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A GENERALIZATION OF THE PSEUDO-LAPLACE
TRANSFORM
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Abstract. This paper gives a generalization of the Pseudo-Laplace
transform. In the special cases of semirings, the pseudo-exchange for-
mula is proved. Also, for these semirings the forms of the Pseudo-Laplace
transform and inverse operator are given. The results can be applied in
dynamical programming for finding the maximum and minimum of the
utility functions.
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1. Introduction

The notion of the pseudo-integral transform L⊕ is based on the general-
ized pseudo-character defined by the so called pseudo-operations (see [4],[5]).
It is generalization of the pseudo-Laplace transform (see [6]). In [8], the no-
tions of generalized (⊕,¯) Laplace transform and distorted generalized (⊕,¯)
Laplace transform are given, which are also the generalization of the pseudo-
Laplace transform. In these transforms, the kernel is represented by pseudo-
operations, while the kernel of the pseudo-integral transform is a generalized
pseudo-character.

To define this transform the notion of generalized pseudo-character will be
introduced, and its representation for special cases will be given.

The corresponding analogue of the exchange formula will be proved for the
already introduced pseudo-convolution.

For special cases, the corresponding inverse of pseudo-integral transform will
also be presented.

Finally, the pseudo-integral transform for finding the maximum or minimum
of the utility functions in dynamical programming will be applied.

2. Preliminaries

We briefly present some notions from the pseudo-analysis ([5], [9]).
Let the order ¹ be defined on a set I 6= ∅, and ∅ 6= I∗ ⊂ I.
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The binary operation ∗ : I × I → I is a pseudo-operation, if it is commu-
tative, associative, nondecreasing on I∗ (i.e. x ¹ y ⇒ x ∗ u ¹ y ∗ u, for u ∈ I∗)
and has a neutral element.

The element u ∈ I is the null element of the operation ∗ : I2 → I if for
any x ∈ I, x ∗ u = u ∗ x = u holds. Pseudo-operation ∗ is idempotent if for
any x ∈ I, x ∗ x = x holds.

Let ⊕ be the pseudo-operation defined on the ordered set (I,¹), such that
I⊕ = I, with a neutral element 0, and ¯ be the pseudo-operation defined on
(I,¹), such that I¯ = {x ∈ I : 0 ¹ x}, with a neutral element 1. If ¯ is a
distributive operation with respect to the pseudo-operation ⊕, and 0 is a null
element of the operation ¯, we say that the triplet (I,⊕,¯) is a semiring. The
semiring (I,⊕,¯) will be denoted by I⊕,¯.

Let I be a subinterval of [−∞,+∞] (we will take usually closed subinter-
vals [a, b]). Then we name the operations ⊕ and ¯ as pseudo-addition and
pseudo-multiplication.

Here we consider semirings with the following continuous operations:

A)

[a, b]min,¯

Here 0 = b. The idempotent operation min induces a partial (full) order in the
following way: x ¹ y if and only if min(x, y) = y. Hence this order is opposite
to the usual order. Neutral elements of the operations ⊕ = min and ¯ are
respectively 0 = b and 1.

B)

[a, b]max,¯

Neutral elements of the operations ⊕ = max and ¯ are respectively 0 = a and
1. The order is the usual one.

Sub-cases

a) the operation ¯ in A) has the multiplicative generator g, i.e. x ¯ y =
g−1(g(x) · g(y)),

b) the operation ¯ in B) has the multiplicative generator g.

In [5] (see also [11]) the pseudo-integral
⊕∫

X

f¯dm of a bounded measurable

function f : X → [a, b] (based on σ −⊕−decomposable measure) is defined.

A) For the semiring [a, b]min,¯, we have inf-decomposable measure m = mh,
defined using the function h with m(A) = infx∈A h(x). In this case pseudo-
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integral is given by
∫ ⊕

R
f ¯ dm = inf

x∈R
(f(x)¯ h(x)).

