A GENERALIZATION OF THE PSEUDO-LAPLACE TRANSFORM

Nebojša M. Ralevic ${ }^{11}$

Abstract

This paper gives a generalization of the Pseudo-Laplace transform. In the special cases of semirings, the pseudo-exchange formula is proved. Also, for these semirings the forms of the Pseudo-Laplace transform and inverse operator are given. The results can be applied in dynamical programming for finding the maximum and minimum of the utility functions.

AMS Mathematics Subject Classification (1991): 28A15, 28A25, 26B40
Key words and phrases: generalized pseudo-character, pseudo-convolution, pseudo-integral, pseudo integrals transform, Pseudo-Laplace transform, pseudo-operation, semiring, utility function

1. Introduction

The notion of the pseudo-integral transform \mathcal{L}^{\oplus} is based on the generalized pseudo-character defined by the so called pseudo-operations (see [4], [5]). It is generalization of the pseudo-Laplace transform (see [6]). In [8, the notions of generalized (\oplus, \odot) Laplace transform and distorted generalized (\oplus, \odot) Laplace transform are given, which are also the generalization of the pseudoLaplace transform. In these transforms, the kernel is represented by pseudooperations, while the kernel of the pseudo-integral transform is a generalized pseudo-character.

To define this transform the notion of generalized pseudo-character will be introduced, and its representation for special cases will be given.

The corresponding analogue of the exchange formula will be proved for the already introduced pseudo-convolution.

For special cases, the corresponding inverse of pseudo-integral transform will also be presented.

Finally, the pseudo-integral transform for finding the maximum or minimum of the utility functions in dynamical programming will be applied.

2. Preliminaries

We briefly present some notions from the pseudo-analysis ([5, [9]).
Let the order \preceq be defined on a set $I \neq \emptyset$, and $\emptyset \neq I^{*} \subset I$.

[^0]The binary operation $*: I \times I \rightarrow I$ is a pseudo-operation, if it is commutative, associative, nondecreasing on I^{*} (i.e. $x \preceq y \Rightarrow x * u \preceq y * u$, for $u \in I^{*}$) and has a neutral element.

The element $u \in I$ is the null element of the operation $*: I^{2} \rightarrow I$ if for any $x \in I, x * u=u * x=u$ holds. Pseudo-operation $*$ is idempotent if for any $x \in I, x * x=x$ holds.

Let \oplus be the pseudo-operation defined on the ordered set (I, \preceq), such that $I^{\oplus}=I$, with a neutral element $\mathbf{0}$, and \odot be the pseudo-operation defined on (I, \preceq), such that $I^{\odot}=\{x \in I: \mathbf{0} \preceq x\}$, with a neutral element 1. If \odot is a distributive operation with respect to the pseudo-operation \oplus, and $\mathbf{0}$ is a null element of the operation \odot, we say that the triplet (I, \oplus, \odot) is a semiring. The semiring (I, \oplus, \odot) will be denoted by $I^{\oplus, \odot}$.

Let I be a subinterval of $[-\infty,+\infty]$ (we will take usually closed subintervals $[a, b])$. Then we name the operations \oplus and \odot as pseudo-addition and pseudo-multiplication.

Here we consider semirings with the following continuous operations:
A)

$$
[a, b]^{\min , \odot}
$$

Here $\mathbf{0}=b$. The idempotent operation min induces a partial (full) order in the following way: $x \preceq y$ if and only if $\min (x, y)=y$. Hence this order is opposite to the usual order. Neutral elements of the operations $\oplus=\min$ and \odot are respectively $\mathbf{0}=b$ and $\mathbf{1}$.

B)

$$
[a, b]^{\max , \odot}
$$

Neutral elements of the operations $\oplus=\max$ and \odot are respectively $\mathbf{0}=a$ and 1. The order is the usual one.

Sub-cases

a) the operation \odot in \mathbf{A}) has the multiplicative generator g, i.e. $x \odot y=$ $g^{-1}(g(x) \cdot g(y))$,
b) the operation \odot in $\mathbf{B})$ has the multiplicative generator g.

