
Condition C(·) ∈ Z2 is sufficient but not necessary for the continuity of
ξ : K{Mp} → Z2.

2. Hilbert space valued GRPs (I)

Now we expand on the results of [11] and consider Hilbert space valued
GRPs. Let H be a separable Hilbert space with orthonormal basis {ei : i ∈ N}.
We replace the Kondratiev space (S)−1 with the H–valued Kondratiev space
S(H)−1 and define H–valued GRPs (I) as linear continuous mappings from the
Zemanian test space A into S(H)−1, i.e. as elements of

A(H)∗ = L(A, S(H)−1).

Elements of A(H)∗k = L(Ak, S(H)−1) are called H–valued GRPs (I) of R-
order k. Thus, L ∈ A(H)∗k if and only if there exists k0 ∈ N such that L ∈
L(Ak, S(H)−1,−k0). Note that L(Ak, S(H)−1,−k0) is a Banach space with the
usual dual norm

‖L‖∗−k;H = sup {‖[L, g]‖−1,−k0;H : g ∈ Ak, ‖g‖k ≤ 1} .

Clearly, A(H)′k ⊆ A(H)∗k, and ‖f‖∗−k;H = ‖f‖−k;H if f ∈ A(H)−k. We have a
chain of continuous canonical inclusions

L2(I;H) = A(H)∗0 ⊆ A(H)∗1 ⊆ · · · ⊆ A(H)∗k ⊆ A(H)∗ =
⋃

k∈N0

A(H)∗k.

Definition 2.1. Let fj ∈ A′, j = 1, 2, . . . ,m and let θαj ∈ S(H)−1, j =
1, 2, . . . ,m. Then

∑m
j=1 fj ⊗ θαj is an element of A(H)∗ defined by

(13)




m∑

j=1

fj ⊗ θαj , ϕ


 =

m∑

j=1

〈fj , ϕ〉θαj , ϕ ∈ A.

Recall, each θαj ∈ S(H)−1 can be represented as

(14) θαj (ω) =
∞∑

i=1

∞∑

k=1

θjikHαk(ω)ei, θjik ∈ R.
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Thus, (13) can be written in an equivalent form

m∑

j=1

〈fj , ϕ〉
∞∑

i=1

∞∑

k=1

θjikHαk(ω)ei =
∞∑

i=1

∞∑

k=1

〈Fik, ϕ〉Hαk(ω)ei

=

[ ∞∑

i=1

∞∑

k=1

Fik ⊗Hαk(ω)ei, ϕ

]
,

where Fik =
∑m

j=1 fjθjik ∈ A′.

Lemma 2.1. Let 〈fn〉n∈N be a sequence in A′ and 〈θαj 〉j∈N be a sequence in
S(H)−1. If there exists k0 ∈ N0 such that for any bounded set B ∈ A,

(15) sup
ϕ∈B

∞∑

j=1

|〈fj , ϕ〉| · ‖θαj‖−1,−k0;H < ∞,

then
∑∞

j=1 fj ⊗ θαj defined by

∞∑

j=1

fj ⊗ θαj = lim
m→∞

m∑

j=1

fj ⊗ θαj

is an element of A(H)∗.

Proof. Denote Υ =
∑∞

j=1 fj ⊗ θαj and Υm =
∑m

j=1 fj ⊗ θαj , m ∈ N. Clearly,
Υm ∈ A∗. By (15), Υm ∈ L(A, S(H)−1,−k0).

The sequence of partial sums Υm, m ∈ N, is a Cauchy sequence in A(H)∗

because, for given ε > 0 and m > n,

‖[Υm, ϕ]− [Υn, ϕ]‖−1,−k0;H =
m∑

j=n+1

|〈fj , ϕ〉| · ‖θαj‖−1,−k0;H < ε,

if n,m are large enough.
Since

‖Υm‖∗ = sup{‖[Υ, ϕ]‖−1,−k0;H : ϕ ∈ A, ‖ϕ‖ ≤ 1}

≤ sup{
m∑

j=1

|〈fj , ϕ〉| · ‖θαj‖−1,−k0;H : ϕ ∈ A, ‖ϕ‖ ≤ 1},

it follows that

sup
m∈N

‖Υm‖∗ ≤ sup
m∈N


sup{

m∑

j=1

|〈fj , ϕ〉| · ‖θαj‖−1,−k0;H : ϕ ∈ A, ‖ϕ‖ ≤ 1}



≤ sup{
∞∑

j=1

|〈fj , ϕ〉| · ‖θαj‖−1,−k0;H : ϕ ∈ A, ‖ϕ‖ ≤ 1} < ∞,
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by condition (15). According to the Banach-Steinhaus theorem,

Υ = limm→∞Υm

also belongs to L(A, S(H)−1,−k0). 2

Theorem 2.1. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ A(H)∗k.