B) For the semiring [a, b]max,¯ we have the sup-decomposable measure m =
mh defined using the function h with m(A) = supx∈A h(x). In this case the
pseudo-integral is given by

∫ ⊕

R
f ¯ dm = sup

x∈R
(f(x)¯ h(x)).

3. The pseudo-convolution

The notion of the pseudo-convolution of functions is introduced in [7]. We
shall consider functions whose domain will be a commutative group (G, ¢),
G ⊂ R. Let e be a neutral element of the operation ¢, and t′ the inverse
element for t, t ∈ G. Let the order defined on a set G be the usual order ≤, such
that the operation ¢ is monotonous in relation to it.

The pseudo-convolution of two functions f1 and f2 with respect to a ⊕-
decomposable measure m is given in the following way

(f1 ? f2)(x) =
∫ ⊕

[e,x]

f1(t)¯ f2(x ¢ t′)¯ dm,

where mis the decomposable measure.

The pseudo-convolution is a commutative and associative operation (see [7]).

The pseudo-convolution can be observed when (G, ¢) is a semigroup and
when the pseudo-integral is taken over the whole set G.

For cases A) and B) we take ”uniform idempotent measure” m(A) = 1.

1. Let ¢ = + and G = R. Then the pseudo-convolutions have the following
form:

A) (f1 ? f2)(x) = inf
0≤t≤x

(f1(t)¯ f2(x− t)).

B) (f1 ? f2)(x) = sup
0≤t≤x

(f1(t)¯ f2(x− t)).

Sub-cases
a) (f1 ? f2)(x) = min

0≤t≤x
g−1(g(f1(t))g(f2(x − t))) = g−1( min

0≤t≤x
[g(f1(t))g(f2(x −

t))]).
b) (f1 ? f2)(x) = max

0≤t≤x
g−1(g(f1(t))g(f2(x− t))) = g−1( max

0≤t≤x
[g(f1(t))g(f2(x−

t))]).

2. Let ¢ = · and G = R \ {0}. Then the pseudo-convolutions have the
following form:
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A) (f1 ? f2)(x) = sup
1≤t≤x

(f1(t)¯ f2(x
t )),

B) (f1 ? f2)(x) = inf
1≤t≤x

(f1(t)¯ f2(x
t )),

Sub-cases
a) (f1?f2)(x) = min

1≤t≤x
g−1(g(f1(t))g(f2(x

t ))) = g−1( min
1≤t≤x

[g(f1(t))g(f2(x
t ))]).

b) (f1?f2)(x) = max
1≤t≤x

g−1(g(f1(t))g(f2(x
t ))) = g−1( max

1≤t≤x
[g(f1(t))g(f2(x

t ))]).

4. Integral transforms

Let (G,¢), G ⊂ R be a groupoid (group) and I be a semiring either of type
A) or type B).

We introduce the following version of the notion of character in pseudo-
analysis.

Definition 4.1. The generalized pseudo-character of the groupoid (group)
(G,¢), G ⊂ R is a map ξ : G → I of the groupoid (group) (G, ¢) in (I,¯)
(where (I,⊕,¯) is the semiring) with the property

(1) ξ(x ¢ y) = ξ(x)¯ ξ(y), x, y ∈ G.

It is obvious that the map ξ ≡ 0 or ξ ≡ 1 is a (trivial) generalized pseudo-
character.

Theorem 4.1. Let ξ : G → I be a continuous strictly increasing (decreas-
ing) function which is a nontrivial generalized pseudo-character of the groupoid
(G,¢), G ⊂ R and let ¯ be the pseudo-multiplication. Then ¢ is a pseudo-
operation.

Proof. Since, by the hypothesis, a continuous strictly increasing (decreasing)
function ξ, the solution of (1), exists, ξ−1 must also exist, and hence

x ¢ y = ξ−1(ξ(x)¯ ξ(y)), x, y ∈ G.

