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UNSTEADY FLOW OF A DUSTY FLUID BETWEEN
TWO OSCILLATING PLATES UNDER VARYING

CONSTANT PRESSURE GRADIENT

S. Rashmi, V. Kavitha, B. Saba Roohi, Gurumurthy, B.J. Gireesha
and C.S. Bagewadi1

Abstract. The problem of flow of a viscous incompressible embedded
fluid with dust particles between two oscillating parallel plates is discussed
using differential geometry techniques. The analysis applies to flows with
plates oscillating in their own planes and the influence of constant pressure
gradient. Initially, the fluid and dust particles are at rest. The expressions
for exact velocities of fluid and dust particles are obtained by using Laplace
transform methods. The changes in the velocity profiles at different times
are shown graphically.
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1. Introduction

The influence of dust particles on viscous flows has great importance in
petroleum industry and in the purification of crude oil. Other important appli-
cations of dust particles in boundary layer, include soil erosion by natural winds
and dust entrainment in a cloud during nuclear explosion. Also, such flows have
occur in a wide range of areas of technical importance like fluidization, flow
in rocket tubes, combustion, paint spraying, and more recently, blood flows in
capillaries.

P.G. Saffman [12] has discussed the stability of the laminar flow of a dusty
gas in which the dust particles are uniformly distributed. Liu [9] has studied
the flow induced by an oscillating infinite flat plate in a dusty gas. Michael
and Miller[10] investigated the motion of dusty gas with uniform distribution of
the dust particles placed in the semi-infinite space above a rigid plane bound-
ary. Later, Samba Siva Rao [13] have obtained the analytical solutions for the
dusty fluid flow through a circular tube under the influence of constant pressure
gradient, using appropriate boundary conditions.

To investigate the kinematical properties of fluid flows in the field of fluid
mechanics some researchers like Kanwal [8], Trusdell [14], Indrasena [7], Pu-
rushotham [11], Bagewadi, Shantharajappa and Gireesha [1, 2, 3] have applied
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differential geometry techniques. Further, in [2, 3] the authors studied two-
dimensional dusty fluid flow in the Frenet frame field system. Recently, in [5, 6]
the authors studied the flow of unsteady dusty fluid under varying different
pressure gradients like constant, periodic and exponential. The present paper
deals with investigation of the laminar flow of an unsteady viscous liquid with
uniform distribution of dust particles between two oscillating plates under the
influence of constant pressure gradient in anholonomic co-ordinate system. Fur-
ther, by considering that the fluid and dust particles are at rest initially, the
analytical expressions are obtained for velocities of the fluid and dust particles.
The changes in the velocity profiles at different times are shown graphically.

2. Equations of Motion

The equations of motion of unsteady viscous incompressible fluid with uni-
form distribution of dust particles are given by [12]:

For fluid phase

∇.−→u = 0 (Continuity)(2.1)

∂−→u
∂t

+(−→u .∇)−→u =−ρ−1∇p+υ∇2−→u +
kN

ρ
(−→v −−→u ) (Linear Momentum)(2.2)

For dust phase

∇.−→v = 0 (Continuity)(2.3)

∂−→v
∂t

+ (−→v .∇)−→v =
k

m
(−→u −−→v ) (Linear Momentum)(2.4)

We have the following nomenclature:
−→u−velocity of the fluid phase, −→v −velocity of dust phase, ρ−density of the

gas, p−pressure of the fluid, N−number of density of dust particles, υ−kinematic
viscosity, k = 6πaµ−Stoke’s resistance (drag coefficient), a−spherical radius of
dust particle, m−mass of the dust particle, µ−the coefficient of viscosity of fluid
particles, t−time.

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal normal,

binormal respectively to the spatial curves of congruences formed by fluid phase
velocity and dusty phase velocity lines respectively. Geometrical relations are
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given by the Frenet formulae [4]

i)
∂−→s
∂s

= ks
−→n ,

∂−→n
∂s

= τs
−→
b − ks

−→s ,
∂
−→
b

∂s
= −τs

−→n

ii)
∂−→n
∂n

= k′n
−→s ,

∂
−→
b

∂n
= −σ′n

−→s ,
∂−→s
∂n

= σ′n
−→
b − k′n

−→n
(2.5)

iii)
∂
−→
b

∂b
= k′′b

−→s ,
∂−→n
∂b

= −σ′′b
−→s ,

∂−→s
∂b

= σ′′b
−→n − k′′b

−→
b

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid
phase velocity (or dust phase velocity ) lines, tangential, principal normal and
binormal. The functions (ks, k

′
n, k′′b ) and (τs, σ

′
n, σ′′b ) are the curvatures and

torsions of the above curves and θns and θbs are normal deformations of these
spatial curves along their principal normal and binormal respectively.