In [5] (see also [11]) the pseudo-integral $\int_{X}^{\oplus} f \odot d m$ of a bounded measurable function $f: X \rightarrow[a, b]$ (based on $\sigma-\oplus$-decomposable measure) is defined.
A) For the semiring $[a, b]^{\min , \odot}$, we have inf-decomposable measure $m=m_{h}$, defined using the function h with $m(A)=\inf _{x \in A} h(x)$. In this case pseudo-
integral is given by

$$
\int_{\mathbb{R}}^{\oplus} f \odot d m=\inf _{x \in \mathbb{R}}(f(x) \odot h(x))
$$

B) For the semiring $[a, b]^{\max , \odot}$ we have the sup-decomposable measure $m=$ m_{h} defined using the function h with $m(A)=\sup _{x \in A} h(x)$. In this case the pseudo-integral is given by

$$
\int_{\mathbb{R}}^{\oplus} f \odot d m=\sup _{x \in \mathbb{R}}(f(x) \odot h(x))
$$

3. The pseudo-convolution

The notion of the pseudo-convolution of functions is introduced in [7]. We shall consider functions whose domain will be a commutative group (G, \boxplus), $G \subset \mathbb{R}$. Let e be a neutral element of the operation \boxplus, and t^{\prime} the inverse element for $t, t \in G$. Let the order defined on a set G be the usual order \leq, such that the operation \boxplus is monotonous in relation to it.

The pseudo-convolution of two functions f_{1} and f_{2} with respect to a \oplus decomposable measure m is given in the following way

$$
\left(f_{1} \star f_{2}\right)(x)=\int_{[e, x]}^{\oplus} f_{1}(t) \odot f_{2}\left(x \boxplus t^{\prime}\right) \odot d m,
$$

where mis the decomposable measure.
The pseudo-convolution is a commutative and associative operation (see [7]).
The pseudo-convolution can be observed when (G, \boxplus) is a semigroup and when the pseudo-integral is taken over the whole set G.

For cases A) and B) we take "uniform idempotent measure" $m(A)=\mathbf{1}$.

1. Let $\boxplus=+$ and $G=\mathbb{R}$. Then the pseudo-convolutions have the following form:
A) $\left(f_{1} \star f_{2}\right)(x)=\inf _{0 \leq t \leq x}\left(f_{1}(t) \odot f_{2}(x-t)\right)$.
B) $\left(f_{1} \star f_{2}\right)(x)=\sup _{0 \leq t \leq x}\left(f_{1}(t) \odot f_{2}(x-t)\right)$.

Sub-cases
a) $\left(f_{1} \star f_{2}\right)(x)=\min _{0 \leq t \leq x} g^{-1}\left(g\left(f_{1}(t)\right) g\left(f_{2}(x-t)\right)\right)=g^{-1}\left(\min _{0 \leq t \leq x}\left[g\left(f_{1}(t)\right) g\left(f_{2}(x-\right.\right.\right.$ $t)$]).
b) $\left(f_{1} \star f_{2}\right)(x)=\max _{0 \leq t \leq x} g^{-1}\left(g\left(f_{1}(t)\right) g\left(f_{2}(x-t)\right)\right)=g^{-1}\left(\max _{0 \leq t \leq x}\left[g\left(f_{1}(t)\right) g\left(f_{2}(x-\right.\right.\right.$ $t)$)].
2. Let $\boxplus=$. and $G=\mathbb{R} \backslash\{0\}$. Then the pseudo-convolutions have the following form:
A) $\left(f_{1} \star f_{2}\right)(x)=\sup _{1 \leq t \leq x}\left(f_{1}(t) \odot f_{2}\left(\frac{x}{t}\right)\right)$,
B) $\left(f_{1} \star f_{2}\right)(x)=\inf _{1 \leq t \leq x}\left(f_{1}(t) \odot f_{2}\left(\frac{x}{t}\right)\right)$,

Sub-cases
a) $\left(f_{1} \star f_{2}\right)(x)=\min _{1 \leq t \leq x} g^{-1}\left(g\left(f_{1}(t)\right) g\left(f_{2}\left(\frac{x}{t}\right)\right)\right)=g^{-1}\left(\min _{1 \leq t \leq x}\left[g\left(f_{1}(t)\right) g\left(f_{2}\left(\frac{x}{t}\right)\right)\right]\right)$.
b) $\left(f_{1} \star f_{2}\right)(x)=\max _{1 \leq t \leq x} g^{-1}\left(g\left(f_{1}(t)\right) g\left(f_{2}\left(\frac{x}{t}\right)\right)\right)=g^{-1}\left(\max _{1 \leq t \leq x}\left[g\left(f_{1}(t)\right) g\left(f_{2}\left(\frac{x}{t}\right)\right)\right]\right)$.

4. Integral transforms

Let $(G, \boxplus), G \subset \mathbb{R}$ be a groupoid (group) and I be a semiring either of type A) or type B).