(ii) Φ can be represented in the form

(16) Φ =
∞∑

i=1

∞∑

j=1

fij ⊗Hαj ei, fij ∈ A−k, i, j ∈ N,

and there exists k0 ∈ N0 such that for each bounded set B ⊆ Ak

(17) sup
ϕ∈B

∞∑

i=1

∞∑

j=1

|〈fij , ϕ〉|2 (2N)−k0αj

< ∞.

Proof. Let Φ ∈ A∗k = L(Ak, S(H)−1). There exists k0 ∈ N0, such that Φ ∈
L(Ak, S(H)−1;−k0). The mapping fij : Ak → R given by

ϕ 7→ ([Φ, ϕ]|Hαj ei)−1,−k0;H

is linear and continuous for each Hαj ei, i.e. fij ∈ A′k = A−k for each i, j ∈ N.
Thus,

〈fij , ϕ〉 = ([Φ, ϕ]|Hαj ei)−1,−k0;H
, ϕ ∈ Ak, j ∈ N.

Also, [Φ, ϕ] ∈ S(H)−1;−k0 has the expansion

(18) [Φ, ϕ] =
∞∑

i=1

∞∑

j=1

([Φ, ϕ]|Hαj ei)−1,−k0;H
Hαj ei.

The series on the right-hand side of (18) converges if and only if

∞∑

i=1

∞∑

j=1

∣∣∣([Φ, ϕ]|Hαj ei)−1,−k0;H

∣∣∣
2

(2N)−k0αj

=
∞∑

j=1

|〈fj , ϕ〉|2 (2N)−k0αj

< ∞,

which yields (17). Now, by Definition 2.1, (18) is equal to

[Φ, ϕ] =
∞∑

i=1

∞∑

j=1

〈fij , ϕ〉Hαj ei =



∞∑

j=1

fij ⊗Hαj ei, ϕ


 ,

and this implies (16).
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Conversely, let Φ =
∑∞

i=1

∑∞
j=1 fij ⊗Hαj ei, where fij ∈ A−k, i, j ∈ N, and

let (17) hold for any bounded set B ⊆ Ak.
Since [Φ, ϕ] ∈ S(H)−1;−k0 , it has the expansion

[Φ, ϕ] =
∞∑

i=1

∞∑

j=1

([Φ, ϕ]|Hαj ei)−1,−k0;HHαj ei

=
∞∑

i=1

∞∑

j=1

([
∞∑

l=1

∞∑

k=1

flk ⊗Hαkel, ϕ]|Hαj ei)−1,−k0;HHαj ei

=
∞∑

i=1

∞∑

j=1

(
∞∑

l=1

∞∑

k=1

〈flk, ϕ〉Hαkel|Hαj ei)−1,−k0;HHαj ei

=
∞∑

i=1

∞∑

j=1

〈fij , ϕ〉(2N)−k0αj

Hαj ei, ϕ ∈ Ak,

where in the last step the orthogonality of the basis Hαj ei was used.
The sequence of partial sums Φm =

∑m
i=1

∑m
j=1 fij ⊗ Hαj ei, m ∈ N, is a

Cauchy sequence in L(Ak, S(H)−1;−k0) because, for given ε > 0,

‖[Φm, ϕ]− [Φn, ϕ]‖2−1,−k0;H =
m∑

i=n+1

m∑

j=n+1

|〈fij , ϕ〉|2 (2N)−k0αj

< ε,

if we choose n,m large enough. This yields that 〈Φm〉m∈N is a Cauchy sequence
in A(H)∗k. Also, (17) implies that

sup
m∈N

‖Φm‖∗2−k;H ≤ sup{
∞∑

i=1

∞∑

j=1

|〈fij , ϕ〉|2(2N)−k0αj

: ϕ ∈ Ak, ||ϕ||k ≤ 1} < ∞.