Because of commutativity and associativity of the operation ¯, it holds that

x ¢ y = ξ−1(ξ(x)¯ ξ(y)) = ξ−1(ξ(y)¯ ξ(x)) = y ¢ x,

(x ¢ y) ¢ z = ξ−1(ξ(x ¢ y)¯ ξ(z)) = ξ−1((ξ(x)¯ ξ(y))¯ ξ(z))

= ξ−1(ξ(x)¯ (ξ(y)¯ ξ(z))) = ξ−1(ξ(x)¯ ξ(y ¢ z)) = x ¢ (y ¢ z),

i.e. ¢ is a commutative and associative operation.

The element e = ξ−1(1) is a neutral element, because for all x ∈ G holds

x ¢ e = ξ−1(ξ(x)¯ ξ(e)) = ξ−1(ξ(x)¯ 1) = ξ−1(ξ(x)) = x.



A generalization of the Pseudo-Laplace transform 17

If ξ is an increasing function, then it holds

x1 ≤ x2 ⇒ ξ(x1) ≤ ξ(x2) ⇒ ξ(x1)¯ ξ(y) ≤ ξ(x2)¯ ξ(y)

⇒ ξ−1(ξ(x1)¯ ξ(y)) ≤ ξ−1(ξ(x2)¯ ξ(y)) ⇒ x1 ¢ y ≤ x2 ¢ y,

i.e. ¢ is nondecreasing on G∗ = {y ∈ G|ξ(y) ≥ 0}. Analogously, ¢ is nonde-
creasing if ξ is a decreasing function. 2

Theorem 4.2. Let ξ : G → I be a continuous strictly increasing (decreas-
ing) function which is a nontrivial generalized pseudo-character of the groupoid
(G, ¢), G ⊂ R and ¯ is the pseudo-multiplication with a multiplicative generator
g. If x ¢ y is a polynomial, of degree greater than unity, then

x ¢ y =
(px + q)(py + q)− q

p
, p 6= 0, p, q ∈ R,

and (G \ {− q
p},¢) is the commutative group, and

ξ(x, c) = g−1(|px + q|c), c ∈ R,

while for x ¢ y = x + y + r, r ∈ R, is

ξ(x, c) = g−1(ec(x+r)).

Proof. From the previous theorem we have the commutativity and associativity
of the operation ¢.

If x ¢ y is a polynomial of degree n in x and of degree m in y, then n = m
from commutativity. Then the left side of (x¢y)¢z = x¢(y¢z) is a polynomial
of degree n in z, while the right side is of degree n2 in z. Thus n = 1 and x ¢ y
is a symmetric polynomial of degree 1 in x, and y and can be written as

(2) x ¢ y = pxy + q(x + y) + r.

To find p, q, and r, we substitute in the associative condition and we have:

p(pxy + q(x + y) + r)z + q(pxy + q(x + y) + r + z) + r

= px(pyz + q(y + z) + r) + q(x + pyz + q(y + z) + r) + r.

Equating coefficients of like products of variables, we find everything is an iden-
tity except for the coefficients of x and z. In both cases we get pr + q = q2.

If p = 0, we find q = 0 or 1. If q = 0, (1) has only the trivial solution ξ ≡ 0.
If q = 1, the equation (1) is in this case reduced to ξ(x+y+r) = ξ(x)¯ξ(y), i.e.
by the representation of the operation ¯ on the following functional equation

ξ(x + y + r) = g−1(g(ξ(x)) · g(ξ(y))),
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i.e. g(ξ(x+y + r)) = g(ξ(x)) · g(ξ(y)). Hence, for x = u− r, y = v− r, we obtain

(g ◦ ξ)(u + v − r) = (g ◦ ξ)(u− r) · (g ◦ ξ)(v − r),

i.e.
h(u + v) = h(u) · h(v),

where h(u) = g(ξ(u− r)), which has the nontrivial solution h(u) = ecu, (see [1])
i.e. ξ(x, c) = g−1(ec(x+r)).