We introduce the following version of the notion of character in pseudoanalysis.

Definition 4.1. The generalized pseudo-character of the groupoid (group) $(G, \boxplus), G \subset \mathbb{R}$ is a map $\xi: G \rightarrow I$ of the groupoid (group) (G, \boxplus) in (I, \odot) (where (I, \oplus, \odot) is the semiring) with the property

$$
\begin{equation*}
\xi(x \boxplus y)=\xi(x) \odot \xi(y), \quad x, y \in G . \tag{1}
\end{equation*}
$$

It is obvious that the map $\xi \equiv \mathbf{0}$ or $\xi \equiv \mathbf{1}$ is a (trivial) generalized pseudocharacter.

Theorem 4.1. Let $\xi: G \rightarrow I$ be a continuous strictly increasing (decreasing) function which is a nontrivial generalized pseudo-character of the groupoid $(G, \boxplus), G \subset \mathbb{R}$ and let \odot be the pseudo-multiplication. Then \boxplus is a pseudooperation.

Proof. Since, by the hypothesis, a continuous strictly increasing (decreasing) function ξ, the solution of (11), exists, ξ^{-1} must also exist, and hence

$$
x \boxplus y=\xi^{-1}(\xi(x) \odot \xi(y)), \quad x, y \in G .
$$

Because of commutativity and associativity of the operation \odot, it holds that

$$
\begin{gathered}
x \boxplus y=\xi^{-1}(\xi(x) \odot \xi(y))=\xi^{-1}(\xi(y) \odot \xi(x))=y \boxplus x, \\
(x \boxplus y) \boxplus z=\xi^{-1}(\xi(x \boxplus y) \odot \xi(z))=\xi^{-1}((\xi(x) \odot \xi(y)) \odot \xi(z)) \\
=\xi^{-1}(\xi(x) \odot(\xi(y) \odot \xi(z)))=\xi^{-1}(\xi(x) \odot \xi(y \boxplus z))=x \boxplus(y \boxplus z),
\end{gathered}
$$

i.e. \boxplus is a commutative and associative operation.

The element $e=\xi^{-1}(\mathbf{1})$ is a neutral element, because for all $x \in G$ holds

$$
x \boxplus e=\xi^{-1}(\xi(x) \odot \xi(e))=\xi^{-1}(\xi(x) \odot \mathbf{1})=\xi^{-1}(\xi(x))=x .
$$

If ξ is an increasing function, then it holds

$$
\begin{gathered}
x_{1} \leq x_{2} \Rightarrow \xi\left(x_{1}\right) \leq \xi\left(x_{2}\right) \Rightarrow \xi\left(x_{1}\right) \odot \xi(y) \leq \xi\left(x_{2}\right) \odot \xi(y) \\
\Rightarrow \xi^{-1}\left(\xi\left(x_{1}\right) \odot \xi(y)\right) \leq \xi^{-1}\left(\xi\left(x_{2}\right) \odot \xi(y)\right) \Rightarrow x_{1} \boxplus y \leq x_{2} \boxplus y,
\end{gathered}
$$

i.e. \boxplus is nondecreasing on $G^{*}=\{y \in G \mid \xi(y) \geq \mathbf{0}\}$. Analogously, \boxplus is nondecreasing if ξ is a decreasing function.

Theorem 4.2. Let $\xi: G \rightarrow I$ be a continuous strictly increasing (decreasing) function which is a nontrivial generalized pseudo-character of the groupoid $(G, \boxplus), G \subset \mathbb{R}$ and \odot is the pseudo-multiplication with a multiplicative generator g. If $x \boxplus y$ is a polynomial, of degree greater than unity, then

$$
x \boxplus y=\frac{(p x+q)(p y+q)-q}{p}, \quad p \neq 0, p, q \in \mathbb{R}
$$

and $\left(G \backslash\left\{-\frac{q}{p}\right\}, \boxplus\right)$ is the commutative group, and

$$
\xi(x, c)=g^{-1}\left(|p x+q|^{c}\right), \quad c \in \mathbb{R}
$$

while for $x \boxplus y=x+y+r, \quad r \in \mathbb{R}$, is

$$
\xi(x, c)=g^{-1}\left(e^{c(x+r)}\right)
$$

Proof. From the previous theorem we have the commutativity and associativity of the operation \boxplus.