Thus, due to the Banach-Steinhaus theorem, Φ0 = limm→∞ Φm ∈ A(H)∗k. So
it has to be of the form

Φ0 =
∞∑

i=1

∞∑

j=1

f̃ij ⊗Hαj ei.

It remains to show that Φ0 = Φ. Since

〈f̃ij , ϕ〉 − 〈fij , ϕ〉 = ([Φ0, ϕ]|Hαj ei)−1,−k0;H − ([Φ, ϕ]|Hαj ei)−1,−k0;H

= ([ lim
m→∞

Φm, ϕ]|Hαj ei)−1,−k0;H − ([Φ, ϕ]|Hαj ei)−1,−k0;H

= lim
m→∞

([Φm − Φ, ϕ]|Hαj ei)−1,−k0;H

= lim
m→∞

([
∑

i=m+1

∞∑

j=m+1

fij ⊗Hαj ei, ϕ]|Hαj ei)−1,−k0;H

= lim
m→∞

∑

i=m+1

∞∑

j=m+1

|〈fij , ϕ〉|2 (2N)−k0αj

= 0
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for any ϕ ∈ Ak, it implies that f̃ij = fij , i, j ∈ N. 2

Corollary 2.1. If Φ can be represented in the form (16) and there exists k1 ∈
N0 such that

(19)
∞∑

i=1

∞∑

j=1

‖fij‖2−k(2N)−k1αj

< ∞,

then Φ ∈ A(H)∗k.

Proof. According to the Cauchy-Schwartz inequality, it is obvious that (19)
implies (17). 2

Remark: Note, that in the finite dimensional valued case we had an equiv-
alence between (5) and (6) in Theorem 1.1. But now (17) does not necessarily
imply (19). This implication would be true only if S(H)−1 were a nuclear space
(see [2, Theorem 1, page 67]), which it is not.

Since A(H)∗ is constructed as the inductive limit of the family A(H)∗k, k ∈
N0, we obtain the following expansion theorem for an H–valued GRP (I).

Theorem 2.2. Φ ∈ A(H)∗ if and only if there exist k, k0 ∈ N0 such that
series expansion (16) and condition (17) hold.

Let U be a H–valued GRP in the sense of [5], given by the expansion

U(t, ω) =
∞∑

i=1

∞∑

j=1

aij(t)Hαj (ω)ei, t ∈ R, ω ∈ S ′(R),

such that aij(t) ∈ L1
loc(R), i, j ∈ N. Then there is a H–valued GRP (I), denoted

by Ũ associated with U , such that

[Ũ , ϕ](ω) =
∫

R

∞∑

i=1

∞∑

j=1

aij(t)Hαj (ω)eiϕ(t)dt =
∞∑

i=1

∞∑

j=1

〈ãij , ϕ〉Hαj (ω)ei,

ω ∈ S ′(R), where ãij ∈ S ′(R) is the generalized function associated with the
function aij(t) ∈ L1

loc(R), i, j ∈ N. Thus, Ũ has the expansion

Ũ =
∞∑

i=1

∞∑

j=1

ãij ⊗Hαj .

The expansion theorems for expA(H)∗ = L(A, expS(H)−1) can also be
stated as in the case of a one–dimensional state space:

Theorem 2.3. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ expA(H)∗k.
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(ii) Φ can be represented in the form

(20) Φ =
∞∑

i=1

∞∑

j=1

fij ⊗Hαj ei, fij ∈ A−k, i, j ∈ N,

and there exists k0 ∈ N0 such that for each bounded set B ⊆ Ak

(21) sup
ϕ∈B

∞∑

i=1

∞∑

j=1

|〈fij , ϕ〉|2e−k0(2N)αj

< ∞.

Corollary 2.2. If Φ can be represented in the form (20) and there exists k1 ∈
N0 such that

∞∑

i=1

∞∑

j=1

‖fij‖2−ke−k1(2N)αj

< ∞,

then Φ ∈ expA(H)∗k.

Theorem 2.4. Φ ∈ expA(H)∗ if and only if there exist k, k0 ∈ N0 such that
the series expansion (20) and condition (21) hold.