3. Formulation and Solution of the Problem

This paper deals with the study of a viscous, incompressible, dusty fluid
bounded by two oscillating plates. The flow is due to the influence of oscilla-
tion of plates and the constant pressure gradient. Both the fluid and the dust
particle clouds are supposed to be static at the beginning. The dust particles
are assumed to be spherical in shape and uniform in size. The number density
of the dust particles is taken as a constant throughout the flow. Under these
assumptions the flow will be a parallel flow in which the streamlines are along
the tangential direction and the velocities vary along the binormal direction
and with time t, since we extended the fluid to infinity in the principal normal
direction.

Since we have assumed that a constant pressure gradient is imposed on the
system for t > 0, we can write

−1
ρ

∂p

∂s
= ao

where ao is a constant.
By virtue of the system of equations (2.5) the intrinsic decomposition of

equations (2.2) and (2.4) gives the following forms;

(3.1)
∂us

∂t
= ν

[
∂2us

∂b2
− Crus

]
+

kN

ρ
(vs − us) + ao

(3.2) 2u2
sks = ν

[
2σ′′b

∂us

∂b
− usk

2
s

]



28 S. Rashmi at al.

(3.3) 0 = ν

[
usksτs − 2k′′b

∂us

∂b

]

(3.4)
∂vs

∂t
=

k

m
(us − vs)

(3.5) 2v2
sks = 0

where Cr = (σ′2n + k′2n + k′′2b + σ′′2b ) is called curvature number [3].
From equation (3.5) we see that v2

sks = 0, which implies either vs = 0 or
ks = 0. The choice vs = 0 is impossible, since if it happens then us = 0, which
shows that the flow does not exist. Hence ks = 0, it suggests that the curvature
of the streamline along the tangential direction is zero. Thus, no radial flow
exists.

Equation (3.1) and (3.4) are to be solved subject to the initial and boundary
conditions;

(3.6)
{

Initial condition; at t = 0; us = 0, vs = 0
Boundary condition; for t > 0; us = u0 sin t, at b = 0 and b = h

}

We define the Laplace transformations of us and vs as

(3.7) U =

∞∫

0

e−stusdt and V =

∞∫

0

e−stvsdt

Applying the Laplace transform onto equations (3.1), (3.4) and to the bound-
ary conditions, then by using the initial conditions one obtains

(3.8) sU = ν

[
∂2U

∂b2
− CrU

]
+

l

τ
(V − U) +

ao

s

(3.9) sV =
1
τ

(U − V )

U =
u0

1 + s2
, at b = 0 and b = h(3.10)

where l = mN
ρ and τ = m

k . Equation (3.9) implies

(3.11) V =
U

1 + sτ

Eliminating V from (3.8) and (3.11) we obtain the following equation

(3.12)
d2U

db2
−Q2U = −ao

sν
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where Q2 =
(
Cr + s

ν + sl
ν(1+sτ)

)
.

The velocities of fluid and dust particle are obtained by solving the equation
(3.12) under to the boundary conditions (3.10) as follows

U =
uo

1 + s2

{
sinh(Qb)− sinh(Q(b− h))

sinh(Qh)

}

+
ao

Q2νs

[
sinh(Q(b− h))− sinh(Qb)

sinh(Qh)
+ 1

]
.

Using U in (3.11) we obtain V as

V =
uo

(1 + s2)(1 + sτ)

[
sinh(Qb)− sinh(Q(b− h))

sinh(Qh)

]

+
ao

Q2νs(1 + sτ)

[
sinh(Q(b− h))− sinh(Qb)

sinh(Qh)
+ 1

]
.

By taking the inverse Laplace transform to U and V, one can obtain (Appendix
A)

us =
uo

E2 + F 2
((AE −BF )sint + (BE + AF ) cos t)

+
ao

Crν

(
sinh(

√
Cr(b− h))− sinh(

√
Crb)

sinh(
√

Crh)
+ 1

)

+ uoπν
2
h2

∞∑
n=0

(−1)n(2n + 1) sin
(

2n + 1
h

πb

)

×
[

(1 + x1τ)2ex1t

(1 + x2
1) ((1 + x1τ)2 + l)

+
(1 + x2τ)2ex2t

(1 + x2
2) ((1 + x2τ)2 + l)

]

− 2ao

π

∞∑
n=0

(−1)n

2n + 1
sin

(
2n+1

h
πb

)(
(1 + x1τ)2ex1t

x1 ((1 + x1τ)2 + l)
+

(1 + x2τ)2ex2t

x2 ((1 + x2τ)2 + l)