If $x \boxplus y$ is a polynomial of degree n in x and of degree m in y, then $n=m$ from commutativity. Then the left side of $(x \boxplus y) \boxplus z=x \boxplus(y \boxplus z)$ is a polynomial of degree n in z, while the right side is of degree n^{2} in z. Thus $n=1$ and $x \boxplus y$ is a symmetric polynomial of degree 1 in x, and y and can be written as

$$
\begin{equation*}
x \boxplus y=p x y+q(x+y)+r . \tag{2}
\end{equation*}
$$

To find p, q, and r, we substitute in the associative condition and we have:

$$
\begin{aligned}
& p(p x y+q(x+y)+r) z+q(p x y+q(x+y)+r+z)+r \\
= & p x(p y z+q(y+z)+r)+q(x+p y z+q(y+z)+r)+r .
\end{aligned}
$$

Equating coefficients of like products of variables, we find everything is an identity except for the coefficients of x and z. In both cases we get $p r+q=q^{2}$.

If $p=0$, we find $q=0$ or 1 . If $q=0$, (1) has only the trivial solution $\xi \equiv 0$. If $q=1$, the equation (11) is in this case reduced to $\xi(x+y+r)=\xi(x) \odot \xi(y)$, i.e. by the representation of the operation \odot on the following functional equation

$$
\xi(x+y+r)=g^{-1}(g(\xi(x)) \cdot g(\xi(y)))
$$

i.e. $g(\xi(x+y+r))=g(\xi(x)) \cdot g(\xi(y))$. Hence, for $x=u-r, y=v-r$, we obtain

$$
(g \circ \xi)(u+v-r)=(g \circ \xi)(u-r) \cdot(g \circ \xi)(v-r),
$$

i.e.

$$
h(u+v)=h(u) \cdot h(v),
$$

where $h(u)=g(\xi(u-r))$, which has the nontrivial solution $h(u)=e^{c u}$, (see [1]) i.e. $\xi(x, c)=g^{-1}\left(e^{c(x+r)}\right)$.

It is now easy to show that $e=\frac{1-q}{p}$ is a neutral element of \boxplus and that each $x \in G \backslash\left\{-\frac{q}{p}\right\}$, has an inverse element $x^{\prime}=\frac{1-q^{2}-p q x}{p^{2} x+p q}$. As

$$
x \boxplus y=-\frac{q}{p} \Leftrightarrow x=-\frac{q}{p} \vee y=-\frac{q}{p},
$$

therefore $\left(G \backslash\left\{-\frac{q}{p}\right\}, \boxplus\right)$ is a groupoid and hence also a group.
To obtain something essentially new, we require $p \neq 0$. Then $r=\frac{q^{2}-q}{p}$, and

$$
x \boxplus y=\frac{(p x+q)(p y+q)-q}{p} .
$$

Replacing $x=\frac{u-q}{p}, y=\frac{v-q}{p}$, the equality (1) becomes

$$
\xi\left(\frac{(p x+q)(p y+q)-q}{p}\right)=g^{-1}(g(\xi(x)) \cdot g(\xi(y)))
$$

i.e.

$$
\begin{gathered}
g\left(\xi\left(\frac{u v-q}{p}\right)\right)=g\left(\xi\left(\frac{u-q}{p}\right)\right) \cdot g\left(\xi\left(\frac{v-q}{p}\right)\right) . \\
h(u v)=h(u) \cdot h(v)
\end{gathered}
$$

where $h(u)=g\left(\xi\left(\frac{u-q}{p}\right)\right)$, which has the trivial solution $h(u)=0$, and $h(u)=1$, the nontrivial solution $h(u)=(g \circ \xi)\left(\frac{u-q}{p}\right)=|u|^{c}$, or $h(u)=(g \circ \xi)\left(\frac{u-q}{p}\right)=$ $|u|^{c} \operatorname{sgn} u, c \in \mathbb{R}$ (see [3]). Since the domain of g^{-1} is \mathbb{R}_{0}^{+}, then $h(u)=|u|^{c}$, $\xi(x, c)=g^{-1}\left(|p x+q|^{c}\right), c \in \mathbb{R}$.

Corollary 1. If

1. $\boxplus=+$ and $G=\mathbb{R}$, then we have $\xi(x, c)=g^{-1}\left(e^{c x}\right), c \in \mathbb{R}$.
2. $\boxplus=\cdot$ and $G=\mathbb{R} \backslash\{0\}$, then we have $\xi(x, c)=g^{-1}\left(|x|^{c}\right), c \in \mathbb{R}$.