2.1. GRPs (I) on nuclear spaces

Recall, since (S)−1 is a nuclear space, we have S(H)−1
∼= (S)−1⊗H. Assume

now that A is also a nuclear space (this is not a strict restriction since in most
cases it is one). Then, by Proposition 50.7. in [15], we have L(A, S(H)−1) ∼=
A′ ⊗ S(H)−1. Combining this with the previous remark, we can now consider
GRPs (I) as elements of A′ ⊗ (S)−1 ⊗ H, or, if we regroup the spaces, also
as elements of A′ ⊗ H ⊗ (S)−1, which is again by nuclearity of A isomorphic
to A′(I;H) ⊗ (S)−1. In other words, it is equivalent whether we consider the
state space H as the codomain of the generalized random variables or as the
codomain of the deterministic generalized functions representing the trajectories
of the process.

Similarly as we did for GRPs (I), we have a representation for elements of
A′(I; H). A function g belongs to A−k(I; H) if and only if it is of the form∑∞

i=1 gi⊗ ei, gi ∈ A−k and supϕ∈B

∑∞
i=1 |〈gi, ϕ〉|2 < ∞ holds for each bounded

set B ⊆ Ak. The sum
∑∞

i=1 gi ⊗ ei is defined by the action 〈∑∞
i=1 gi ⊗ ei, ϕ〉 =∑∞

i=1〈gi, ϕ〉ei, ϕ ∈ A, provided the latter sum converges in H.
Thus, if Φ is a GRP (I) given by the expansion Φ =

∑∞
i=1

∑∞
j=1 fij ⊗Hαj ei,

fij ∈ A−k, we can rewrite its action in the following manner:


∞∑

i=1

∞∑

j=1

fij ⊗Hαj ei, ϕ


 =

∞∑

i=1

∞∑

j=1

〈fij , ϕ〉Hαj ei =
∞∑

j=1

〈
∞∑

i=1

fij ⊗ ei, ϕ〉Hαj .

Also, from supϕ∈B

∑∞
i=1

∑∞
j=1 |〈fij , ϕ〉|2(2N)−pαj

< ∞, B ⊆ Ak, we get

supϕ∈B

∑∞
j=1 ‖〈gj , ϕ〉‖2H(2N)−pαj

< ∞, where gj =
∑∞

i=1 fij ⊗ ei ∈ A−k(I; H)
and ‖gj‖2−k;H =

∑∞
i=1 |fij |2λ̃−k

i . In view of these facts we can now reformulate
our representation theorem for GRPs (I):
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Theorem 2.5. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ A(H)∗k.

(ii) Φ can be represented in the form

(22) Φ =
∞∑

j=1

fj ⊗Hαj , fj ∈ A−k(I; H), j ∈ N,

and there exists k0 ∈ N0 such that for each bounded set B ⊆ Ak

(23) sup
ϕ∈B

∞∑

j=1

‖〈fj , ϕ〉‖2H (2N)−k0αj

< ∞.

Corollary 2.3. If Φ can be represented in the form (22) and there exists k1 ∈
N0 such that

(24)
∞∑

j=1

‖fj‖2−k;H(2N)−k1αj

< ∞,

then Φ ∈ A(H)∗k.

3. Hilbert space valued GRPs (II)

Recall, H is a separable Hilbert space over C with orthonormal basis {en :
n ∈ N}. While for GRPs (I) we had L(A(H); (S)−1) ∼= L(A; S(H)−1), i.e. it
was equivalent whether H was the codomain of the x–variable function space
or the ω–variable function space, for GRPs (II) we have a different situation
already by the definition of a GRP (II).

Now we state the definition of a Hilbert space valued GRP (II) and the
corresponding structure theorems for them. We will restrict our attention to
GRPs on K{Mp} spaces.

Definition 3.1. An H-valued GRP (II) is a mapping ξ : Ω×K{Mp}(H) → C
such that:

(i) for every ϕ ∈ K{Mp}(H), ξ(·, ϕ) is a complex random variable,

(ii) for every ω ∈ Ω, ξ(ω, ·) is an element in K′{Mp}(H).