It is now easy to show that e = 1−q
p is a neutral element of ¢ and that each

x ∈ G \ {− q
p}, has an inverse element x′ = 1−q2−pqx

p2x+pq . As

x ¢ y = −q

p
⇔ x = −q

p
∨ y = −q

p
,

therefore (G \ {− q
p},¢) is a groupoid and hence also a group.

To obtain something essentially new, we require p 6= 0. Then r = q2−q
p , and

x ¢ y =
(px + q)(py + q)− q

p
.

Replacing x = u−q
p , y = v−q

p , the equality (1) becomes

ξ(
(px + q)(py + q)− q

p
) = g−1(g(ξ(x)) · g(ξ(y)))

i.e.
g(ξ(

uv − q

p
)) = g(ξ(

u− q

p
)) · g(ξ(

v − q

p
)).

h(uv) = h(u) · h(v),

where h(u) = g(ξ(u−q
p )), which has the trivial solution h(u) = 0, and h(u) = 1,

the nontrivial solution h(u) = (g ◦ ξ)(u−q
p ) = |u|c, or h(u) = (g ◦ ξ)(u−q

p ) =
|u|c sgnu, c ∈ R (see [3]). Since the domain of g−1 is R+

0 , then h(u) = |u|c,
ξ(x, c) = g−1(|px + q|c), c ∈ R. 2

Corollary 1. If

1. ¢ = + and G = R, then we have ξ(x, c) = g−1(ecx), c ∈ R.

2. ¢ = · and G = R \ {0}, then we have ξ(x, c) = g−1(|x|c), c ∈ R.

This follows (as a consequence of the previous theorem), if we put p = 0, q =
1, r = 0 in the first case, i.e. in the second case p = 1, q = 0, r = 0, in the
equation (2).
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Definition 4.2. Pseudo-integral transform L⊕(f) of a measurable func-
tion f is defined by

(L⊕f)(ξ)(z) =
∫ ⊕

G+

ξ(x,−z)¯ dmf ,

where ξ is the continuous generalized pseudo-character for z ∈ R, for which the
right side is meaningful.

We consider also the pseudo-integral transform replacing in the pseudo-
integral the whole G instead of G+ = {x ∈ G : e ≤ x}.

If G = R and ¢ = + the pseudo-integral transform becomes the pseudo-
Laplace transform (see [6]).

In the special cases, the pseudo-integral transform gets the following forms:

1.
A) L⊕(f)(z) = inf

x≥0
(ξ(x,−z)¯ f(x)).

B) L⊕(f)(z) = sup
x≥0

(ξ(x,−z)¯ f(x)).

a) L⊕(f)(z) = min
x≥0

g−1(e−zxg(f(x))) = g−1(min
x≥0

[e−zxg(f(x))]).

b) L⊕(f)(z) = max
x≥0

g−1(e−zxg(f(x))) = g−1(max
x≥0

[e−zxg(f(x))]).

2.
A) L⊕(f)(z) = inf

x≥1
(ξ(x,−z)¯ f(x)).

B) L⊕(f)(z) = sup
x≥1

(ξ(x,−z)¯ f(x)).

a) L⊕(f)(z) = min
x≥1

g−1(x−zg(f(x))) = g−1(min
x≥1

[x−zg(f(x))]).

b) L⊕(f)(z) = max
x≥0

g−1(x−zg(f(x))) = g−1(max
x≥1

[x−zg(f(x))]).

The pseudo-integral transform is pseudo-linear in the general case (see [6]),
i.e.

L⊕(λ1 ¯ f1 ⊕ λ2 ¯ f2) = λ1 ¯ L⊕(f1)⊕ λ2 ¯ L⊕(f2),

f1, f2 ∈ B(G, I), and λ1, λ2 ∈ I.

Let ξ : G → I be a nontrivial continuous generalized pseudo-character of the
group (G, ¢), G ⊂ R. For case B), we give the proof of the following exchange
formula

L⊕(f1 ? f2) = L⊕(f1)¯ L⊕(f2),
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assuming that the pseudo-integral transforms of the measurable functions f1,
f2 and f1 ? f2, exist.