)
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vs =
uo

(E2+F 2)(1+τ2)
((AE−BF )(sin t−τ cos t)+(BE+AF )(cos t+τ sin t))

+
ao

Crν

(
sinh(

√
Cr(b− h))− sinh(

√
Crb)

sinh(
√

Crh)
+ 1

)

+ uoπν
2
h2

∞∑
n=0

(−1)n(2n + 1) sin
(

2n + 1
h

πb

)

×
[

(1 + x1τ)ex1t

(1 + x2
1) ((1 + x1τ)2 + l)

+
(1 + x2τ)ex2t

(1 + x2
2) ((1 + x2τ)2 + l)

]

− 2ao

π

∞∑
n=0

(−1)n

2n + 1
sin

(
2n+1

h
πb

)(
(1 + x1τ)ex1t

x1 ((1 + x1τ)2 + l)
+

(1 + x2τ)ex2t

x2 ((1 + x2τ)2 + l)

)

where

x1 = − 1
2τ

(
1 + l + νCrτ + ντ

n2π2

h2

)

+
1
2τ

√(
1 + l + νCrτ + ντ

n2π2

h2

)2

− 4τν

(
Cr +

n2π2

h2

)

x2 = − 1
2τ

(
1 + l + νCrτ + ντ

n2π2

h2

)

− 1
2τ

√(
1 + l + νCrτ + ντ

n2π2

h2

)2

− 4ντ

(
Cr +

n2π2

h2

)

y1 = − 1
2τ

(1 + l + νCrτ) +
1
2τ

√
(1 + l + νCrτ)2 − 4Crντ

y2 = − 1
2τ

(1 + l + νCrτ)− 1
2τ

√
(1 + l + νCrτ)2 − 4Crντ
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A = sinh(αb) cos(βb)− sinh(α(b− h)) cos(β(b− h))

B = cosh(α(b− h)) sin(β(b− h))− cosh(αb) sin(βb)

E = sinh(αh) cos(βh), F = sin(βh) cosh(αh)

α =

√
(y1y2 − 1) +

√
(y1y2 − 1)2 + (y1 + y2)2

2

β =

√
(1− y1y2) +

√
(y1y2 − 1)2 + (y1 + y2)2

2

Conclusion

The velocity profiles for the fluid and dust particles are drawn in Figure 1
and 2 respectively, which are parabolic. According to the Frenet approximation
of a curve in the osculating plane the path of the curve near origin is parabolic.
Hence the results obtained here are analogous to the above [4]. It is concluded
that the velocity of fluid particles is parallel to the velocity of dust particles.
The velocity of both fluid and dust particles, which are nearer to the axis of
flow, move with the greater velocity. Further, one can observe that if the dust is
very fine, i.e. mass of the dust particles is negligibly small, then the relaxation
time of dust particles decreases and ultimately as τ → 0 the velocities of fluid
and dust particles will be the same. Also, we see that as the curvature number
increases, the velocity increases too.

Note: Graphs are drawn for the values of h = 1, r = 1, ν = 0.5, τ =
0.5, a0 = 1, α = 1, u0 = 1, l = 1.
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Figure-1: Variation of fluid velocity with b
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Appendix A

Complex Inversion Formula/Mellin-Fourier integral:

In solving partial differential equations using Laplace transform method,
complex variable theory may come in handy for finding inverse transform. The
inverse Laplace transform can be expressed as an integral which is known as
inverse integral, and this integral can be evaluated by using contour integration
methods.

The inverse Laplace Transforms of U, V are us, vs, respectively, and are
given by the integrals

us =
1

2iπ

r+i∞∫

r−i∞

extUdt and vs =
1

2iπ

r+i∞∫

r−i∞

extV dt

which can be evaluated by means of the contour integration. Since there is no
branch point, the contour chosen is the closed curve ABC formed by the line
x = r and a semi-circle C with the origin at the center and radius R (See Figure
3) so that

Figure-3: Cantour formed by the line x = r and a semi-circle C
with the origin at the center and radius R.

r+i∞∫

r−i∞

extUdt = lim
R→∞

B∫

A

extUdt

= lim
R→∞




∮

ABC

extUdt−
∫

C

extUdt
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Using Cauchy’s theorem of residues and Jordan’s lemma, we have

us =
1

2iπ

r+i∞∫

r−i∞

extUdt = sum of residues of
{
extU

}
at its poles.

Similarly,

vs =
1

2iπ

r+i∞∫

r−i∞

extV dt = sum of residues of
{
extV

}
at its poles.
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