For r > 1 denote Lr(Rn;H) = Lr(Rn) ⊗ H and recall that its dual is
Lp(Rn; H), p = r/(r − 1). The dual pairing of f ∈ Lp(Rn;H), ϕ ∈ Lr(Rn;H)
can be written as

∫
Rn〈f(t), ϕ(t)〉Hdt. It can easily be checked that the following

H–valued version of Theorem 1.4 holds.

Theorem 3.1. Let G =
∏n

i=1(αi, βi) ⊂ Rn, −∞ ≤ αi < βi ≤ ∞, i =
1, 2, ..., n, and let ξ be a GRP on Ω × Lr(G; H), r > 1. There exists a func-
tion f : Ω×G → H such that



150 D. Seleši

(i) for every x ∈ G, f(·, x) is measurable and for every ω ∈ Ω, f(ω, ·) ∈
Lp(G; H), p = r/(r − 1).

(ii)

ξ(ω, ϕ) =
∫

G

〈f(ω, t), ϕ(t)〉Hdt, ω ∈ Ω, ϕ ∈ Lr(G; H).

The following H–valued analogue of Theorem 1.5 holds:

Theorem 3.2. a) Let ξ be an H–valued GRP (II). Then for every ε > 0
there exist d ∈ N0, M ∈ F satisfying P (M) ≥ 1 − ε, and functions
fα : Ω × R → H, α = 0, 1, ..., d, such that fα(·, t) is measurable for every
t ∈ R, fα(ω, ·) is in L2(R;H) for every ω ∈ M , α = 0, 1, ..., d and
(25)

ξ(ω, ϕ) =
d∑

α=0

∫

R
〈fα(ω, t),Md(t)ϕ(α)(t)〉Hdt, ω ∈ M, ϕ ∈ K{Mp}(H),

(26)
d∑

α=0

‖ fα(ω, ·) ‖L2(R;H)≤ d, ω ∈ M.

In particular, if there exist C(ω) > 0, ω ∈ Ω, and d ∈ N such that

(27) |ξ(ω, ϕ)| ≤ C(ω) ‖ ϕ ‖d,2;H , ω ∈ Ω, ϕ ∈ K{Mp}(H),

then representation (25) is valid on the whole Ω.

b) Moreover, if ξ is also a continuous mapping from K{Mp}(H) to Z2, then
for almost every t, s ∈ R there exist E(〈fα(·, t), fβ(·, s)〉H), α ≤ d, β ≤ d
and the correlation operator Cξ(ϕ,ψ), ϕ,ψ ∈ K{Mp} has the representa-
tion

Cξ(ϕ,ψ) =

=
d∑

α=0

d∑

β=0

∫

R

∫

R
E(〈fα(·, t), fβ(·, s)〉H)Md(t)Md(s)〈ϕ(α)(t), ψ(β)(s)〉Hdtds.

c) If ξ is a GRP on K{Mp}(H) such that (27) holds and ω 7→ C(ω) is in Z2,
then ξ : K{Mp}(H) → Z2 is continuous and (25) holds for every ω ∈ Ω.
Condition C(·) ∈ Z2 is sufficient but not necessary for the continuity of
ξ : K{Mp}(H) → Z2.

Proof. a) Since for every ω ∈ Ω, ξ(ω, ·) is in K′{Mp}(H), it follows that for
every ω ∈ Ω there exist C(ω) > 0 and p(ω) ∈ N such that

|ξ(ω, ϕ)| ≤ C(ω) ‖ ϕ ‖p(ω),2;H , ϕ ∈ K{Mp}(H).
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We can assume that p(ω) ≥ C(ω). For every ϕ ∈ K{Mp}(H) and N ∈ N, put

AN (ϕ) = {ω ∈ Ω : |ξ(ω, ϕ)| < N ‖ ϕ ‖N,2;H}, AN =
⋂

ϕ∈K{Mp}(H)

AN (ϕ).

Since K{Mp}(H) is separable, it contains a countable dense subset D and
AN =

⋂
ϕ∈D AN (ϕ) ∈ F . Thus, from

Ω =
∞⋃

N=1

AN and AN ⊂ AN+1, N ∈ N,

it follows that for the given ε > 0 there exists an integer d such that P (Ad) ≥
1− ε. Denote M = Ad. It follows

|ξ(ω, ϕ)| ≤ d ‖ ϕ ‖d,2;H , ω ∈ M, ϕ ∈ K{Mp}(H).