Proof.

L⊕(f1 ? f2)(z) = sup
x≥e

[ξ(x,−z)¯ (f1 ? f2)(x)]

= sup
x≥e

[ξ(x,−z)¯ sup
e≤y≤x

[f1(y)¯ f2(x ¢ y′)]]

= sup
x≥e

sup
e≤y≤x

[ξ(x,−z)¯ f1(y)¯ f2(x ¢ y′)]

= sup
y≥e

sup
x≥y

[ξ(x,−z)¯ f1(y)¯ f2(x ¢ y′)]

= sup
y≥e

sup
x≥y

[ξ(y ¢ (x ¢ y′),−z)¯ f1(y)¯ f2(x ¢ y′)]

= sup
y≥e

sup
x≥y

[ξ(y,−z)¯ ξ(x ¢ y′,−z)¯ f1(y)¯ f2(x ¢ y′)]

= sup
y≥e

[ξ(y,−z)¯ f1(y)¯ sup
x≥y

[ξ(x ¢ y′,−z)¯ f2(x ¢ y′)]]

= sup
y≥e

[ξ(y,−z)¯ f1(y)¯ sup
x¢y′≥e

[ξ(x ¢ y′,−z)¯ f2(x ¢ y′)]]

= sup
y≥e

[ξ(y,−z)¯ f1(y)¯ sup
w≥e

[ξ(w,−z)¯ f2(w)]]

= sup
y≥e

[ξ(y,−z)¯ f1(y)]¯ sup
w≥e

[ξ(w,−z)¯ f2(w)]

= L⊕(f1)(z)¯ L⊕(f2)(z).

We have used the equality sups[ϕ(t)¯ψ(s)] = ϕ(t)¯ sups ψ(s), (this is implied
by monotonicity and continuity of ¯) and that the operation sup is invariant
with respect to translation, i.e. supx f(x) = supx¢y′ f(x¢ y′). We also used the
property y ≤ x ⇔ e ≤ x ¢ y′ (e is a neutral element of the operation ¢, and y′

is the inverse of the element y ∈ G). 2

Let f ∈ B(G, I), where I is the semiring from the cases A) and B). The prob-
lem of the existence and uniqueness of the inverse operator L⊕−1 is complex.
We are interesting here only in the forms of inverse operator when existence and
uniqueness are satisfied.

Theorem 4.3. If for L⊕(f) = F , there exists (L⊕)−1(F ), then it has the
following form for the cases a), b):

1. a) ((L⊕)−1(F ))(x) = max
z≥0

g−1(exzg(F (z))) = g−1(max
z≥0

exzg(F (z))),

b) ((L⊕)−1(F ))(x) = min
z≥0

g−1(exzg(F (z))) = g−1(min
z≥0

exzg(F (z))).

2. a) ((L⊕)−1(F ))(x) = max
z≥1

g−1(xzg(F (z))) = g−1(max
z≥1

xzg(F (z))),

b) ((L⊕)−1(F ))(x) = min
z≥1

g−1(xzg(F (z))) = g−1(min
z≥1

xzg(F (z))).
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Proof. 2. a) We suppose that, because of the existence of (L⊕)−1(f), there is
one-to-one correspondence between x and z values, so that L⊕(f)(z) = F (z) =
min
z≥1

g−1(x−zg(f(x))).

By the definition of the pseudo-integral transform, for x ≥ 0, we have

F (z) ≥ g−1(x−zg(f(x))),

which implies that if g is increasing (decreasing):

g(F (z)) ≥ x−zg(f(x)) ( g(F (z)) ≤ x−zg(f(x)) ),

i.e.
xzg(F (z)) ≥ g(f(x)) ( xzg(F (z)) ≤ g(f(x)) ),

that is,
g−1(xzg(F (z))) ≥ f(x) ( g−1(xzg(F (z))) ≥ f(x) ).