This follows (as a consequence of the previous theorem), if we put $p=0, q=$ $1, r=0$ in the first case, i.e. in the second case $p=1, q=0, r=0$, in the equation (2).

Definition 4.2. Pseudo-integral transform $\mathcal{L}^{\oplus}(f)$ of a measurable function f is defined by

$$
\left(\mathcal{L}^{\oplus} f\right)(\xi)(z)=\int_{G_{+}}^{\oplus} \xi(x,-z) \odot d m_{f}
$$

where ξ is the continuous generalized pseudo-character for $z \in \mathbb{R}$, for which the right side is meaningful.

We consider also the pseudo-integral transform replacing in the pseudointegral the whole G instead of $G_{+}=\{x \in G: e \leq x\}$.

If $G=\mathbb{R}$ and $\boxplus=+$ the pseudo-integral transform becomes the pseudoLaplace transform (see [6]).

In the special cases, the pseudo-integral transform gets the following forms:
1.
A) $\mathcal{L}^{\oplus}(f)(z)=\inf _{x \geq 0}(\xi(x,-z) \odot f(x))$.
B) $\mathcal{L}^{\oplus}(f)(z)=\sup _{x \geq 0}(\xi(x,-z) \odot f(x))$.
a) $\mathcal{L}^{\oplus}(f)(z)=\min _{x \geq 0} g^{-1}\left(e^{-z x} g(f(x))\right)=g^{-1}\left(\min _{x \geq 0}\left[e^{-z x} g(f(x))\right]\right)$.
b) $\mathcal{L}^{\oplus}(f)(z)=\max _{x \geq 0} g^{-1}\left(e^{-z x} g(f(x))\right)=g^{-1}\left(\max _{x \geq 0}\left[e^{-z x} g(f(x))\right]\right)$.
2.
A) $\mathcal{L}^{\oplus}(f)(z)=\inf _{x \geq 1}(\xi(x,-z) \odot f(x))$.
B) $\mathcal{L}^{\oplus}(f)(z)=\sup _{x \geq 1}(\xi(x,-z) \odot f(x))$.
a) $\mathcal{L}^{\oplus}(f)(z)=\min _{x \geq 1} g^{-1}\left(x^{-z} g(f(x))\right)=g^{-1}\left(\min _{x \geq 1}\left[x^{-z} g(f(x))\right]\right)$.
b) $\mathcal{L}^{\oplus}(f)(z)=\max _{x \geq 0} g^{-1}\left(x^{-z} g(f(x))\right)=g^{-1}\left(\max _{x \geq 1}\left[x^{-z} g(f(x))\right]\right)$.

The pseudo-integral transform is pseudo-linear in the general case (see [6]), i.e.

$$
\mathcal{L}^{\oplus}\left(\lambda_{1} \odot f_{1} \oplus \lambda_{2} \odot f_{2}\right)=\lambda_{1} \odot \mathcal{L}^{\oplus}\left(f_{1}\right) \oplus \lambda_{2} \odot \mathcal{L}^{\oplus}\left(f_{2}\right)
$$

$f_{1}, f_{2} \in B(G, I)$, and $\lambda_{1}, \lambda_{2} \in I$.
Let $\xi: G \rightarrow I$ be a nontrivial continuous generalized pseudo-character of the group $(G, \boxplus), G \subset \mathbb{R}$. For case $\mathbf{B})$, we give the proof of the following exchange formula

$$
\mathcal{L}^{\oplus}\left(f_{1} \star f_{2}\right)=\mathcal{L}^{\oplus}\left(f_{1}\right) \odot \mathcal{L}^{\oplus}\left(f_{2}\right),
$$

assuming that the pseudo-integral transforms of the measurable functions f_{1}, f_{2} and $f_{1} \star f_{2}$, exist.

Proof.