We extend ξ on the whole Ω by

(28) ξ1(ω, ϕ) =
{

ξ(ω, ϕ), ω ∈ M
0, ω 6∈ M

, ϕ ∈ K{Mp}(H).

Further, put R = {ϕ ∈ K{Mp}(H) : ‖ ϕ ‖d,2;H≤ 1} and

S(ω) = sup
ϕ∈R

|ξ1(ω, ϕ)| = sup
ϕ∈D

⋂
R

|ξ1(ω, ϕ)|, ω ∈ Ω.

It follows that S is measurable on Ω, S(ω) ≤ d, ω ∈ Ω. Thus,

(29) |ξ1(ω, ϕ)| ≤ S(ω) ‖ ϕ ‖d,2;H , ϕ ∈ K{Mp}(H), ω ∈ Ω.

Inequality (29) holds also for the space Hd
M (R; H) ⊂ Hd(R;H), where Hd(R;H)

∼= Hd(R) ⊗ H is the H–valued Sobolev space, and Hd
M = {ϕ ∈ Hd(R; H) :

Mdϕ
(α) ∈ L2(R;H), α = 0, 1, . . . , d}, equipped with the topology induced by

the norm ||ϕ||d,L2;H =
∑d

α=0 ||Mdϕ
(α)||L2(R;H).

We need the following consequence of (29):

(30) if (ϕν)ν∈N is a sequence in K{Mp}(H) and ϕν → 0 in Hd
M ,

then ξ1(ω, ϕν) → 0, ν →∞.

Let Γd =
∏d

i=0 L2(R; H) and endow it with the scalar product ((ϕα), (ψα)) =∑d
α=0

∫
R〈ϕα, ψα〉Hdt, (ϕα), (ψα) ∈ Γd. Clearly, Γd is a Hilbert space. Define

a mapping θ : K{Mp}(H) → Γd by θ(ϕ) = (Mdϕ,Mdϕ
′, . . . ,Mdϕ

(d)), ϕ ∈
K{Mp}(H), which is injective, and denote ∆ = θ(K{Mp}(H)). Note that

(31) ∆ = θ(Hd
M ).

Define a mapping Ω× Γd → C, for every ω ∈ Ω, by

F (ω, ψ) =





ξ1(ω, θ−1(ψ)), ψ ∈ ∆

limν→∞ ξ1(ω, θ−1(ψν)), ψ ∈ ∆̄, ψν ∈ ∆, ψν
L2(R;H)−→ ψ,

0, ψ ∈ ∆̄⊥.
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The existence of the limit follows from (30) and (31). Thus,

F (ω, ψ̃) = F (ω, ψ), ψ̃ ∈ Γd, ψ̃ = ψ + ψ⊥, ψ ∈ ∆̄, ψ⊥ ∈ ∆̄⊥.

Clearly, F (·, ψ̃) is measurable for any ψ̃ ∈ Γd. Let ϕ ∈ K{Mp}(H), ω ∈ Ω.
We have

|F (ω, θ(ϕ))| ≤ S(ω) ‖ ϕ ‖d,2;H= S(ω) ‖ θ(ϕ) ‖Γd
.

So, for every ω ∈ Ω, F (ω, ·) is a continuous linear functional on Γd and it is
of the form

F (ω, ·) =
d∑

α=0

Fα(ω, ·), ω ∈ Ω.

Here Fα(ω, ·), ∈ Ω, α ≤ d, are continuous linear functionals on the subspaces
Γd,α ⊂ Γd, α ≤ d, where

Γd,α = {ψ = (ψβ) ∈ Γd : ψβ ∈ L2(R;H), ψβ ≡ 0, β 6= α}.

It is endowed with the natural norm such that it is isometric to L2(R;H), for
every α ∈ {0, 1, ..., d}. Let ψ ∈ Γd. Denote by [ψ]α the corresponding element
in Γd,α. The βth coordinates of [ψ]α are equal to zero for β 6= α and the αth
coordinate is equal to ψα. Since F is a GRP (II), it follows that Fα = F |Γd,α

is
a GRP (II) on Ω× Γd,α i.e. on Ω× L2(R; H), for every α, α ≤ d.