Hence min
z≥1

g−1(xzg(F (z))) ≥ f(x), with the equality for one value (one-to-

one correspondence between x and z). 2

Let L⊕(f1) = F1, L⊕(f2) = F2, i.e. (L⊕)−1(F1) = f1, (L⊕)−1(F2) = f2.
Then

L⊕(λ1 ¯ f1 ⊕ λ2 ¯ f2) = λ1 ¯ L⊕(f1) ⊕ λ2 ¯ L⊕(f2) = λ1 ¯ F1 ⊕ λ2 ¯ F2,
giving

(L⊕)−1(λ1¯F1⊕λ2¯F2) = λ1¯f1⊕λ2¯f2 = λ1¯(L⊕)−1(F1)⊕λ2¯(L⊕)−1(F2),

i.e. the inverse of the pseudo-integral transform (L⊕)−1 is also pseudo-linear.

5. Applications in dynamical programming

We shall find the maximum or minimum of the functions

U(x1, x2, ..., xn) = f1(x1)¯ f2(x2)¯ · · · ¯ fn(xn)

on the domain R = {(x1, x2, ..., xn)|x1 +x2 + ...+xn = x, xi ≥ 0, i = 1, ..., n},
where the operation ¯ has the multiplicative generator g. Such problems often
occur in the mathematical economy and operation research (see [2]). In the
paper [6] we considered the utility function U(x1, x2, ..., xn), where ¯ = +.

We shall consider this problem in the following general form

(3) f(x) = (f1 ? f2 ? · · · ? fn)(x),

where ? is the pseudo-convolution for cases 1. a) and 1. b), i.e.

f(x) = min
(x1,...,xn)∈R

U(x1, ..., xn) or f(x) = max
(x1,...,xn)∈R

U(x1, ..., xn).
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Applying the pseudo integral transform

F (z) = L⊕(f)(z) = L⊕(f1 ? · · · ? fn)(z),

we obtain by the pseudo-exchange formula

L⊕(f)(z) =
n⊙

i=1

L⊕(fi)(z) = L⊕(f1)(z)¯ · · · ¯ L⊕(fn)(z)

Applying the inverse of the pseudo integral transform, we obtain the formal
solution

f(x) = ((L⊕)−1(F (z)))(x)

= ((L⊕)−1(
n⊙

i=1

L⊕fi(z)))(x)

(4) = ((L⊕)−1(
n⊙

i=1

Fi(z)))(x).

So, we have

a) f(x) = max
z≥0

g−1(exz
n∏

i=1

min
xi≥0

[e−xizg(fi(xi))]),

b) f(x) = min
z≥0

g−1(exz
n∏

i=1

max
xi≥0

[e−xizg(fi(xi))]).

Example 5.1. For g(x) = x + 1, there is the problem (3) of finding minimum
(maximum) function (see [10])

U(x1, x2, ..., xn) =
∑

i1,...,in∈{0,1}
f i1
1 (x1)f i2

2 (x2) · · · f in
n (xn)

on the domain R. The solution (4) can be expressed by

a) f(x) = max
z≥0

[exz
n∏

i=1

min
xi≥0

[e−xiz(fi(xi) + 1)]],

b) f(x) = min
z≥0

[exz
n∏

i=1

max
xi≥0

[e−xiz(fi(xi) + 1)]].
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Now, we consider the problem (3) where ? is the pseudo-convolution for cases
2. a) and 2. b), i.e.

f(x) = min
(x1,...,xn)∈R

U(x1, ..., xn) or f(x) = max
(x1,...,xn)∈R

U(x1, ..., xn),

where the domain is R = {(x1, x2, ..., xn)|x1 ·x2 ·...·xn = x, xi ≥ 1, i = 1, ..., n}.
Formal solution is

a) f(x) = max
z≥1

g−1(xz
n∏

i=1

min
xi≥1

[x−z
i g(fi(xi))]),

b) f(x) = min
z≥1

g−1(xz
n∏

i=1

max
xi≥1

[x−z
i g(fi(xi))]).
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