$$
\begin{aligned}
\mathcal{L}^{\oplus}\left(f_{1} \star f_{2}\right)(z) & =\sup _{x \geq e}\left[\xi(x,-z) \odot\left(f_{1} \star f_{2}\right)(x)\right] \\
& =\sup _{x \geq e}\left[\xi(x,-z) \odot \sup _{e \leq y \leq x}\left[f_{1}(y) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right]\right] \\
& =\sup _{x \geq e e} \sup _{e \leq y \leq x}\left[\xi(x,-z) \odot f_{1}(y) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right] \\
& =\sup _{y \geq e} \sup _{x \geq y}\left[\xi(x,-z) \odot f_{1}(y) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right] \\
& =\sup _{y \geq e} \sup _{x \geq y}\left[\xi\left(y \boxplus\left(x \boxplus y^{\prime}\right),-z\right) \odot f_{1}(y) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right] \\
& =\sup _{y \geq e x \geq y} \sup ^{\prime}\left[\xi(y,-z) \odot \xi\left(x \boxplus y^{\prime},-z\right) \odot f_{1}(y) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right] \\
& =\sup _{y \geq e}\left[\xi(y,-z) \odot f_{1}(y) \odot \sup _{x \geq y}\left[\xi\left(x \boxplus y^{\prime},-z\right) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right]\right] \\
& =\sup _{y \geq e}\left[\xi(y,-z) \odot f_{1}(y) \odot \sup _{x \boxplus y^{\prime} \geq e}\left[\xi\left(x \boxplus y^{\prime},-z\right) \odot f_{2}\left(x \boxplus y^{\prime}\right)\right]\right] \\
& =\sup _{y \geq e}\left[\xi(y,-z) \odot f_{1}(y) \odot \sup _{w \geq e}\left[\xi(w,-z) \odot f_{2}(w)\right]\right] \\
& =\sup _{y \geq e}\left[\xi(y,-z) \odot f_{1}(y)\right] \odot \sup _{w \geq e}\left[\xi(w,-z) \odot f_{2}(w)\right] \\
& =\mathcal{L}^{\oplus}\left(f_{1}\right)(z) \odot \mathcal{L}^{\oplus}\left(f_{2}\right)(z) .
\end{aligned}
$$

We have used the equality $\sup _{s}[\varphi(t) \odot \psi(s)]=\varphi(t) \odot \sup _{s} \psi(s)$, (this is implied by monotonicity and continuity of $\odot)$ and that the operation sup is invariant with respect to translation, i.e. $\sup _{x} f(x)=\sup _{x \boxplus y^{\prime}} f\left(x \boxplus y^{\prime}\right)$. We also used the property $y \leq x \Leftrightarrow e \leq x \boxplus y^{\prime}$ (e is a neutral element of the operation \boxplus, and y^{\prime} is the inverse of the element $y \in G)$.

Let $f \in B(G, I)$, where I is the semiring from the cases $\mathbf{A})$ and $\mathbf{B})$. The problem of the existence and uniqueness of the inverse operator $\mathcal{L}^{\oplus-1}$ is complex. We are interesting here only in the forms of inverse operator when existence and uniqueness are satisfied.

Theorem 4.3. If for $\mathcal{L}^{\oplus}(f)=F$, there exists $\left(\mathcal{L}^{\oplus}\right)^{-1}(F)$, then it has the following form for the cases \mathbf{a}), \mathbf{b}):

1. a) $\left(\left(\mathcal{L}^{\oplus}\right)^{-1}(F)\right)(x)=\max _{z \geq 0} g^{-1}\left(e^{x z} g(F(z))\right)=g^{-1}\left(\max _{z \geq 0} e^{x z} g(F(z))\right)$,
b) $\left(\left(\mathcal{L}^{\oplus}\right)^{-1}(F)\right)(x)=\min _{z \geq 0} g^{-1}\left(e^{x z} g(F(z))\right)=g^{-1}\left(\min _{z \geq 0} e^{x z} g(F(z))\right)$.
2. a) $\left(\left(\mathcal{L}^{\oplus}\right)^{-1}(F)\right)(x)=\max _{z \geq 1} g^{-1}\left(x^{z} g(F(z))\right)=g^{-1}\left(\max _{z \geq 1} x^{z} g(F(z))\right)$,
b) $\left(\left(\mathcal{L}^{\oplus}\right)^{-1}(F)\right)(x)=\min _{z \geq 1} g^{-1}\left(x^{z} g(F(z))\right)=g^{-1}\left(\min _{z \geq 1} x^{z} g(F(z))\right)$.

Proof. 2. a) We suppose that, because of the existence of $\left(\mathcal{L}^{\oplus}\right)^{-1}(f)$, there is one-to-one correspondence between x and z values, so that $\mathcal{L}^{\oplus}(f)(z)=F(z)=$ $\min _{z \geq 1} g^{-1}\left(x^{-z} g(f(x))\right)$.