By Theorem 3.1, for every α = 0, 1, . . . , d, there exists a function fα : Ω ×
R → H such that fα(·, t) is measurable for every t ∈ R, fα(ω, ·) ∈ L2(R; H),
ω ∈ Ω, and

Fα(ω, ϕ) =
∫

R
〈fα(ω, t), ϕ(t)〉Hdt, ϕ ∈ L2(R;H), ω ∈ Ω.

Thus, if ω ∈ Ω and ψ = θ(ϕ) for ϕ ∈ K{Mp}(H), then

(32) F (ω, ψ) =
d∑

α=0

Fα(ω, [ψ]α) =
d∑

α=0

∫

Rn

〈fα(ω, t),Md(t)ψ(α)〉Hdt

and

||F (ω, ·)||′Γd
=

d∑
α=0

||fα(ω, ·)||L2(R;H) ≤ S(ω) ≤ d, ω ∈ Ω,

where || · ||′Γd
is the dual norm. Now, the assertion follows by (28).

The proof of the last assertion in a) follows by repeating the previous proof
starting from relation (29). It follows that ξ is of the form (10) for every ω ∈ Ω.

b) Obviously, Cξ(ϕ,ψ) = E(〈ξ(·, ϕ), ξ(·, ψ)〉H), ϕ, ψ ∈ K{Mp}(H) is bilinear.
The continuity follows from

Cξ(ϕ,ψ) = |E(〈ξ(·, ϕ), ξ(·, ψ)〉H)| ≤‖ ξ(·, ϕ) ‖Z2‖ ξ(·, ψ) ‖Z2≤

≤‖ ϕ ‖d,2;H‖ ψ ‖d,2;H sup{‖ ξ(·, ϕ) ‖Z2 , ϕ ∈ K{Mp}(H), ‖ ϕ ‖d,2;H≤ 1}
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· sup{‖ ξ(·, ψ) ‖Z2 , ψ ∈ K{Mp}(H), ‖ ψ ‖d,2;H≤ 1}.
Fubini’s theorem implies

Cξ(ϕ,ψ) = E(〈ξ(·, ϕ), ξ(·, ψ)〉H) =

E((
d∑

α=0

∫

R
〈fα(·, t), Md(t)ϕ(α)(t)〉Hdt)(

d∑
α=0

∫

R
〈fα(·, s),Md(s)ψ(α)(s)〉Hds))

=
d∑

α=0

d∑

β=0

E(
∫

R

∫

R
〈fα(·, t), Md(t)ϕ(α)(t)〉H〈fβ(·, s), Md(s)ψ(β)(s)〉Hdtds)

=
d∑

α=0

d∑

β=0

(
∫

R

∫

R
E(〈fα(·, t), fβ(·, s)〉H)Md(t)Md(s)〈ϕ(α)(t), ψ(β)(s)〉Hdtds.

This proves the last assertion in b).
c) If ξ is a GRP on K{Mp}(H) which satisfies (12) and C(·) ∈ Z2, then ξ is a
continuous mapping K{Mp}(H) → Z2. Namely, for any sequence (ϕn)n∈N in
K{Mp}(H) such that ϕn → 0, n →∞, it follows

‖ ξ(·, ϕn) ‖Z2= E(|ξ(·, ϕn)|2) ≤ E(C2(·)) ‖ ϕn ‖2d,2;H→ 0.

The next example shows that ξ : K{Mp}(H) → Z2 may be a continuous
mapping from K{Mp}(H) to Z2 although C(·) /∈ Z2. 2

Example 3.1. Let Ω = R, H = R, F be the Borel field, P (A) =
∫

A
dx

π(1+x2)

for A ∈ F , and let, for x ∈ R, ϕ ∈ K{Mp},

(33) ξ(x, ϕ) = X(x)ϕ(X(x)) = X(x)〈δ(y −X(x)), ϕ(y)〉.

It is a GRP (II), and moreover it is a continuous mapping from K{Mp} to Z2,
i.e. it is also a GRP (I). For every x ∈ R we have

(34) |ξ(x, ϕ)| = |X(x)ϕ(x)| ≤ |X(x)| ‖ ϕ ‖p,2 ,

although |X| /∈ Z2.
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