By the definition of the pseudo-integral transform, for $x \geq 0$, we have

$$
F(z) \geq g^{-1}\left(x^{-z} g(f(x))\right),
$$

which implies that if g is increasing (decreasing):

$$
g(F(z)) \geq x^{-z} g(f(x)) \quad\left(g(F(z)) \leq x^{-z} g(f(x))\right)
$$

i.e.

$$
x^{z} g(F(z)) \geq g(f(x)) \quad\left(x^{z} g(F(z)) \leq g(f(x))\right)
$$

that is,

$$
g^{-1}\left(x^{z} g(F(z))\right) \geq f(x) \quad\left(g^{-1}\left(x^{z} g(F(z))\right) \geq f(x)\right)
$$

Hence $\min _{z \geq 1} g^{-1}\left(x^{z} g(F(z))\right) \geq f(x)$, with the equality for one value (one-toone correspondence between x and z).

Let $\mathcal{L}^{\oplus}\left(f_{1}\right)=F_{1}, \mathcal{L}^{\oplus}\left(f_{2}\right)=F_{2}$, i.e. $\left(\mathcal{L}^{\oplus}\right)^{-1}\left(F_{1}\right)=f_{1},\left(\mathcal{L}^{\oplus}\right)^{-1}\left(F_{2}\right)=f_{2}$. Then
$\mathcal{L}^{\oplus}\left(\lambda_{1} \odot f_{1} \oplus \lambda_{2} \odot f_{2}\right)=\lambda_{1} \odot \mathcal{L}^{\oplus}\left(f_{1}\right) \oplus \lambda_{2} \odot \mathcal{L}^{\oplus}\left(f_{2}\right)=\lambda_{1} \odot F_{1} \oplus \lambda_{2} \odot F_{2}$, giving
$\left(\mathcal{L}^{\oplus}\right)^{-1}\left(\lambda_{1} \odot F_{1} \oplus \lambda_{2} \odot F_{2}\right)=\lambda_{1} \odot f_{1} \oplus \lambda_{2} \odot f_{2}=\lambda_{1} \odot\left(\mathcal{L}^{\oplus}\right)^{-1}\left(F_{1}\right) \oplus \lambda_{2} \odot\left(\mathcal{L}^{\oplus}\right)^{-1}\left(F_{2}\right)$,
i.e. the inverse of the pseudo-integral transform $\left(\mathcal{L}^{\oplus}\right)^{-1}$ is also pseudo-linear.

5. Applications in dynamical programming

We shall find the maximum or minimum of the functions

$$
U\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \odot f_{2}\left(x_{2}\right) \odot \cdots \odot f_{n}\left(x_{n}\right)
$$

on the domain $R=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}+x_{2}+\ldots+x_{n}=x, x_{i} \geq 0, i=1, \ldots, n\right\}$, where the operation \odot has the multiplicative generator g. Such problems often occur in the mathematical economy and operation research (see [2]). In the paper [6] we considered the utility function $U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $\odot=+$.

We shall consider this problem in the following general form

$$
\begin{equation*}
f(x)=\left(f_{1} \star f_{2} \star \cdots \star f_{n}\right)(x) \tag{3}
\end{equation*}
$$

where \star is the pseudo-convolution for cases 1. a) and 1. b), i.e.
$f(x)=\min _{\left(x_{1}, \ldots, x_{n}\right) \in R} U\left(x_{1}, \ldots, x_{n}\right)$ or $f(x)=\max _{\left(x_{1}, \ldots, x_{n}\right) \in R} U\left(x_{1}, \ldots, x_{n}\right)$.

Applying the pseudo integral transform

$$
F(z)=\mathcal{L}^{\oplus}(f)(z)=\mathcal{L}^{\oplus}\left(f_{1} \star \cdots \star f_{n}\right)(z)
$$

we obtain by the pseudo-exchange formula

$$
\mathcal{L}^{\oplus}(f)(z)=\bigodot_{i=1}^{n} \mathcal{L}^{\oplus}\left(f_{i}\right)(z)=\mathcal{L}^{\oplus}\left(f_{1}\right)(z) \odot \cdots \odot \mathcal{L}^{\oplus}\left(f_{n}\right)(z)
$$

Applying the inverse of the pseudo integral transform, we obtain the formal solution

$$
\begin{aligned}
f(x) & =\left(\left(\mathcal{L}^{\oplus}\right)^{-1}(F(z))\right)(x) \\
& =\left(\left(\mathcal{L}^{\oplus}\right)^{-1}\left(\bigodot_{i=1}^{n} \mathcal{L}^{\oplus} f_{i}(z)\right)\right)(x)
\end{aligned}
$$

$$
=\left(\left(\mathcal{L}^{\oplus}\right)^{-1}\left(\bigodot_{i=1}^{n} F_{i}(z)\right)\right)(x)
$$

So, we have

$$
\begin{aligned}
& \text { a) } f(x)=\max _{z \geq 0} g^{-1}\left(e^{x z} \prod_{i=1}^{n} \min _{x_{i} \geq 0}\left[e^{-x_{i} z} g\left(f_{i}\left(x_{i}\right)\right)\right]\right), \\
& \text { b) } f(x)=\min _{z \geq 0} g^{-1}\left(e^{x z} \prod_{i=1}^{n} \max _{x_{i} \geq 0}\left[e^{-x_{i} z} g\left(f_{i}\left(x_{i}\right)\right)\right]\right) .
\end{aligned}
$$

Example 5.1. For $g(x)=x+1$, there is the problem (3) of finding minimum (maximum) function (see [10])

$$
U\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f_{1}^{i_{1}}\left(x_{1}\right) f_{2}^{i_{2}}\left(x_{2}\right) \cdots f_{n}^{i_{n}}\left(x_{n}\right)
$$

on the domain R. The solution (4) can be expressed by
a) $f(x)=\max _{z \geq 0}\left[e^{x z} \prod_{i=1}^{n} \min _{x_{i} \geq 0}\left[e^{-x_{i} z}\left(f_{i}\left(x_{i}\right)+1\right)\right]\right]$,
b) $f(x)=\min _{z \geq 0}\left[e^{x z} \prod_{i=1}^{n} \max _{x_{i} \geq 0}\left[e^{-x_{i} z}\left(f_{i}\left(x_{i}\right)+1\right)\right]\right]$.

Now, we consider the problem (3) where \star is the pseudo-convolution for cases 2. a) and 2. b), i.e.
$f(x)=\min _{\left(x_{1}, \ldots, x_{n}\right) \in R} U\left(x_{1}, \ldots, x_{n}\right) \quad$ or $\quad f(x)=\max _{\left(x_{1}, \ldots, x_{n}\right) \in R} U\left(x_{1}, \ldots, x_{n}\right)$,
where the domain is $R=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}=x, \quad x_{i} \geq 1, i=1, \ldots, n\right\}$.
Formal solution is

$$
\begin{aligned}
& \text { a) } f(x)=\max _{z \geq 1} g^{-1}\left(x^{z} \prod_{i=1}^{n} \min _{x_{i} \geq 1}\left[x_{i}^{-z} g\left(f_{i}\left(x_{i}\right)\right)\right]\right) \\
& \text { b) } f(x)=\min _{z \geq 1} g^{-1}\left(x^{z} \prod_{i=1}^{n} \max _{x_{i} \geq 1}\left[x_{i}^{-z} g\left(f_{i}\left(x_{i}\right)\right)\right]\right) .
\end{aligned}
$$

References

[1] Aczel, J., Lectures on Functional Equations and their Applications. New York: Academic Press 1966.
[2] Bellman, R. E., Dreyfus, S. E., Applied Dynamic Programming. Princeton, New Jersey: Princeton University Press 1962.
[3] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Warszawa-Krakow-Katowice: Uniwersitet Slaski 1985.
[4] Maslov, V. P., Samborskij, S. N. (eds.), Idempotent Analysis. Advances in Soviet Mathematics 13. Providence, Rhode Island: Amer. Math. Soc. 1992.
[5] Pap, E. , Null-Additive Set Functions. Dordrecht, Boston, London: Kluwer Academic Publishers 1995.
[6] Pap, E., Ralević, N., Pseudo-Laplace transform. Nonlinear Analysis: Theory, Methods and Applications, 33 (1998), 533-550.
[7] Pap, E., Štajner, I., Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory. Fuzzy Sets and Systems 102 (1999) 393-415.
[8] Pap, E., Štajner-Papuga, I., A limit theorem for triangle functions. Fuzzy Sets and Systems (in press).
[9] Ralević, N. M., Pseudo-analysis and applications on solution nonlinear equations. Ph. D. Thesis, University of Novi Sad (1997).
[10] Ralević, N. M., Some equations in dynamical programming. Zb. rad. Prim'96 1996.
[11] Wang, Z., Klir, G. J., Fuzzy Measure Theory. New York: Plenum Press 1992.
[12] Widder, D. V., The Laplace transform. Princeton: Princeton University Press, 1946.

[^0]: ${ }^{1}$ Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia, e-mail: nralevic@uns.ns.ac.yu, fax: +381216350770

